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SEGAL GROUP ACTIONS

MATAN PRASMA

Abstract. We define a model category structure on a slice category of simplicial spaces,
called the "Segal group action" structure, whose fibrant-cofibrant objects may be viewed
as representing spaces X with an action of a fixed Segal group (i.e. a group-like, reduced
Segal space). We show that this model structure is Quillen equivalent to the projective
model structure on G-spaces, SBG, where G is a simplicial group corresponding to the
Segal group. One advantage of this model is that if we start with an ordinary group
action X ∈ SBG and apply a weakly monoidal functor of spaces L : S −→ S (such
as localization or completion) on each simplicial degree of its associated Segal group
action, we get a new Segal group action of LG on LX which can then be rigidified via
the above-mentioned Quillen equivalence.

1. Introduction

The development and use of homotopy-coherent versions of classical notions is by now
widespread in several parts of mathematics. It is often beneficial to augment an "up-to-
homotopy" notion with a "rigidification" procedure that compares it back to a classical
(often enriched) notion. Such a comparison is useful since one can use results that
were proven for classical notions in order to establish properties of their homotopy-
coherent counter-parts which are usually harder to manage. Let us demonstrate this
by the following example. For a simplicial group G, the methods of higher category
theory enable one to have a flexible model of a group action by simply considering the
∞-category of ∞-functors Fun(N(BG), N(So)) from the homotopy coherent nerve of
BG to the homotopy coherent nerve of the category of spaces. This ∞-category can be
thought of as spaces with a "group action" up to coherent homotopy, and moreover,
comes with a rigidification functor [Lurie, 2009, Proposition 5.1.1.1] to (ordinary) G-
spaces

Fun(N(BG), N(So)) −→ SBG .

We can use this rigidification to show that
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1.1. Example. The Moore space construction M(−, n) cannot be lifted to an ∞-functor
M(−, n) : N(Ab) −→N(So).

Proof. If there was a functor M(−, n) : Ab −→ S , it would induce, for every group G,
an "equivariant Moore space" functor

MG(−, n) : AbBG −→ SBG

but [Carlsson, 1981] shows that there are (discrete) groups G (e.g. all non-cyclic groups)
for which such a functor cannot exist. Similarly, if there was an ∞-functor

M(−, n) : N(Ab) −→ N(So),

it would induce, for any discrete group G, an ∞-functor

Fun (N(BG), N(Ab)) −→ Fun (N(BG), N(So)) .

But the latter may be rigidified to an ordinary functor

AbG −→ SBG

which cannot exist by [Carlsson, 1981].

The purpose of this work is to provide a point-set model for coherent group ac-
tions and to establish a rigidification procedure for them. We will provide a model-
categorical framework for an existing notion, defined and studied in [Prezma, 2012]
under the name "homotopy action" and which will be referred to here as Segal group
action. A Segal group action aims to encode a coherent action of a loop space ΩY (to-
gether with its coherent homotopies) on a space X. More precisely, such an ’action’ is
a map of simplicial spaces π : A• → B• in which A0 ' X, the codomain B• is a Segal
group representing ΩY, i.e B• is a group-like reduced Segal space with Y ' |B•|, and
certain ‘Segal-like’ maps

An −→ A0 ×h
B0

Bn

are weak equivalences.
The definition we give here for a Segal group action is simpler than [Prezma, 2012,

Defintion 5.1] and our first concern is to show that these two definitions coincide. Then,
given a Segal group B•, we shall construct a model category structure on the slice
category sS/B• whose fibrant-cofibrant objects are precisely the Segal group actions.
Using the diagonal functor d∗ : sS → S we can also consider the canonical model
structure on S/d∗B• , induced by slicing under the Kan-Quillen model structure. For B•
as above, we further show that

d∗ : sS/B•
//
S/d∗B• : d∗⊥oo
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constitutes a Quillen equivalence between these two model structures. By composing
with a Quillen equivalence induced by a "rigidification map" and the Quillen equiva-
lence of [Dwyer, Farjoun & Kan, 1980], the above-mentioned equivalence shows that
the Segal group action model structure is Quillen equivalent to the projective model
structure on SBG (where G is a simplicial group satisfying BG ' d∗B•), in which weak
equivalences (resp. fibrations) are the maps whose underlying map of spaces is a weak
equivalence (resp. fibration).

One technical advantage of Segal group actions is their invariance under a weakly
monoidal endofunctor of spaces, namely, functors L : S → S which preserve weak
equivalences, contractible objects and finite products up to equivalence. Key examples
of such functors are localization by a map, p-completion a la Bousfield-Kan, and the
derived mapping space maph

S(C,−). Applying a weakly monoidal functor L : S → S
on each simplicial degree of a Segal group action A• −→ B• yields a new Segal group
action LA• → LB•, now thought of as a coherent action LB1 on the space LA0. This
invariance property can be applied (see 5.5.1) to obtain a Postnikov tower for a G-space
X, composed out of the PnX, but viewed as PnG-spaces.

Related work. This work complements the treatment of the notion of "homotopy ac-
tion" which was developed in [Prezma, 2012]. In the meantime, two related works
came out. The first is the work of [Nikolaus, Schreiber & Stevenson, 2012], which
develops, in the context of an ∞-topos, what they called "principal ∞-bundles". The
treatment of Segal group actions here shows that they constitute a model-categorical
presentation of principal ∞-bundles (see Corollary 3.4). The second related work was
published recently as [Hoefel, Livernet & Stasheff, 2014]. There the authors develop
the notion of an "A∞-action" in an operadic manner and thus provide a way to model
an action of an ∞-monoid on a space. Although the work in loc. cit. does not give a
model-categorical framework, it does provide a rigidification result which resembles
the one in this paper.

2. Preliminaries

(a) Throughout, a space will always mean a simplicial set. Let S (resp. S0) be the
category of simplicial sets (resp. reduced simplicial sets) and sS the category of
simplicial spaces; we shall denote an object of sS with values [n] 7→ Xn by X•.
We let c∗ : S → sS be the functor which sends a simplicial set to a degree-wise
discrete simplicial space. On the other hand, a simplicial set K may also be viewed
as a constant simplicial space which has K in each degree; we shall denote the latter
by K again.

(b) The category sS is a simplicial category; for X, Y ∈ sS we let

mapsS(X, Y) ∈ S
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denote the mapping space. It has the property that for a simplicial set K, and
simplicial spaces X, Y,

mapsS(K× X, Y) ∼= mapS(K, mapsS(X, Y))

where mapS(−,−) is the mapping space of S . If ∆n ∈ S is the standard n-simplex,
then, by the Yoneda lemma for bisimplicial sets, c∗∆n gives rise to the n-th space
functor in that

mapsS(c∗∆n, X) ∼= Xn.

(c) The category sS is also cartesian closed; for X, Y ∈ sS there is an internal-hom
object YX ∈ sS with the property

sS(X×Y, Z) ∼= sS(X, ZY).

A routine check shows that for a space K and a simplicial space X, the two possible
meanings for XK coincide.

(d) By a model category structure we mean a bicomplete category satisfying Quillen’s
axioms [Quillen, 1967] and having functorial factorizations.

(e) We let sSReedy denote the Reedy model structure on simplicial spaces (see [Reedy]).
This makes sS into a simplicial combinatorial model category, in which a map
X → Y in sS is a Reedy fibration if for each n ≥ 1,

mapsS(c∗∆n, Y) −→ mapsS(c∗∆n, X)×mapsS (c∗∂∆n,X) mapsS(c∗∂∆n, Y)

is a Kan fibration.

(f) It is well-known that the Reedy and the injective model structures on sS coincide
(see [Goerss & Jardine, 2009, IV.3, Theorem 3.8]) so that every object of sSReedy is
Reedy cofibrant. On the other hand, every Reedy fibrant object in sS has a Kan
complex in each simplicial degree, with face maps being Kan fibrations. For a sim-
plicial space B• ∈ sS , the Reedy model structure sSReedy induces a (simplicial, com-
binatorial) model structure, denoted (sS/B•)Reedy, of which all objects are cofibrant
and the fibrant objects are precisely Reedy fibrations A• � B•. If furthermore B•
was Reedy fibrant, then the domain A• of such a fibrant object is also Reedy fibrant.

(g) Similarly, for a fixed space B, the Kan-Quillen model structure SKQ induces a (sim-
plicial, combinatorial) model structure on the slice category, denoted (S/B)KQ, of
which all objects are cofibrant and the fibrant objects are precisely Kan fibrations
A � B. As before, if B was a Kan complex, it follows that for every fibrant object
A � B, the domain A is a Kan complex.
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(h) The diagonal functor d∗ : sS → S (induced by d : ∆ → ∆ × ∆) is part of an
adjoint triple d! a d∗ a d∗ (left adjoints on the left). The functor d∗ : S → sS
is given by d∗(A)• = A∆• (i.e. d∗(A)n = A∆n

) and the functor d! : S → sS
is defined by extending the formula d!(∆n) = ∆n,n via colimits (here ∆n,n is the
representable presheaf on ([n], [n])). These adjunctions are compatible with the
simplicial enrichments on sS and S mentioned above.

(i) There is an adjunction (see [Kan, 1958])

G : S0
//
sGp : B⊥oo (2.0.1)

where B is the classifying space functor (often denoted by W) and G is the Kan
loop group. Furthermore, since the pair 2.0.1 is in fact a Quillen equivalence, all
objects in S0 are cofibrant and all objects in sGp are fibrant, it follows that the unit
map of this adjunction K −→ BGK is a weak equivalence. The category S0 is a
reflective subcategory of S , with the left adjoint of the pair

(̂−) : S
//
S0 : ι⊥oo

defined by identifying all the 0-simplices. For a connected space K, the unit map
K → K̂ is a weak equivalence, and we shall refer to the composite of these equiv-
alences ρ : K → K̂ → BGK̂ as the rigidification map. The counterpart of the
rigidification map relates the loop functor Ω := map∗(S1,−) : S0 −→ S0 to the
Kan loop group.

(j) For every Kan complex K ∈ S0 one has a weak equivalence ΩK ∼→ GK of simplicial
sets. Thus, we define an ∞-group to be a triple (G, B G, η) where G is a space, B G
is a pointed connected space and η : G '−→ ΩB G is a weak equivalence. We will
often refer to G itself as an ∞-group when B G and η are clear from the context.

We say that the composite

G '−→ ΩB G '−→ ΩB̂ G '−→ GB̂ G

rigidifies G into a simplicial group.

(k) A Segal space is a Reedy fibrant2 simplicial space B• such that for each n ≥ 1 the
Segal maps

Bn −→ holim(B1
d0−→ B0

d1←− · · · d0−→ B0
d1←− B1) ' B1×B0 B1×B0 · · ·×B0 B1 (n times),

(induced by the maps pi : [1] −→ [n] 0 7→ i− 1, 1 7→ i (1 ≤ i ≤ n))

2Notice the slight deviation from the original definition in [Segal, 1974]
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are weak equivalences.

A Segal space B• is called a Segal groupoid (or: group-like) if the map

(d1, d0) : B2 −→ holim(B1
d0−→ B0

d0←− B1) ' B1 ×B0 B1

is a weak equivalence. If furthermore B0 ' ∗ we shall say that B• is a Segal group.

(l) G. Segal essentially showed [Segal, 1974] that one can present any ∞-group G as a
Segal group. More precisely, he showed that if B• is a Segal group, the canonical
map B1 −→ Ω(d∗B•) is a weak equivalence. Given an ∞-group G, a Segal group
for G is a Segal group B• together with an equivalence G ∼−→ B1.

(m) A homotopy fiber sequence is a sequence of spaces X −→ Y −→ Z having a
null-homotopic composite and such that the associated map to the homotopy fiber
X → Fh(Y → Z) is a weak equivalence.

(n) For a simplicial group G, we denote by BG the simplicial groupoid with one object
associated to G. We can then consider the category of simplicial functors SBG and
we shall refer to an object X ∈ SBG as a G-space. We shall refer to the projective
model structure on the category of G-spaces as the Borel model structure and de-
note it by

(
SBG

)
Borel

. In other words, this model structure has as weak equivalences

(resp. fibrations) the G-maps X → X′ which are weak equivalences (resp. fibra-
tions) in SKQ. The cofibrant objects of (SBG)Borel are precisely the spaces with a free
G-action. Thus, given X ∈ SBG, a model for its cofibrant replacement is X × EG
(where EG := WG is the free contractible G-space) and the homotopy quotient

X//G := X×G EG

may be viewed as the right derived functor of the quotient

(−)/G : (SBG)Borel −→ (S/BG)KQ.

Every G-space X gives rise to the Borel (homotopy) fiber sequence

X −→ X//G −→ BG

and conversely, any (homotopy) fiber sequence of the form

X −→ A −→ BG

is equivalent to some Borel fibration. More concisely:

2.1. Theorem. [Dwyer, Farjoun & Kan, 1980] There is a Quillen equivalence

(−)×BG ∗ : (S/BG)KQ

//
(SBG)Borel : (−)/G.⊥oo
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3. Segal group actions

Of course, in order to get hands-on calculations, it is useful to have a presentation of
the ∞-category Fun (N(BG), N(So)) as a model category. One such model is the Borel
model structure on SBG and another is the slice model structure S/BG (see 2.1). The
advantage of the first is that it gives a direct access to the group and the space on which
it acts but its disadvantage is that one cannot work with a "flexible" model of the group,
e.g., ΩBG nor of the space. In the second model the roles switch in that one may take
any space of the homotopy type of BG but there is no direct access to the group G nor
to the space on which it acts (which can only be obtained after taking homotopy fiber).
As we shall see below, Segal group actions, have, to certain extent, the advantages of
both of the models above, since on the one hand a Segal group is a "flexible" model
for a simplicial group, and on the other hand, Segal group actions have the homotopy
types of the group G and the space on which it (coherently) acts as part of their initial
data. We will make use of this advantage to obtain an invariance property of Segal
group actions under weak monoidal functors (see 5.3).

We now come to the main notion of this work. Let α0, αn : [0] −→ [n] be the
maps defined by 0 7→ 0 and 0 7→ n respectively. Alternatively, α0 = dndn−1 · · · d1 and
αn = d0 · · · d0.

3.1. Definition. A Segal group action is a Reedy fibration of simplicial spaces π : A• −→ B•
such that:

1. B• is a Segal group;

2. for every n, the map An
(α∗0 ,πn) // A0 ×B0 Bn is a weak equivalence.

In this case, we say that the Segal group B• acts on A•, or that the ∞-group (B1, |B•|, η :
B1

'−→ Ω|B•|) acts on A0.

3.2. Remark. One technical advantage of the Reedy fibrancy condition of 3.1 is that the struc-
ture maps are fibrations. This means that the ordinary notions of fibers, sections etcetera for
these maps are homotopy invariant.

The origin of Definition 3.1 is [Prezma, 2012, Definition 5.1] where it was called
homotopy action. However, the reader may wonder about a difference between Defi-
nition 3.1 and [Prezma, 2012, Definition 5.1]. Namely, the definition we give here does
not include the condition that the map

An
(α∗n,πn) // A0 ×B0 Bn

is a weak equivalence. We will now show that this additional condition is implied by
the conditions of Definition 3.1 and is thus redundant. This was kindly pointed-out to
us by Thomas Nikolaus. The proof we give here is independent.
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3.3. Proposition. Let π : A• −→ B• be a Segal group action. Then A• is a Segal groupoid
and the map

An
(α∗n,πn) // A0 ×B0 Bn

is a weak equivalence.

Proof. Note that our fibrancy assumption implies that the map

An
(α∗n,πn) // A0 ×B0 Bn

is a weak equivalence if and only if the square

An //

α∗n
��

Bn

��
A0 // B0

is homotopy cartesian.
Consider the following commutative cube

A2
d0 //

d1

��

π2
  

A1

π1
!!

��

B2 d0 //

d1

��

B1

d0

��

A1 //

π1
  

A0

π0
!!

B1 d0

// B0.

(3.3.1)

Since B• is a Segal-group and in particular group-like, the outer face is homotopy carte-
sian. Consider

A2
π2 //

d1
��

B2

d1
��

A1
π1 //

d1
��

B1

d1
��

A0 // B0.

Since π : A• −→ B• is a Segal group action, the lower square is homotopy cartesian,
and since d1d1 = d1d2 the outer rectangle is homotopy cartesian. It follows that the
upper square is homotopy cartesian; this square is the left-hand face of the cube 3.3.1.
Consider the following commutative diagram of solid arrows.
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F1 //

d∗0

��

α
'
  

A1
π1 //

d0

��

(d1,π2)
$$

B1

d0

��

A0 // A0 × B1
pr1 //

pr0

��

B1

��

F0 //

β
'
  

s∗0

GG

A0 π0 //

s0

GG

B0

  
A0 // A0 // ∗

Here, F0 and F1 are fibers of π0 and π1 (we assume a base-point in B1 was chosen),
the maps s∗0 and d∗0 are the ones induces by s0 and d0 and β is the map induced between
the fibers. Since B0 is contractible, β is an equivalence and it follows from 2-out-of-3
that s∗0 is an equivalence. Since d∗0s∗0 = id it follows that d∗0 is an equivalence, which
means that the lower face of 3.3.1 is homotopy cartesian. We now deduce that all
the faces of the cube 3.3.1 are homotopy cartesian and in particular, cartesianess of the
inner face means that A• satisfies the group-like condition.

Consider now the following commutative cube.

A2
d0 //

d2

��

π2
  

A1

π1
  

��

B2 d0 //

d2

��

B1

d1

��

A1 //

π1
  

A0

π0
  

B1 d0

// B0

(3.3.2)

The outer face is homotopy cartesian since B• is a Segal space and the right-hand
face is homotopy cartesian since π : A• −→ B• is a Segal group action. We showed
that the lower face is homotopy cartesian and it follows that all the faces of 3.3.2 are
homotopy cartesian. In particular, cartesianess of the inner face means that the Segal
map for n = 2 is an equivalence. A similar argument shows that all Segal maps are
equivalences (we omit the details for the sake of brevity). It follows that A• is a Segal
groupoid. The homotopy cartesianess of the upper and right-hand faces of the cube
3.3.1 means that the map

An
(α∗n,πn) // A0 ×B0 Bn

is a weak equivalence for n = 1, 2 and a similar argument shows this holds for any
n ≥ 1.
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Put differently, Proposition 3.3 shows that Definition 3.1 simplifies [Prezma, 2012,
Definition 5.1]. In fact, it also allows a comparison between the notion of a Segal group
action and an ∞-categorical notion of a "group action", as was defined in [Nikolaus,
Schreiber & Stevenson, 2012].

3.4. Corollary. Let π : A• −→ B• be a Segal group action, viewed as a functor ∆op −→ sS [1].
Then the underlying ∞-functor of π is a group action in the sense of [Nikolaus, Schreiber &
Stevenson, 2012, Definition 3.1].

3.5. Example. Let G be a simplicial group and X a (right) G-space. The Bar construction
[May, 1975, §7] provides, up to a Reedy fibrant replacement, a Segal group action
Bar•(X, G) −→ Bar•(G). The maps

X× Gn
(α∗n,πn) //

(α∗0 ,πn)
// X× Gn

are given by the identity and (x, g1, ..., gn) 7→ (xg1 · · · gn, g1, ..., gn) (respectively).

For an ∞-group G together with a fixed choice of a Segal group B• for G, we can
thus consider the full subcategory of sS/B• spanned by the Segal group actions. This
category in meant to give a ’soft’ model for G-actions where G is some simplicial group
with BG ' B G.

4. The Segal group action model structure

Throughout, we fix a Segal group B•.

4.1. Definition. The Segal group action model structure, (sS/B•)SegAc is the left Bousfield
localization of (sS/B•)Reedy with respect to the maps

c∗∆0

##

α∗0 // c∗∆n

σ{{
B•

defined for all pairs (n, σ) where n ≥ 1 and σ : c∗∆n −→ B•.

4.2. Proposition. The fibrant-cofibrant objects of (sS/B•)SegAc are precisely the Segal group
actions.

Proof. In (sS/B•)Reedy all objects are cofibrant and since left Bousfield localizations do
not change the class of cofibrations, all objects in (sS/B•)SegAc are cofibrant.

An object π : A• −→ B• is fibrant if and only if it is local with respect to the maps
of definition 4.1. Unwinding the definitions, we see that

map/B•(c∗∆
n, A•)

∼−→ map/B•(c∗∆
0, A•)
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⇔
Fib(An

πn−→ Bn)
∼−→ Fib(A0

π0−→ B0). (4.2.1)

This in turn is the map of associated fibers on vertical arrows in the square

An //

��

A0

��
Bn // B0

(4.2.2)

with the horizontal maps being α∗0 . The equivalence 4.2.1 is precisely the homotopy
cartesianess of 4.2.2, which in turn is just the condition that

An
(α∗0 ,πn) // A0 ×B0 Bn

are equivalences. Hence, A• −→ B• is a Segal group action.

Recall that our goal is to compare the Segal group action model structure to the
Borel model structure. In light of 2.1, we would like to compare (sS/B•)SegAc to (S/d∗B•)KQ.
Before that, it is worth verifying that the latter indeed models the Borel homotopy the-
ory:

4.3. Proposition. The rigidification map ρ : d∗B• −→ BG (§2i) induces a Quillen equivalence

ρ∗ : (S/d∗B•)KQ

//
(S/BG)KQ : ρ!⊥oo

Proof. The space d∗B• is a 0-connected Kan complex so that ρ is a weak equivalence
between fibrant-cofibrant objects.

That settled, we recall a standard

4.4. Observation. Let C,D be categories and

F : C
//
D : U⊥oo

an adjoint pair. Then for every object c ∈ C there is an induced adjunction on slice categories

Fc : C/c
//
D/Fc : Uc⊥oo

where Uc is defined by applying U and then pulling back along the unit 1⇒ UF.

The above observation is applied directly to our case. By abuse of notation, we will
denote the induced adjunction on slice categories as before:

d∗ : sS/B•
//
S/d∗B• : d∗.⊥oo

We are now at a state to formulate the main assertion of this paper:
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4.5. Theorem. Let B• be a Segal group. The adjoint pair

d∗ : (sS/B•)SegAc

//
(S/d∗B•)KQ : d∗.⊥oo (4.5.1)

is a Quillen equivalence.

We begin with a

4.6. Proposition. If B• is a Segal group, the space d∗B• is a Kan complex.

Proof. A simplicial space B• satisfying the extension condition with respect to the maps
of degree-wise discrete simplicial spaces c∗Λn

i −→ c∗∆n, for 0 ≤ i ≤ n, is fibrant in the
diagonal model structure of [Jardine, 2013, Corollary 1.6]. Moreover, the realization
|B•| of such a simplicial space is a Kan complex by [Jardine, 2013, Theorem 2.14] (see
also [Lurie, 2011, Lec. 7, Proposition 10]). Since B• is a Segal space, it satisfies the
extension condition with respect to c∗Λn

i −→ c∗∆n for 0 < i < n and since B• is group-
like, it satisfies the extension condition with respect to c∗Λn

i −→ c∗∆n for i = n and
i = n.

The following is a well-known result, that can be deduced, for example, from [Rezk,
Schwede & Shipley, 2001, Theorem 5.2].

4.7. Proposition. The adjunction d∗ a d∗ is a Quillen pair

d∗ : sSReedy

//
SKQ : d∗.⊥oo

4.8. Corollary. The Quillen pair of proposition 4.7 induces a Quillen pair on slice model cate-
gories

d∗ : (sS/B•)Reedy

//
(S/d∗B•)KQ : d∗.⊥oo

We would like to use Corollary 4.8 as a stepping stone in order to prove that 4.5.1
is indeed a Quillen pair. For this, we use the simplicial structure as follows.

4.9. Lemma. Let
F :M

//
N : U⊥oo

be an adjoint pair of simplicial model categories in which all objects ofM are cofibrant. Then
F a U is a Quillen pair if and only if F preserves cofibrations and U preserves fibrant objects.

Since left Bousfield localization does not change the class of cofibrations, it is clear
that d∗ : (sS/B•)SegAc −→ (S/d∗B•)KQ preserves cofibrations.

4.10. Proposition. For a Segal group B• the functor

d∗ : (S/d∗B•)KQ −→ (sS/B•)SegAc

preserves fibrant objects.

The proof of Proposition 4.10 relies on a folklore result which we address first.
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4.11. Lemma. For a simplicial group G and a co-span of G-spaces X −→ Y ←− Z, the map

(X×h
Y Z)//G −→ X//G×h

Y//G Z//G

is a weak equivalence.

Proof. We have a map of (homotopy) fiber sequences

X×h
Y Z //

��

(X×h
Y Z)//G //

��

BG

Fh(p) // X//G×h
Y//G Z//G

p
// BG

and it is thus enough to show that X ×h
Y Z −→ Fh(p) is a weak equivalence. Consider

the 3× 3 square
X//G //

��

BG
��

∗
��

oo

Y//G // BG ∗oo

Z//G

OO

// BG

OO

∗oo
OO

Taking homotopy limits of all rows and then of the resulting column, gives X×h
Y Z and

taking homotopy limits of all columns and then of the resulting row, gives Fh(p). The
result now follows from commutation of homotopy limits.

Proof of 4.10. By Ken Brown’s lemma,

d∗ : (S/d∗B•)KQ −→ (sS/B•)Reedy

preserves fibrant objects and it is thus left to verify that for a fibrant object

A � d∗B• ∈ (S/d∗B•)KQ

the map d∗(A � d∗B•) satisfies condition (2) of definition 3.1. Let P• ∈ sS be the
domain of d∗(A � d∗B•). The n-th level of Pn is given by the pullback

Pn
p
//

πn
��

A∆n

����

Bn // (d∗B•)∆n
.

(4.11.1)

Since B• is a Segal group, d∗B• is a connected Kan complex. Thus, the rigidification
map described in §2.j gives an equivalence

d∗B•
'−→ BG
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for a simplicial group G and we let X be the homotopy fiber Fh(A −→ BG). By Theo-
rem 2.1, we have X//G ' A so that the square 4.11.1 is equivalent to

X//G×BG Gn //

��

X//G

��
Gn // BG.

This in turn may by rewritten as

X//G×h
EG//G Gn+1//G //

��

X//G

��
Gn // BG

where G acts on Gn+1 via the inclusion to the last coordinate G −→ Gn+1. By Lemma
4.11 we can write

Pn ' X//G×EG//G Gn+1//G ' (X×h
EG Gn+1)//G ' (X× Gn+1)//G ' X× Gn

(the last equivalence here is a straightforward identification) so that the equivalence is
indeed induced by the projection maps (πn, p). Since P0 ' X and the face maps di of
Pn are defined via the above-mentioned pullbacks, it follows that the maps of 3.1 (2)
are weak equivalences.

Proof of 4.5. We shall show that the unit and counit maps, 1⇒ d∗d∗ and d∗d∗ ⇒ 1, have
weak equivalences as their components when restricted to the categories of fibrant(-
cofibrant) objects. Let A � d∗B• be a fibrant object of S/d∗B• . As we saw in 4.10,
d∗(A � d∗B•) is a Segal group action P• −→ B• and thus has in each simplicial degree

Fh(Pn −→ Bn) ' P0 ' Fh(A � d∗B•).

Thus, by [Puppe, 1974],
Fh(d∗P• −→ d∗B•) ' P0

and it follows by the five lemma that d∗d∗A −→ A is a weak equivalence over d∗B•.
On the other hand, if we are given a Segal group action A• −→ B•, then

Fh(d∗A• −→ d∗B•) ' A0

and the proof of 4.10 shows that we have a weak equivalence of simplicial spaces

A• ' d∗d∗A•,

which is compatible with the maps to B• and hence a weak equivalence of Segal group
actions.



SEGAL GROUP ACTIONS 1301

4.12. Corollary. There is a Quillen equivalence of simplicial combinatorial model categories

St : (sS/B•)SegAc

//
(SBG)Borel : Un.⊥oo

Proof. One simply compose the Quillen equivalences of Theorem 2.1, Proposition 4.3
and Theorem 4.5 as follows:

(sS/B•)SegAc

d∗ //
(S/d∗B•)KQ

ρ∗ //
⊥

d∗
oo (S/BG)KQ⊥

ρ!
oo

(−)×BG∗//
(SBG)Borel.⊥

(−)/G
oo

5. Invariance properties of Segal group actions

In algebraic topology one often applies constructions to spaces with a group action. Of
course, for a G-space X, and an endofunctor of spaces L : S −→ S there is no canonical
group action on LX. However, many functors under consideration admit additional
properties such as the following.

5.1. Definition. An endofunctor L : S −→ S is said to be weakly monoidal if:

1. L(∗) ∼ ∗;

2. L preserves weak equivalences; and

3. for any X, Y ∈ S the map L(X×Y) ∼−→ LX× LY is a weak equivalence.

5.2. Example. For convenience, we mention a few common weakly monoidal endofunctors of
spaces:

1. Any (homotopy) (co)localization functor in the sense of [Farjoun, 1996]. These include
the n-th Postnikov piece and its dual, sometimes called the n-th Whitehead piece.

2. The p-completion functor (Z/p)∞ á la Bousfield-Kan.

3. The (derived) mapping space functor from a fixed space maph
S(A,−).

Any weak monoidal endofunctor L : S −→ S takes ∞-groups to ∞-groups. This
is so since for any ∞-group G we can construct a Segal group B• for G (i.e. with an
equivalence B1

∼−→ G as ∞-groups). Applying L on each simplicial degree, we see that
LB• becomes a Segal group for L G so that the latter is again an ∞-group. The same
argument implies:
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5.3. Observation. If A• −→ B• is a Segal group action and L : S −→ S is a weak monoidal
endofunctor of spaces, then (the Reedy fibrant replacement of) LA• −→ LB• is a Segal group
action.

Now let X ∈ SBG and denote by

A•(X, G) −→ B•(G)

the Segal group action RUn(X) obtained from applying the total right derived functor
of 4.12 on X. The notation is meant to suggest the equivalent map of simplicial spaces

Bar•(X, G) −→ Bar•(G).

For L : S −→ S weakly monoidal, denote by BL
• (G) the Reedy fibrant replacement of

LB•(G) which is a Segal group. Similarly, denote by

AL
•(X, G) −→ BL

• (G)

the Segal group action obtained from replacing

LA•(X, G) −→ BL
• (G)

by a Reedy fibration. This is a fibrant-cofibrant object of sS/BL• (G) so that we can apply

St of Corollary 4.12 to obtain a space LX ∈ SBLG where LG is the simplicial group
obtained from applying the Kan loop group functor G on the connected Kan complex
d∗BL

• (G). Note that we have a weak equivalence

LG '−→ BL
1 (G)

'−→ Ωd∗(BL
• (G))

'−→ Gd∗(BL
• (G)) =: LG (5.3.1)

where the first map is obtained from the Reedy fibrant replacement, the second is the
map of § 2. l and the third is the "rigidification map" from §2. j. Moreover, the space LX
is canonically equivalent to AL

0 (X, G) which in turn is equivalent to LX. This should
be viewed as endowing LX with a coherent action of the ∞-group LG.

5.4. Example. Take L = Pn, the Postnikov n-th piece functor, modeled by
coskn+1(Ex∞(−)). For X ∈ SBG we get an action of the simplicial group PnG on PnX.

5.5. Towards an equivariant Postnikov tower for group actions. A natural question
arising from our previous considerations is whether it is possible to extend Example 5.4
to obtain an "equivariant Postnikov tower" for any group action. More specifically,
denote Γn := PnG so that PnX becomes a Γn-space. When we let n vary, the maps
Γn −→ Γn−1 arising from PnG −→ Pn−1G are group maps, and we wish to obtain
maps

pn : PnX −→ Pn−1X

and
τn : X −→ PnX,
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arising from PnX −→ Pn−1X and X −→ PnX which are Γn − Γn−1-equivariant (here X
arises from L = Ex∞), thus giving rise to a tower

...
PnX

pn
��
...

��

P2X

p2
��

P1X

p1
��

X
τ0 //

τ1 >>

τ2

FF

τn

KK

P0X.

(5.5.1)

In order to obtain such a tower, one needs to show that the straightening construc-
tions done in this paper are functorial in an appropriate sense. However the mere
existence of the tower 5.5.1 is not satisfactory, and one would like to know that it con-
verges to the original G-space X. Moreover, if we instead start with a Segal group
action, it is desirable to obtain a similar tower of Segal group actions and to show that
these two towers are equivalent in the appropriate sense. The difficulty in answering
such a question is that this tower is not a diagram in any category of G-spaces with a
fixed group G. Rather, it is a diagram in the Grothendieck construction of the functor

SB(−) : sGp −→ AdjCat

(where AdjCat stands for categories and adjunctions) which associates to every simpli-
cial group G the category SBG of G-spaces and to a simplicial group map the extension-
restriction adjunction. One is then lead to consider the homotopy theory of the
Grothendieck construction ∫

G∈sGp
SBG

which takes into account the homotopy theory of the base sGp, and of each of the fibers
SBG. It is convenient to have a model structure that presents the homotopy theory at
hand but it is not clear a-priori that such a model structure exists.

With these questions in mind, the author and Yonatan Harpaz developed in [Harpaz
& Prasma (a), 2015] general machinery that, in particular, enables one to obtain a model
structure on

∫
G∈sGp S

BG from the model structure on the base and on each of the fibers.
This was further developed in [Harpaz & Prasma (b), 2015] where the authors showed
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that an analogous "global" model structure can be constructed for Segal group actions
and that the two model structures are Quillen equivalent, thus extending the Quillen
equivalence of 4.12 to this case. The main result is then that applying Pn to each sim-
plicial degree as in Example 5.4 gives an n-truncation functor in the integral model
structure for Segal group actions. It follows [Harpaz & Prasma (b), 2015, §5.1] that the
tower 5.5.1 of group actions converges to the initial group action.
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