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SKEW-MONOIDAL REFLECTION AND LIFTING THEOREMS

In memory of Brian Day

STEPHEN LACK AND ROSS STREET

Abstract. This paper extends the Day Re�ection Theorem to skew monoidal cate-
gories. We also provide conditions under which a skew monoidal structure can be lifted
to the category of Eilenberg-Moore algebras for a comonad.

1. Introduction

In the �rst part of the paper, we squeeze some more results out of Brian Day's PhD thesis
[2]. The question with which the thesis began was how to extend monoidal structures along
dense functors, all at the level of enriched categories. Brian separated the general problem
into two special cases. The �rst case concerned extending along a Yoneda embedding,
which led to promonoidal categories and Day convolution [3]. The second case involved
extending along a re�ection into a full subcategory: the Day Re�ection Theorem [4].

While the thesis was about monoidal categories, we can, without even modifying the
biggest diagrams, adapt the results to skew monoidal categories. Elsewhere [5, 8] we
have discussed convolution. Here we will provide the skew version of the Day Re�ection
Theorem [4]. The beauty of this variant is further evidence that the direction choices
involved in the skew notion are important for organizing, and adding depth to, certain
mathematical phenomena.

In the second part of the present paper, the skew warpings of [5] are slightly generalized
to involve a skew action; they can in turn be seen as a special case of the skew warpings
of [6]. Under certain natural conditions these warpings can be lifted to the category
of Eilenberg-Moore coalgebras for a comonad. In particular, this applies to lift skew
monoidal structures. For idempotent comonads, we compare the result with our skew
re�ection theorem.
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2. Skew monoidal re�ection

Recall from [9, 5, 8] the notion of (left) skew monoidal structure on a category X . It
involves a functor ⊗ : X ×X −→ X , an object I ∈ X , and natural families of (not
necessarily invertible) morphisms

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C), λA : I ⊗ A→ A, ρA : I → A⊗ I,

satisfying �ve coherence conditions. It was shown in [1] that these �ve conditions are
independent.

Recall, also from these references, that an opmonoidal structure on a functor L : X →
A consists of a natural family of morphisms

ψX,Y : L(X ⊗ Y )→ LX⊗̄LY

and a morphism ψ0 : LI → Ī satisfying three axioms. We say the opmonoidal functor is
normal when ψ0 is invertible. We say the opmonoidal functor is strong when ψ0 and all
ψX,Y are invertible. However, in this paper, a limited amount of such strength, in which
only certain components of ψ are invertible, will be important.

Suppose (X ,⊗, I, α, λ, ρ) and (A , ⊗̄, Ī , ᾱ, λ̄, ρ̄) are skew monoidal categories.

2.1. Theorem. Suppose L a N : A → X is an adjunction with unit η : 1X ⇒ NL
and invertible counit ε : LN ⇒ 1A . Suppose X is skew monoidal. There exists a skew
monoidal structure on A for which L : X → A is normal opmonoidal with each ψX,NB
invertible if and only if, for all X ∈X and B ∈ A , the morphism

L(ηX ⊗ 1NB) : L(X ⊗NB)→ L(NLX ⊗NB) (2.1)

is invertible. In that case, the skew monoidal structure on A is unique up to isomorphism.

Proof. Suppose A has a skew monoidal structure (⊗̄, Ī , ᾱ, λ̄, ρ̄) for which L is normal
opmonoidal with the ψX,NB invertible. We have the commutative square

LX⊗̄LNB LηX⊗̄1 //

ψ−1

��

LNLX⊗̄LNB
ψ−1

��
L(X ⊗NB)

L(ηX⊗1) // L(NLX ⊗NB)

in which the vertical arrows are invertible. The top arrow is invertible with inverse εLX⊗̄1.
So the bottom arrow is invertible.

Conversely, suppose each L(ηX⊗1NB) is invertible. Wishing L to become opmonoidal
with the limited strength, we are forced (up to isomorphism) to put

A⊗̄B = L(NA⊗NB) and Ī = LI ,
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and to de�ne the constraints ᾱ, λ̄, ρ̄ by commutativity in the following diagrams.

L((NA⊗NB)⊗NC)
L(η⊗1) //

Lα
��

L(NL(NA⊗NB)⊗NC)

ᾱ
��

L(NA⊗ (NA⊗NC))
L(1⊗η)

// L(NA⊗NL(NB ⊗NC))

L(I ⊗NA)
L(ηI⊗1) //

Lλ
��

L(NLI ⊗NA)

λ̄
��

LNA εA
// A

LNA
εA //

Lρ

��

A

ρ̄

��
L(NA⊗ I)

L(1⊗ηI)
// L(NA⊗NLI)

The de�nitions make sense because the top arrows of the squares are invertible (while
the bottom arrows may not be). Now we need to verify the �ve axioms. The proofs
all proceed by preceding the desired diagram of barred morphisms by suitable invertible
morphisms involving only εA, LηX , ηNA, or L(ηX ⊗ 1NB), then manipulating until one
can make use of the corresponding unbarred diagram.

The biggest diagram for this is the proof of the pentagon for ᾱ. Fortunately, the proof
in Brian Day's thesis [2] of the corresponding result for closed monoidal categories has the
necessary Diagram 4.1.3 on page 94 written without any inverse isomorphisms, so saves
us rewriting it here. (The notation is a little di�erent with ψ in place of N and with some
of the simpli�cations we also use below.)

It remains to verify the other four axioms. The simplest of these is

λ̄LI ρ̄LI = λ̄LI ρ̄LIεLILηI

= λ̄LIL(1⊗ ηI)LρNLILηI
= λ̄LIL(1⊗ ηI)L(ηI ⊗ I)LρI

= λ̄LIL(ηI ⊗ I)L(1⊗ ηI)LρI
= εLILλNLIL(1⊗ ηI)LρI
= εLILηILλILρI

= 1LIL(λIρI)

= 1LI .

For the other three, to simplify the notation (but to perhaps complicate the reading),
we write as if N were an inclusion of a full subcategory, choose L so that the counit is an
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identity, and write XY for X ⊗ Y . Then we have

λ̄B⊗̄CᾱLI,B,CL(η(LI)⊗̄B1C)L((ηI1B)1C) = λ̄B⊗̄CL(1ηBC)LαLI,B,CL((ηI1B)1C)

= λ̄B⊗̄CL(1LIηBC)L(ηI1BC)LαI,B,C

= λ̄B⊗̄CL(ηI1BC)L(1IηBC)LαI,B,C

= LλBCLαI,B,C

= L(λB1C)

= (λ̄B⊗̄1C)L(η(LI)B1C)L((ηI1B)1C)

yielding the axiom λ̄B⊗̄CᾱLI,B,C = λ̄B⊗̄1C on right cancellation.
For the proof of the axiom (1A⊗̄λ̄C)ᾱA,LI,C(ρ̄A⊗̄1C) = 1A⊗̄C , we can look at Diagram

4.1.2 on page 93 of [2]. The required commutativities are all there once we reverse the
direction of the right unit constraint which Day calls r instead of ρ.

For the �nal axiom, we have

ᾱA,B,LI ρ̄A⊗̄B = ᾱA,B,LIL(ηAB1LI)L(1ABηI)LρAB

= L(1AηBLI)LαA,B,LIL(1ABηI)LρAB

= L(1AηBLI)L(1A(1BηI))LαA,B,ILρAB

= L(1AηBLI)L(1A(1BηI))L(1AρB)

= 1A⊗̄ρ̄B .

The desired opmonoidal structure on L is de�ned by ψ0 = 1: LI → Ī and ψX,Y =
L(ηX ⊗ ηY ) : L(X ⊗ Y ) → L(NLX ⊗ NLY ). The three axioms for opmonoidality are
easily checked and we have each ψX,NB = L(1NLX ⊗ ηNB)L(ηX ⊗ 1NB) invertible.

3. A re�ective lemma

In this section we state a standard result in a form required for later reference. For the
sake of completeness, we include a proof.

Assume we have an adjunction L a N : A → X with unit η : 1X ⇒ NL and counit
ε : LN ⇒ 1A . Assume N is fully faithful; that is, equivalently, the counit ε is invertible.

3.1. Lemma. For Z ∈X , the following conditions are equivalent:

(i) there exists A ∈ A and Z ∼= NA;

(ii) for all X ∈X , the function X (ηX , 1) : X (NLX,Z)→X (X,Z) is surjective;

(iii) the morphism ηZ : Z → NLZ is a coretraction (split monomorphism);

(iv) the morphism ηZ : Z → NLZ is invertible;

(v) for all X ∈X , the function X (ηX , 1) : X (NLX,Z)→X (X,Z) is invertible.
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Proof. (i)⇒ (ii)

X (X,Z)
∼= //

1
��

X (X,NA)
∼= // A (LX,A)

N
��

X (X,Z) X (NLX,Z)
X (ηX ,1)oo X (NLX,NA)

∼=oo

(ii)⇒ (iii) Take X = Z and obtain ν : NLZ → Z with X (ηZ , 1)ν = 1Z .
(iii) ⇒ (iv) If νηZ = 1 then (ηZν)ηZ = 1ηZ , so, by the universal property of ηZ , we

have ηZν = 1.
(iv)⇒ (v) The non-horizontal arrows in the commutative diagram

X (NLX,Z)

X (1,ηZ)
��

X (ηX ,1) //X (X,Z)

X (1,ηZ)
��

X (NLX,NLZ)
X (ηX ,1) //X (X,NLZ)

A (LX,LZ)

N

ii

∼=

66

are all invertible, so the horizontal arrows are invertible too.
(v)⇒ (i) Clearly (v)⇒ (ii) and we already have (ii)⇒ (iii)⇒ (iv), so take A = LZ

and the invertible ηZ .

4. Skew closed re�ection

The Re�ection Theorem [4] also deals with closed structure.
If, for objects Y and Z the functor X (− ⊗ Y, Z) is representable, say via a natural

isomorphism
X (X ⊗ Y, Z) ∼= X (X, [Y, Z]),

we call the representing object [Y, Z] a left internal hom. Recall from Section 8 of [8] that
if this exists for all Z, so that −⊗Y has a right adjoint, then X becomes left skew closed.

4.1. Theorem. Suppose L a N : A → X is an adjunction with unit η : 1X ⇒ NL and
invertible counit ε : LN ⇒ 1A . Suppose X is skew monoidal and left internal homs of
the form [NB,NC] exist for all B,C ∈ A . The morphisms (5.7) are invertible for all
X ∈X and B ∈ A if and only if the morphisms

η[NB,NC] : [NB,NC]→ NL[NB,NC] (4.2)

are invertible for all B,C ∈ A . In that case, the skew monoidal structure abiding on A ,
as seen from Theorem 2.1, is left closed. Also, the functor N is strong left closed.
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Proof. Consider the following commutative diagram.

A (L(NLX ⊗NB), C)
A (L(η⊗1),1) //

∼=
��

A (L(X ⊗NB), C)

∼=
��

X (NLX ⊗NB,NC)

∼=
��

X (X ⊗NB,NC)

∼=
��

X (NLX, [NB,NC])
X (ηX ,1)

//X (X, [NB,NC])

Invertibility of the arrows (5.7) is equivalent to the invertibility of the top horizontal
arrows. This is equivalent to invertibility of the bottom horizontal arrows. By Lemma 3.1,
this is equivalent to invertibility of the arrows (4.2).

For the penultimate sentence of the Theorem, we now have the natural isomorphisms:

A (A⊗̄B,C) ∼= X (NA⊗NB,NC)
∼= X (NA, [NB,NC])
∼= X (NA,NL[NB,NC])
∼= A (A,L[NB,NC])

yielding the left internal hom [B,C] = L[NB,NC] for A . For the last sentence, we have
N [B,C] = NL[NB,NC] ∼= [NB,NC].

Our notation for a right adjoint to X ⊗− is

X (X ⊗ Y, Z) ∼= X (Y, 〈X,Z〉) .

The right internal hom 〈X,Z〉 may exist for only certain objects Z. In general, the
existence of right homs in a left skew monoidal category does not give a left or right
skew closed structure. When they do exist, we can reinterpret a stronger form of the
invertibility condition (5.7) of Theorem 2.1.

4.2. Theorem. Suppose L a N : A → X is an adjunction with unit η : 1X ⇒ NL and
invertible counit ε : LN ⇒ 1A . Suppose X is skew monoidal, and left internal homs of
the form [Y,NC] and right internal homs of the form 〈X,NC〉 exist. The invertibility of
one of the following three natural transformations implies invertibility of the other two:

L(ηX ⊗ 1Y ) : L(X ⊗ Y )→ L(NLX ⊗ Y ) ; (4.3)

η[Y,NC] : [Y,NC]→ NL[Y,NC] ; (4.4)

〈ηX , NC〉 : 〈NLX,NC〉 → 〈X,NC〉 . (4.5)
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Proof.Consider the commutative diagram (4.6). Invertibility of any one of the horizontal
families in the diagram implies that of the other two. Invertibility of the arrows (4.3) is
equivalent to the invertibility of the top horizontal family. By Lemma 3.1, invertibility
of the middle horizontal family is equivalent to invertibility of the arrows (4.2). By the
Yoneda Lemma, invertibility of the bottom horizontal family is equivalent to invertibility
of the arrows (4.5).

A (L(NLX ⊗ Y ), C)
A (L(η⊗1),1) //

∼=
��

A (L(X ⊗ Y ), C)

∼=
��

X (NLX ⊗ Y,NC)

∼=
��

X (X ⊗ Y,NC)

∼=
��

X (NLX, [Y,NC])
X (ηX ,1) //

∼=
��

X (X, [Y,NC])

∼=
��

X (Y, 〈NLX,NC〉) X (1,〈ηX ,1〉) //X (Y, 〈X,NC〉)

(4.6)

5. An example

This is an example of the opposite (dual) of Theorem 2.1 which we enunciate explicitly
as Proposition 5.1 below. Instead of a re�ection we have a core�ection. To keep using
left skew monoidal categories we also reverse the tensor product. For a monoidal functor
R : X → A , we denote the structural morphisms by

ϕ0 : I → RI and ϕX,Y : RX ⊗RY → R(X ⊗ Y ) .

5.1. Proposition. Suppose R ` N : A →X is an adjunction with counit ε : NR⇒ 1X

and invertible unit η : 1A ⇒ RN . Suppose X is left skew monoidal. There exists a left
skew monoidal structure on A for which R : X → A is normal monoidal each ϕNA,Y
invertible if and only if, for all A ∈ A and Y ∈X , the morphism

R(NA⊗ εY ) : R(NA⊗NRY )→ R(NA⊗ Y ) (5.7)

is invertible.

Consider an injective function µ : U → O. For an object A of the slice category Set/U ,
we write Au for the �bre over u ∈ U . We have an adjunction

R ` N : Set/U → Set/O

de�ned by (NA)i =
∑

µ(u)=iAu and (RX)u = Xµ(u) with invertible unit. The ith com-

ponent of the counit εX : NRX → X is the function
∑

µ(u)=iXµ(u) → Xi which is the
identity of Xi when i is in the image of µ.
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Let C be a category with obC = O. Then Set/O becomes left skew monoidal on
de�ning the tensor X ⊗ Y by

(X ⊗ Y )j =
∑
i

Xi × C (i, j)× Yj

and the (skew) unit I by Ij = 1. The associativity constraint α : (X⊗Y )⊗Z → X⊗(Y⊗Z)
is de�ned by the component functions∑

i,j

Xi × C (i, j)× Yj × C (j, k)× Zk →
∑
i,j

Xi × C (i, k)× Yj × C (j, k)× Zk

induced by the functions

C (i, j)× C (j, k)→ C (i, k)× C (j, k)

taking (a : i → j, b : j → k) to (b ◦ a : i → k, b : j → k). De�ne λY : I ⊗ Y → Y to have
j-component

∑
i C (i, j)× Yj → Yj whose restriction to the ith injection is the second

projection onto Yj. De�ne ρX : X → X ⊗ I to have j-component Xj →
∑

iXi × C (i, j)
equal to the composite of Xj → Xj × C (j, j), x 7→ (x, 1j), with the jth injection.

This provides an example of Proposition 5.1. In fact, it satis�es the stronger condition
of the dual to Theorem 4.2. To see that

R(X ⊗ εY ) : R(X ⊗NRY )→ R(X ⊗ Y )

is invertible, since N is fully faithful, we need to prove

G(X ⊗ εY ) : G(X ⊗GY )→ G(X ⊗ Y )

is invertible where G = NR is the idempotent comonad generated by the re�ection.
Notice that (GX) = Uj ×Xj where Uj is the �bre of µ over j ∈ O. Since µ is injective,
Uj ∼= Uj ⊗ Uj, so

G(X ⊗GY )j = Uj × (X ⊗GY )j

= Uj ×
∑
i

Xi × C (i, j)× (GY )j

=
∑
i

Uj ×Xi × C (i, j)× Uj × Yj

∼=
∑
i

Uj ×Xi × C (i, j)× Yj

= Uj × (X ⊗ Y )j

= G(X ⊗ Y )j .
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The resultant left skew structure on Set/U has tensor product

(A⊗̄B)v = R(NA⊗NB)v

= (NA⊗NB)µ(v)

=
∑
i

(NA)i × C (i, µ(v))× (NB)µ(v)

∼=
∑
u

Au × C (µ(u), µ(v))×Bv .

Of course we can see that this is merely the left skew structure on Set/U arising from
the category whose objects are the elements u ∈ U and whose morphisms u → v are
morphisms µ(u)→ µ(v) in C ; that is, the category arising as the full image of the functor
µ : U → C .

As an easy exercise the reader might like to calculate the monoidal structure

RX⊗̄RY → R(X ⊗ Y )

on R and check that these components are not invertible in general while, of course, they
are for X = NA.

6. Skew warpings riding a skew action

We slightly generalize the notion of skew warping de�ned in [5] to involve an action. This
is actually a special case of skew warping on a two-object skew bicategory in the sense of
[6].

Let C denote a left skew monoidal category. A left skew action of C on a category A
is an opmonoidal functor

C −→ [A ,A ] , X 7→ X ?− (6.8)

where the skew monoidal (in fact strict monoidal) tensor product on the endofunctor
category [A ,A ] is composition. The opmonoidal structure on (6.8) consists of natural
families

αX,Y,A : (X ⊗ Y ) ? A −→ X ? (Y ? A) and λA : I ? A −→ A (6.9)

subject to the three axioms (6.10), (6.11), (6.12).

((X ⊗ Y )⊗ Z) ? A α //

α?1
��

(X ⊗ Y ) ? (Z ? A)

α

��
(X ⊗ (Y ⊗ Z)) ? A α

// X ? ((Y ⊗ Z) ? A)
1?α
// X ? (Y ? (Z ? A))

(6.10)
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(I ⊗ Y ) ? A

λ?1 &&

α // I ? (Y ? A)

λxx
Y ? A

(6.11)

(X ⊗ I) ? A α // X ? (I ? A)

1?λ
��

X ? A
1

//

ρ?1

OO

X ? A

(6.12)

A category A equipped with a skew action of C is called a skew C -actegory.
A skew left warping riding the skew action of C on A consists of the following data:

(a) a functor T : A −→ C ;

(b) an object K of A ;

(c) a natural family of morphisms vA,B : T (TA ? B) −→ TA⊗ TB in C ;

(d) a morphism v0 : TK −→ I; and,

(e) a natural family of morphisms kA : A −→ TA ? K;

such that the following �ve diagrams commute.

T (TA ? B)⊗ TC
vA,B⊗1

// (TA⊗ TB)⊗ TC
αTA,TB,TC

��
T (T (TA ? B) ? C)

vTA?B,C

OO

T (vA,B?1)

��

TA⊗ (TB ⊗ TC)

T ((TA⊗ TB) ? C)

TαTA,TB,C **

TA⊗ T (TB ? C)

1⊗vB,C

OO

T (TA ? (TB ? C))

vA,TB?C

44

(6.13)

TK ⊗ TB
v0⊗1TB

&&
T (TK ? B)

vK,B

77

T (v0?1B)

��

I ⊗ TB
λTB

��
T (I ⊗B)

TλB
// TB

(6.14)
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T (TA ? K)
vA,K // TA⊗ TK

1⊗v0
��

TA

TkA

OO

ρTA

// TA⊗ I

(6.15)

T (TA ? B) ? K
vA,B?1K // (TA⊗ TB) ? K

αTA,TB,K

��
TA ? B

kTA?B

OO

1TA?kB
// TA ? (TB ? K)

(6.16)

TK ? K
v0?1K // I ? K

λK
��

K
1K

//

kK

OO

K

(6.17)

6.1. Example. A skew warping on a skew monoidal category (in the sense of [5]) is just
the case where A = C with tensor as action.

Just as in Proposition 3.6 of [5], we obtain a skew monoidal structure from a skew
warping.

6.2. Proposition. A skew left warping riding a left skew action of a left skew monoidal
category C on a category A determines left skew monoidal structure on A as follows:

(a) tensor product functor A⊗̄B = TA ? B;

(b) unit K;

(c) associativity constraint

T (TA ? B) ? C
vA,B?1C−→ (TA⊗ TB) ? C

αTA,TB,C−→ TA ? (TB ? C) ;

(d) left unit constraint

TK ? B
v0?1B−→ I ? B

λB−→ B ;

(e) right unit constraint

A
kA−→ TA ? K .

There is an opmonoidal functor (T, v0, vA,B) : (A , ⊗̄, K) −→ (C ,⊗, I).

6.3. Example. Skew warpings are more basic than skew monoidal structures in the
following sense. Just pretend, for the moment, that we do not know what a skew monoidal
(or even monoidal) category is, except that we would like endofunctor categories to be
examples. For any category A , the endofunctor category C = [A ,A ] acts on A by
evaluation; as a functor (6.8), the action is the identity. A left skew warping riding this
action could be taken as the de�nition of a left skew monoidal structure on A .
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7. Comonads on skew actegories

For a left skew monoidal category C , let CatC denote the 2-category whose objects are
left skew C -actegories as de�ned in Section 6. A morphism is a functor F : A → B
equipped with a natural family of morphisms

γX,A : X ? FA −→ F (X ? A) (7.18)

such that (7.19) and (7.20) commute.

(X ⊗ Y ) ? FA
γ //

α

��

F ((X ⊗ Y ) ? A)

Fα
��

X ? (Y ? FA)
1?γ
// X ? F (Y ? A) γ

// F (X ? (Y ? A))

(7.19)

I ? FA
γ //

λ &&

F (I ? A)

Fλ
��

FA

(7.20)

Such a morphism is called strong when each γX,A is invertible. A 2-cell ξ : (F, γ)⇒ (G, γ)
in CatC is a natural transformation ξ : F ⇒ G such that (7.21) commutes.

X ? FA
γX,A //

1?ξA
��

F (X ? A)

ξX?A

��
X ? GA γX,A

// G(X ? A)

(7.21)

As usual with actions, there is another way to view the 2-category CatC . Regard C
as the homcategory of a 1-object skew bicategory ΣC in the sense of Section 3 of [6]. A
left skew C -actegory is an oplax functor A : ΣC → Cat. A morphism (F, γ) : A → B
in CatC can be identi�ed with a lax natural transformation between the oplax functors.
The 2-cells are the modi�cations.

We are interested in comonads (A , G, γ, δ, ε) in the 2-category CatC . These are objects
of the 2-category Mnd∗(CatC ) as de�ned in [7]. Alternatively, they are oplax functors
ΣC → Mnd∗(Cat). For later reference, apart from the conditions for being a comonad on
A and the conditions (7.19) and (7.20), we require commutativity of (7.22).

X ? GA
γ //

1?δ
��

G(X ? A)

δ
��

X ? G2A γ
// G(X ? GA)

Gγ
// G2(X ? A)

X ? GA
γ //

1?ε &&

G(X ? A)

ε

��
X ? A

(7.22)

The Eilenberg-Moore coalgebra construction (A , G, δ, ε) 7→ A G is the 2-functor right
adjoint to the 2-functor Cat→ Mnd∗(Cat) taking each category to that category equipped
with its identity comonad.
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7.1. Proposition. For each comonad (A , G, γ, δ, ε) in the 2-category CatC , the Eilenberg-
Moore coalgebra category A G becomes a left skew C -actegory with skew action

X ? (A
a−→ GA) = (X ? A,X ? A

X?a−→ X ? GA
γX,A−→ G(X ? A)) .

This provides the Eilenberg-Moore construction in the 2-category CatC (in the sense of
[7]).

Proof. Compose the oplax functor ΣC → Mnd∗(Cat) corresponding to (A , G, γ, δ, ε)
with the Eilenberg-Moore 2-functor Mnd∗(Cat)→ Cat.

Let U: A G → A denote the underlying functor (A, a) 7→ A.

7.2. Proposition. Suppose (T,K, v, v0, k) is a skew left warping riding the C -actegory
A . Suppose (A , G, γ, δ, ε) is a comonad in the 2-category CatC for which all morphisms
of the form γTA,K and γTA,TB?K are invertible. Then (TU, (GK, δK), v, v′0, k

′) is a skew
left warping riding the C -actegory A G of Proposition 7.1, where v′0 = v0 ◦ TεK and
k′(A,a) = γ−1

TA,K ◦GkA ◦ a.

Proof. First we need to see that k′(A,a) : (A, a) → (TA ? GK, γTA,GK ◦ (1 ? δK)) is a G-

coalgebra morphism. This uses the �rst diagram of (7.22), naturality of δ with respect to
kA, and the coassociativity of the coaction a : A→ GA.

It remains to verify the �ve axioms (6.13), (6.14), (6.15), (6.16), (6.17). Since only v is
involved in (6.13), it follows from axiom (6.13) for the original skew warping. For (6.14),
we have the diagram

T (TGK ? B)
T (TεK?1) //

vGK,B

��

T (TK ? B)
T (v0?1) //

vK,B

��

T (I ⊗B)

TλB
��

TGK ⊗ TB
TεK⊗1

// TK ⊗ TB
v0⊗1

// I ⊗ TB
λTB

// TB

which uses naturality of v and axiom (6.14) for the original skew warping. The next
diagram proves (6.15).

TA
Ta //

1

��

TGA

TεA

��

TGkA // TG(TA ? K)
Tγ−1

//

TεTA?K

��

T (TA ? GK)

vA,GK

��T (1?εK)vv
T (TA ? K)

vA,K

((

TA⊗ TGK
1⊗TεK
��

TA ρTA

//

TkA

44

TA⊗ I TA⊗ TK
1⊗v0

oo

Precomposing the next diagram with 1 ? b : TA ?B → TA ?GB proves (6.16). Take note
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here of which components of γ are required to be invertible.

TA ? GB

1?GkB

��

γ // G(TA ? B)
GkTA?B //

G(1?kB)

��

G(T (TA ? B) ? K)

γ−1

��

1

tt
TA ? G(TB ? K)

γ

��

G(T (TA ? B) ? K)

G(vTA,B?1)

��

T (TA ? B) ? GK

vA,B?1

��

γoo

G((TA⊗ TB) ? K)
Gα

tt

(TA⊗ TB) ? GK

α

��

γoo

G(TA ? (TB ? K))
γ−1

// TA ? G(TB ? K)
1?γ−1

// TA ? (TB ? GK)

Then

GK
δK //

1 ''

G2K
GkGK //

GεK

��

G(TGK ? K)
γ−1
//

G(TεK?1)

��

TGK ? GK

TεK?1

��
GK

GkK //

1

##

G(TK ? K)
γ−1

//

G(v0?1)

��

TK ? GK

v0?1

��
G(I ? K)

GλK
��

I ? GK

λGK

��

γ
oo

GK
1

// GK

yields (6.17), which completes the proof.

7.3. Corollary. Under the hypotheses of Proposition 7.2, the functor U: A G → A
preserves the tensor products obtained from the skew warpings via Proposition 6.2 and
becomes opmonoidal when equipped with the unit constraint εI : GI → I.

7.4. Corollary. Since C is an object of CatC with its own tensor product as skew
action, and since it supports the identity skew warping, for any comonad (C , G, γ, δ, ε) in
the 2-category CatC , Corollary 7.3 applies to give a skew monoidal structure on C G with
U: C G → C opmonoidal.

7.5. Remark. If the comonad of Corollary 7.4 is idempotent and (G, γ) is strong in CatC

then U : C G → C is a core�ection and the dual of Theorem 2.1 applies. The same skew
monoidal structure on C G is obtained as in Corollary 7.4. The point is that the diagram
(7.23) commutes by G applied to the right-hand diagram of (7.22) and a counit property
of the comonad. So Theorem 2.1 appears to be a stronger result than Corollary 7.4 in the
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idempotent comonad case.

G(X ⊗GY )
G(1⊗εY ) //

GγX,GY

��

G(X ⊗ Y )

δX⊗Y

��
GG(X ⊗ Y )

1
//

GεX⊗Y

44

GG(X ⊗ Y )

(7.23)

8. The example of Section 5 without injectivity

Let C be a category with object set O and morphism set E, and let ξ : U → O be a
function (not necessarily injective). Composition with ξ induces a comonadic functor
N = ξ! : Set/U → Set/O; write R = ξ∗ for the right adjoint, given by pullback. The
comonad G = NR = ξ!ξ

∗ is given by −×O U .
The category structure on C induces a skew monoidal structure on Set/O, with tensor

product X ⊗ Y given by:

(X ⊗ Y )j =
∑
i

Xi × C (i, j)× Yj

and so X ⊗− is given by X ×O E ×O −. The unit I is the terminal object 1: O → O.
From the formulas for G and X ⊗ − involving products in Set/O, it is clear that we

have natural isomorphisms γX,Y : X ⊗ GY ∼= G(X ⊗ Y ), compatible with the comonad
structure, in the sense that the diagrams (7.22) commute. Almost as easy is compatibility
with the associativity map and left unit constraint in the sense of diagrams (7.19) and
(7.20).

So we have a category C with object-set O, giving rise to the skew monoidal category
Set/O, and the comonad G = ξ!ξ

∗ on Set/O as required by Corollary 7.4. This gives rise
to a skew monoidal structure on Set/U , with unit ξ∗I; in other words with unit I ′ equal to
the terminal object 1: U → U . It is clear from the construction that this tensor product
preserves colimits in each variable. So from the general theory, it must correspond to
some category A with object-set U .

Since ξ∗ : Set/U → Set/O is opmonoidal, ξ is the object part of a functor F : A → C .
Since ξ∗ preserves the tensor, the functor F is fully faithful.

Thus A must in fact be obtained from ξ : U → C via the factorization into a bijective-
on-objects functor followed by a fully faithful functor.
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