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WEAK BRAIDED MONOIDAL CATEGORIES AND THEIR
HOMOTOPY COLIMITS

MIRJAM SOLBERG

Abstract. We show that the homotopy colimit construction for diagrams of categories
with an operad action, recently introduced by Fiedorowicz, Stelzer and Vogt, has the
desired homotopy type for diagrams of weak braided monoidal categories. This provides
a more flexible way to realize E2 spaces categorically.

1. Introduction

Braided monoidal categories have been much studied and are used extensively in many
areas of mathematics, for instance in knot theory, representation theory and topological
quantum field theories. It has been known for a long time that the nerve of a braided
monoidal category is an E2 space, and it was shown recently [FSV13] that all homotopy
types of E2 spaces arise in this way. In this article we study a weaker categorical structure,
namely weak braided monoidal categories. These are monoidal categories with a family of
natural morphisms X⊗Y → Y ⊗X satisfying the axioms for a braiding, except that they
are not required to be isomorphisms. We will see that weak braided monoidal categories
give a more flexible way to realize E2 spaces categorically.

Homotopy colimit constructions have become increasingly important in homotopy the-
ory. In order for the equivalence between weak braided monoidal categories and E2 spaces
to be really useful, one should be able to construct homotopy colimits on the categorical
level. Such a homotopy colimit construction was defined in [FSV13] in general for dia-
grams of categories with an operad action. The question of the homotopy properties of
the homotopy colimit was left open for weak braided monoidal categories. In this paper
we provide an answer to that question. Let Br+-Cat denote the category of weak braided
monoidal categories and let X be a diagram of weak braided monoidal categories. Apply-
ing the nerve N to a weak braided monoidal category yields a space with an action of the
E2 operad NBr+, see Subsection 3.1. Let hocolimBr+X denote the homotopy colimit of
X defined in [FSV13], and let hocolimNBr+NX denote the homotopy colimit of NX, for
details see Subsection 3.1. Then our main result, Theorem 3.2, can be stated as follows.

1.1. Theorem. There is a natural weak equivalence

hocolimNBr+NX → N(hocolimBr+X)
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of NBr+-algebras.

1.2. Organization. We begin by giving the definition of weak braided monoidal cate-
gories in Section 2 and provide some examples. In Section 3 we set up and prove our main
result, Theorem 3.2. The proof involves an analysis of braid monoids which is interesting
in its own right.

2. Weak braided monoidal categories

Let D be a monoidal category with monoidal product ⊗, monoidal unit i, associativity
isomorphism a and left and right unit isomorphisms l and r respectively. A weak braiding
for D consists of a family of morphisms

bd,e : d⊗ e→ e⊗ d

in D, natural in d and e, such that ldbd,i = rd, and rdbi,d = ld and the following two
diagrams

(e⊗ d)⊗ f a // e⊗ (d⊗ f)
id⊗b
��

d⊗ (f ⊗ e) a−1
// (d⊗ f)⊗ e

b⊗1
��

(d⊗ e)⊗ f

b⊗id
DD

a ��

e⊗ (f ⊗ d) d⊗ (e⊗ f)

id⊗b
DD

a−1 ��

(f ⊗ d)⊗ e

d⊗ (e⊗ f)
b
// (e⊗ f)⊗ d

a

CC

(d⊗ e)⊗ f
b
// f ⊗ (d⊗ e)

a−1

CC

commute for all d, e and f in D. Here the sub indices of the weak braiding b and the
associativity isomorphism a have been omitted. A weak braided monoidal category is a
monoidal category equipped with a weak braiding. Note that if all the morphisms bd,e
are isomorphisms, then b is a braiding for the monoidal category.

2.1. Remark. The notion of a weak braided monoidal category found in [BFSV03] and
[FSV13] differs from the definition given here, in that the underlying monoidal structure
is required to be strictly associative and strictly unital. This is not a significant difference,
since each weak braided monoidal category is equivalent to a weak braided strict monoidal
category, along monoidal functors preserving the weak braiding. The proof of this is
similar to the proof of the analogous result for braided monoidal structures.

Weak braided monoidal categories have not been much studied in the literature, so
before we proceed we will look at some examples to show how such structures naturally
arise. The first example, the disjoint union of the braid monoids, is somehow the canonical
example.
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2.2. Example. Let B+
m denote the braid monoid on m strings with the following presen-

tation:

〈σ1, . . . , σm−1 |σiσj = σjσi if |i− j| > 1 and σiσi+1σi = σi+1σiσi+1〉.

The elements in B+
m are called positive braids on m strings, or just positive braids.

Let B+ denote the category with an object m for each integer m ≥ 0, with endomor-
phisms of m the elements of the braid monoid B+

m, and no other morphisms. This is a
strict monoidal category with monoidal product given by m t n = m+n and juxtaposi-
tion of positive braids, the unit is 0. The weak braiding from mtn to ntm is given by
the positive braid

(σn · · ·σm+n−1) · · · (σ2 · · ·σm+1)(σ1 · · ·σm),

braiding the first m strings over the last n strings. This is the same as the usual braiding
in the classical braid category, which is the disjoint union of the braid groups, see [JS93,
Example 2.1].

2.3. Example. We consider the category of non-negatively graded abelian groups. An
object G is a collection of abelian groups Gn for n ≥ 0. A morphism f : G→ H consists
of group homomorphisms fn : Gn → Hn for n ≥ 0. This category has a monoidal product
given by

(G⊗H)n =
⊕

n1+n2=n

Gn1 ⊗Hn2 .

Now fix an integer k. For g ∈ Gn1 and h ∈ Hn2 the assignment g ⊗ h 7→ kn1n2h ⊗ g
induces a map from Gn1 ⊗ Hn2 to Hn2 ⊗ Gn1 , which in turn induces a homomorphism
(G⊗H)n → (H⊗G)n. The collection of such maps gives a weak braiding for the category
of non-negatively graded abelian groups. Note that if k is a unit, i.e. ±1, then the weak
braiding is an actual braiding.

This example may be generalized to the category of non-negatively graded R-modules
for any commutative ring R. Pick an element in R to play the role of k in the weak
braiding.

A much studied construction is the center of a monoidal category, which can be en-
dowed with a braided monoidal structure, see for instance Example 2.3 in [JS93]. Our
next example is a weak version of this.

2.4. Example. Let D be a strict monoidal category with monoidal unit i. We consider
pairs (d, δ) where d is an object inD and δ is a natural transformation δ : d⊗(−)→ (−)⊗d
such that δi = idd and such that for any two objects x, y ∈ D the triangle

d⊗ x⊗ y δx⊗idy //

δx⊗y ''

x⊗ d⊗ y

idx⊗δyww
x⊗ y ⊗ d
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commutes. An arrow between two pairs (d, δ) → (e, ε) consists of a morphism φ : d → e
such that for all x ∈ D the identity εx ◦ (φ⊗ idx) = (idx ⊗ φ) ◦ δx holds. We can define a
monoidal product of two such pairs by setting

(d, δ)⊗ (e, ε) = (d⊗ e, (δ ⊗ ide) ◦ (idd ⊗ ε)).

The collection of morphisms

δe : (d, δ)⊗ (e, ε)→ (e, ε)⊗ (d, δ)

satisfies the conditions for a weak braiding on this category of pairs and arrows. We call
this the weak center of D.

The requirement that D should be strictly associative and strictly unital was only a
matter of convenience. A similar construction works for any monoidal category, details
are left to the interested reader.

2.5. Operadic interpretation of weak braided monoidal structures. When
the underlying monoidal multiplication is strict, weak braided monoidal categories are the
algebras over a certain Cat-operad. By a Cat-operad we understand an operad internal
to the category Cat of small categories. Following [FSV13, Section 8] we will introduce
the Cat-operad Br+ such that Br+-algebras are weak braided strict monoidal categories.
The objects of Br+(k) are the elements A of the symmetric group Σk. Let p : B+

k → Σk

denote the projection of the braid monoid onto the corresponding symmetric group. Then
a morphism α : A → B in Br+(k) is a positive braid α ∈ B+

k such that p(α)A = B.
Composition in Br+(k) is given by multiplication in B+

k . The category Br+(k) has a right
action of Σk defined on objects and morphisms by sending α : A→ B to α : Ag → Bg for
g ∈ Σk. The operad structure map

γ : Br+(k)× Br+(j1)× · · · × Br+(jk)→ Br+(j1 + · · ·+ jk)

takes the tuple (A,B1, . . . , Bk) to

A(j1, . . . , jk) ◦ (B1 t · · · tBk).

Here A(j1, . . . , jk) denotes the canonical block permutation obtained from A by replacing
the ith letter with ji letters. The action on morphisms is analogous except for the obvious
permutation of the indices. It is easy to check that the category of weak braided monoidal
categories with weak braiding preserving strict monoidal functors is isomorphic to Br+-
algebras. See for instance the argument given in Section 5.1 in [SS14] for the braided
monoidal version. We denote the category of Br+-algebras by Br+-Cat .

3. Homotopy colimits of weak braided monoidal categories

In [FSV13, Definition 4.10] there is a general homotopy colimit construction for a diagram
of algebras over a Cat-operad. Let L be a small category and consider the category
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(Br+-Cat)L of functors L → Br+-Cat and natural transformations. The above mentioned
construction gives in particular a functor

hocolim
L

Br+ : (Br+-Cat)L → Br+-Cat .

3.1. The homotopy type of the homotopy colimit. Let S be the category of
simplicial sets and let N be the nerve functor from Cat to S. If we apply N levelwise
to the Cat-operad Br+, we get an operad NBr+ internal to the category S. We denote
the category of algebras over NBr+ as NBr+-S. A morphism of NBr+-algebras is called
a weak equivalence if the underlying simplicial set map is a weak equivalence. These are
the weak equivalences in the standard model structure on NBr+-algebras, for a reference
to the topological case, see for instance [SV91, Theorem B]. Given a diagram W : L →
(NBr+-S), let hocolimNBr+

L W denote the coend construction N(−/L) ⊗L QW , where Q
is an object wise cofibrant replacement functor in the category of NBr+-algebras. This
is the homotopy colimit of QW from Definition 18.1.2 in [Hir03]. If X is in (Br+-Cat)L,
then there is a natural map

hocolim
L

NBr+NX → N(hocolim
L

Br+X),

see the paragraph before Definition 6.7 [FSV13]. This is an operadic version of Thomason’s
map in Lemma 1.2.1 [Tho79]. The question if this map is a weak equivalence or not, was
left open in [FSV13]. Our main result provides a positive answer to this problem.

3.2. Theorem. The diagram

(Br+-Cat)L N //

hocolimBr+

L ��

(NBr+-S)L

hocolimNBr+

L��
Br+-Cat N // NBr+-S

commutes up to weak equivalence of NBr+-algebras.

The operad NBr+ is an E2 operad, see Proposition 8.13 in [FSV13]. The above theorem
gives one way to relate weak braided monoidal categories and E2 spaces as seen in the
corollary below. Fiedorowicz, Stelzer and Vogt obtain the same equivalence without using
the homotopy colimit construction of Br+-algebras in [FSV].

3.3. Corollary. We have an equivalence of localized categories

(Br+-Cat)[we−1] ' (NBr+-S)[we−1].

Proof. Theorem 3.2 shows that Theorem 7.6 in [FSV13] applies to the operad Br+.
The corollary then follows from the latter theorem with the added observation that the
localization (Br+-Cat)[we−1] exists, see Proposition A.1 in [SS14].
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By general theory (details will be provided later), the proof of the theorem reduces to
showing that certain categories have the property that each connected component has an
initial object. Fix an A ∈ Σm, a B ∈ Σn, and non-negative integers r1, . . . , rn such that
r1 + · · · + rn = m. Let B̃ denote the canonical block permutation B(r1, . . . , rn) ∈ Σm

obtained from B by replacing the ith letter with ri letters. We define a poset category C
depending on A, B and r1, . . . , rn . The objects in C are the positive braids α ∈ B+

m such
that

p(α)AB̃ ∈ (Σr1 × · · · × Σrn) ⊆ Σm.

There is a morphism α ≤ β from α to β in C if there exist γi ∈ B+
r1

for i = 1, . . . , n such
that (γ1 t · · · t γn)α = β in B+

m.

3.4. Analysis of minimal positive braids in C. First we note that all references to
the presentation of a braid monoid, will be to the standard presentation, see Example 2.2.
We call an object ν in C a minimal object if for all objects ν ′ in C, ν ′ ≤ ν implies ν ′ = ν.
Define the norm |β| ∈ N0 of an element β in B+

m, as the length of any word representing
β, see Section 6.5.1 in [KT08]. This is well defined because each of the relations in the
presentation identifies words of equal length. It is immediate from the definition that ν
is a minimal object if and only if ν 6= (γ1 t · · · t γn)ν ′ for all γi ∈ B+

ri
and all ν ′ ∈ C with

|ν ′| < |ν|.

3.5. Proposition. Given an object α in C there is a unique minimal object να such that
να ≤ α.

This proposition is the key ingredient in the proof of our main result. But before
we prove either, we will derive some auxiliary results from the nature of the standard
presentation of a braid monoid.

Let w and w′ be two words representing the same positive braid. According to Section
6.1.5 in [KT08], w′ can be obtained from w by a finite number of consecutive substitutions
of the form

w1rw2 = w1r
′w2

where r = r′ is one of the relations in the presentation. Observe that for each of the
relations r = r′ in the presentation, r and r′ contain the same letters, only the order and
number of occurrences of each letter differ. This implies that a letter σi is in w if and
only if σi is in w′.

For integers r1, . . . , rn adding up to m, consider B+
r1
× · · · ×B+

rn as a submonoid of B+
m

consisting of the positive braids in B+
m which can be represented by a word not containing

the letters σri for i = 1, . . . , n − 1. The above discussion shows that α ∈ B+
m lies in

B+
r1
× · · · × B+

rn if and only if no word representing α contains any of the letters σri for
i = 1, . . . , n−1. Also, a positive braid α ∈ B+

m does not lie in B+
r1
×· · ·×B+

rn if and only if
any word representing α contains at least one of the letters σri for i = 1, . . . , n− 1. This
immediately implies the next lemma.
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3.6. Lemma. Given two positive braids α and β in B+
m such that their product βα lies in

B+
r1
× · · · × B+

rn, then both α and β lie in B+
r1
× · · · × B+

rn as well.

A right common multiple of two elements x and x′ in a monoid M , is an element in
M that is of the form xy = x′y′ for some y and y′ in M . A right least common multiple of
x and x′ is an element lcm(x, x′) ∈M such that lcm(x, x′) is a right common multiple of
x and x′, and such that any right common multiple of x and x′ is of the form lcm(x, x′)z
for some z ∈ M . A unique right least common multiple of γ and γ′ exists for any two
positive braids γ and γ′ on k strings, see Theorem 6.5.4 in [KT08]. Since we will only
be dealing with right least common multiples, and not left least common multiples, the
notation lcm will not be ambiguous. We will however use a subindex k to indicate that
the least common multiple lcmk is taken in the braid monoid B+

k .

3.7. Corollary. Given γi, γ
′
i ∈ B+

ri
for i = 1, . . . , n, let γ = γ1 t · · · t γn and similarly

γ′ = γ′1 t · · · t γ′n. Then the least common multiple lcmm(γ, γ′) in B+
m of γ and γ′ is equal

to
lcmr1(γ1, γ

′
1) t · · · t lcmrn(γn, γ

′
n).

Proof. It is clear that lcmr1(γ1, γ
′
1)t· · ·tlcmrn(γn, γ

′
n) is the right least common multiple

of γ and γ′ in the monoid B+
r1
×· · ·×B+

rn . Now lcmr1(γ1, γ
′
1)t · · ·t lcmrn(γn, γ

′
n) is a right

multiple of both γ and γ′, so we get

lcmm(γ, γ′)φ = lcmr1(γ1, γ
′
1) t · · · t lcmrn(γn, γ

′
n)

for some φ ∈ B+
m. Since the product lcmm(γ, γ′)φ lies in B+

r1
× · · · × B+

rn , then so does
lcmm(γ, γ′), and the result follows.

Proof of Proposition 3.5. We first prove the existence of να. If α is not a minimal
object, there exists an object α1 ∈ C such that α1 ≤ α and |α1| < |α|. We repeat this
process as many times as necessary until we obtain a minimal αk with αk ≤ αk−1 and
|αk| < |αk−1|. The process terminates after a finite number of steps since the norm of the
αi’s decrease strictly each time. We set να = αk, so by construction να ≤ α.

We now turn to the uniqueness of να. Suppose there are two minimal objects να
and ν ′α such that both να ≤ α and ν ′α ≤ α. Then α equals both (γ1 t · · · t γn)να and
(γ′1 t · · · t γ′n)ν ′α for some γi, γ

′
i ∈ B+

ri
, i = 1, . . . , n. Abbreviating γ1 t · · · t γn to γ and

γ′1 t · · · t γ′n to γ′, we recall that

lcmm(γ, γ′) = lcmr1(γ1, γ
′
1) t · · · t lcmrn(γn, γ

′
n).

Since α is a right common multiple of both γ and γ′,

α = (lcmr1(γ1, γ
′
1)) t · · · t (lcmrn(γn, γ

′
n))ω

for some ω ∈ B+
m. The right least common multiple of γi and γ′i is in particular a

right common multiple of γi and γ′i, so lcm(γi, γ
′
i) = γiφi = γ′iφ

′
i for some φi, φ

′
i ∈ B+

ri
,
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i = 1, . . . , n. Combining this we get that

(γ1 t · · · t γn)να = α = (γ1 t · · · t γn)(φ1 t · · · t φn)ω and

(γ′1 t · · · t γ′n)ν ′α = α = (γ′1 t · · · t γ′n)(φ′1 t · · · t φ′n)ω.

The braid monoid injects into the corresponding braid group [FSV13, Theorem 6.5.4], so
we can apply left cancellation to the above equations to obtain

να = (φ1 t · · · t φn)ω and ν ′α = (φ′1 t · · · t φ′n)ω.

It is straightforward to check that p(ω)AB̃ is in Σr1 × · · · ×Σrn , so that ω is an object in
C. Then the above equations say that ω ≤ να and ω ≤ ν ′α in C. But since να and ν ′α are
minimal objects these maps have to be identities. This proves the uniqueness of να.

3.8. Lemma. Each connected component in C has an initial object.

Proof. Given a morphism α ≤ β in C, Proposition 3.5 associates to α and β unique
minimal objects να and νβ respectively. The two objects must be equal since να ≤ α ≤ β,
but νβ is the unique minimal object with νβ ≤ β. Hence the minimal objects associated
to any two objects in the same connected component has to be equal, and we have a
unique minimal object in each connected component of C. The minimal objects are initial
in their respective connected components.

Fix an M ∈ Σm, an N ∈ Σn, and non-negative integers s1, . . . , sn such that s1 + · · ·+
sn = m. The factorization category C(M,N, s1, . . . , sn), as defined in [FSV13, Section 6],
has as objects tuples (C1, . . . , Cn, α) consisting of Ci ∈ Σsi for i = 1, . . . n, and α ∈ B+

m

such that
p(α)M = Ñ(C1 t · · · t Cn). (1)

A morphism from (C1, . . . , Cn, α) to (D1, . . . , Dn, β) consists of elements γi in B+
si

for
i = 1, . . . n such that (γ1 t · · · t γn)α = β.

3.9. Lemma. The factorization category C(A,B−1, rB−1(1), . . . , rB−1(n)) is isomorphic to
the category C considered in this section.

Proof. Here B̃−1(C1 t · · · t Cn) = (CB(1) t · · · t CB(n))B̃
−1, so Equation (1) can be

rewritten as
p(α)AB̃ = CB(1) t · · · t CB(n).

This equation determines the Ci’s uniquely given α with p(α)AB̃ in Σr1 × · · · × Σrn . The
two categories therefore have isomorphic objects, and the morphism sets are easily seen
to be isomorphic as well.

Proof of Theorem 3.2. Together Lemmas 3.8 and 3.9 show that each factorization
category has an initial object in each of its connected components. Thus the operad Br+

satisfies the factorization condition [FSV13, Definition 6.8] and the result follows from
Theorem 6.10 [FSV13].
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