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A CHARACTERIZATION OF CENTRAL EXTENSIONS IN THE
VARIETY OF QUANDLES

VALÉRIAN EVEN, MARINO GRAN AND ANDREA MONTOLI

Abstract. The category of symmetric quandles is a Mal’tsev variety whose subvariety
of abelian symmetric quandles is the category of abelian algebras. We give an algebraic
description of the quandle extensions that are central for the adjunction between the
variety of quandles and its subvariety of abelian symmetric quandles.

1. Introduction

A quandle [20] is a set A equipped with two binary operations � and �−1 such that the
following identities hold (for all a, b, c ∈ A):

(A1) a� a = a = a�−1 a (idempotency);

(A2) (a� b) �−1 b = a = (a�−1 b) � b (right invertibility);

(A3) (a � b) � c = (a � c) � (b � c) and (a �−1 b) �−1 c = (a �−1 c) �−1 (b �−1 c)
(self-distributivity).

This structure is of interest in knot theory, since the three axioms above correspond
to the Reidemeister moves on oriented link diagrams. From a purely algebraic viewpoint,
quandles capture the properties of group conjugation: given a group (G, ·, 1), by defining
the operations a� b = b · a · b−1 and a�−1 b = b−1 · a · b on the underlying set G one gets
a quandle structure.

Quandles and quandle homomorphisms form a category denoted Qnd. This category,
being a variety in the sense of universal algebra [8], is an exact category (in the sense of
Barr [1]). The variety Qnd has some interesting categorical properties, as recently observed
in [10, 11, 2]. The present work continues this line of research, by investigating the
properties of the adjunction between the variety of quandles and its subvariety AbSymQnd
of abelian symmetric quandles, in particular from the viewpoint of the categorical theory
of central extensions [17].
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The variety AbSymQnd of abelian symmetric quandles is the subvariety of Qnd deter-
mined by the two additional identities

a� b = b� a

and
(a� b) � (c� d) = (a� c) � (b� d).

AbSymQnd is a Mal’tsev variety (actually even a naturally Mal’tsev one [19], see Section
2), and it turns out to be an admissible subvariety of Qnd: this fact guarantees the validity
of a Galois theorem of classification of the corresponding central extensions (see [16, 17]).

This is particularly interesting by keeping in mind that the variety Qnd is not congru-
ence modular, since it contains the variety of sets as a subvariety. However, the subvariety
AbSymQnd of abelian symmetric quandles yields an adjunction

Qnd AbSymQnd⊥

I

H

(1)

that is similar to the classical one

V Vab⊥

I

U

(2)

where V is any congruence modular variety and Vab its subvariety of abelian algebras in
the sense of commutator theory [13]. Many interesting results in the categorical theory
of central extensions discovered in the last years actually concern subvarieties of Mal’tsev
varieties (see [12], for instance, and the references therein). The example investigated in
the present paper is then of a rather different nature, and will be useful to establish some
new connections between algebraic quandle theory and categorical algebra.

To explain the main result of this paper more precisely, let us briefly recall how the
categorical notions of trivial extension and of central extension are defined in any variety
V with respect to a chosen subvariety X of V . A surjective homomorphism f : A→ B in
V is a trivial extension if the commutative square induced by the units of the reflection

A HI(A)

B HI(B)

ηA

f HI(f)

ηB
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is a pullback. A surjective homomorphism f : A → B is a central extension when there
exists a surjective homomorphism p : E → B such that the extension π1 : E×B A→ E in
the pullback

E ×B A A

E B

π2

π1 f

p

of f along p is a trivial extension. In any congruence modular variety V the central
extensions defined in this way, relatively to the adjunction (2), are precisely the surjective
homomorphisms f : A→ B whose kernel congruence Eq(f) = {(a1, a2) ∈ A×A | f(a1) =
f(a2)} is central in the sense of commutator theory: [Eq(f), A × A] = ∆A, where ∆A

is the smallest congruence on A (see [15, 18]). In the present paper we characterize
the central extensions corresponding to the adjunction (1) as those surjective quandle
homomorphisms f : A → B such that (a condition equivalent to) [Eq(f), A × A] = ∆A

holds and, moreover, each fiber f−1(b) = {a ∈ A | f(a) = b} is an abelian symmetric
quandle, for any b ∈ B (Theorem (3.13)). This latter property implies that f : A → B
is Σ-special in the terms of [2] and thus this work fits in the partial Mal’tsev context,
thoroughly studied in the preprint [3], that became available on the ArXiv a few months
after the present paper.

2. Symmetric quandles and abelian symmetric quandles

A quandle A is symmetric if it satisfies the additional identity:

a� b = b� a, (3)

for all a, b ∈ A. We write SymQnd for the corresponding category of symmetric quandles,
which is then a subvariety of the variety Qnd of all quandles. Here below we observe that
the category SymQnd is a Mal’tsev variety [21], which will be shown to be an admissible
subcategory of Qnd for the categorical theory of central extensions [17].

2.1. Proposition. [2] The category SymQnd is a Mal’tsev variety.

Proof. Let p be the ternary term defined by

p(a, b, c) = (a� c) �−1 b.

We then have the identities

p(a, a, b) = (a� b) �−1 a = (b� a) �−1 a = b,

p(a, b, b) = (a� b) �−1 b = a.
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Recall that a quandle A is abelian [20] if it satisfies the additional axiom

(a� b) � (c� d) = (a� c) � (b� d)

for all a, b, c, d ∈ A. Note that this axiom is equivalent to the following one:

(a� b) �−1 (c� d) = (a�−1 c) � (b�−1 d). (4)

2.2. Remark. Not all abelian quandles are symmetric. Indeed, recall that a quandle A
is trivial if a � b = a = a �−1 b for all a, b ∈ A. Any trivial quandle is abelian, but it is
not symmetric (as long as it has at least two elements).

Also, not all symmetric quandles are abelian. The smallest symmetric quandle which
is not abelian is a quandle of order 81 and is constructed in [22].

Let us write AbSymQnd for the category of abelian symmetric quandles,
U : AbSymQnd → SymQnd and V : SymQnd → Qnd for the inclusion functors. Since
AbSymQnd is a subvariety of SymQnd and SymQnd is a subvariety of Qnd, both these func-
tors have left adjoints, denoted by ab : SymQnd→ AbSymQnd and sym : Qnd→ SymQnd,
respectively:

Qnd SymQnd AbSymQnd⊥ ⊥

sym

V

ab

U

We are now going to show that abelian symmetric quandles are the internal Mal’tsev
algebras in SymQnd.

2.3. Definition. An internal Mal’tsev algebra in a variety V is an algebra A ∈ V with
a homomorphism pA : A× A× A→ A such that pA(a, a, b) = b and pA(a, b, b) = a.

Let us write Mal(V) for the category of internal Mal’tsev algebras in V . In a Mal’tsev
category, thus in particular in the category SymQnd, any morphism preserves the Mal’tsev
operation (see Corollary 4.1 in [14], for instance): this means that the subcategory
Mal(SymQnd) is full in SymQnd. The following observation has been found independently
by Bourn [2]:

2.4. Theorem.
AbSymQnd = Mal(SymQnd).

Proof. Let A ∈ AbSymQnd, and let pA : A×A×A→ A be the Mal’tsev operation on A
defined by pA(a, b, c) = (a�c)�−1b. We have to check that it is a quandle homomorphism.
For any a, b, c, x, y, z ∈ A we have

pA((a, b, c) � (x, y, z)) = pA(a� x, b� y, c� z)

= ((a� x) � (c� z)) �−1 (b� y)

= ((a� c) � (x� z)) �−1 (b� y)

=
(
(a� c) �−1 b

)
� ((x� z) �−1 y)

= pA(a, b, c) � pA(x, y, z).
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This shows that A belongs to Mal(SymQnd).
Conversely, when A ∈ Mal(SymQnd), the unique internal Mal’tsev operation on A

[19] is necessarily given by (any of) the Mal’tsev operations of the theory of the variety
SymQnd. Accordingly, it is defined by pA(a, b, c) = (a � c) �−1 b, and it is such that
pA(a, b, a) = a �−1 b. Moreover, pA : A× A× A → A preserves the binary operation �,
so that the equality

pA((a, b, a) � (x, y, x)) = pA(a, b, a) � pA(x, y, x)

gives
(a� x) �−1 (b� y) = (a�−1 b) � (x�−1 y).

This is precisely the identity (4), and the quandle A belongs to AbSymQnd.

We now recall the definition of two classes of morphisms in Qnd, first investigated by
Bourn, that will be important for our work:

2.5. Definition. [2] We denote by Σ the class of split epimorphisms f : A → B with
a given section s : B → A (i.e. f ◦ s = 1B) in the category Qnd such that the map
s(b) �− : f−1(b)→ f−1(b) is surjective, for any b ∈ B.

In other words, the split epimorphism f with section s is in Σ if, for any b ∈ B and
a ∈ f−1(b), there is a ka ∈ f−1(b) such that s(b) � ka = a.

2.6. Remark. This element ka also depends on b, so that one should write kb,a, instead.
We shall simply write ka, however, to simplify the notations.

Given an internal equivalence relation (R, r1, r2) in Qnd on A, i.e. a congruence on
A, we write δR : A → R for the homomorphism defined by δR(a) = (a, a), for any a in
A. An equivalence relation (R, r1, r2) is said to be a Σ-equivalence relation if the split
epimorphism r1 : R→ A with section δR : A→ R belongs to the class Σ.

Given a quandle homomorphism f : A → B, we write (Eq(f), f1, f2) for the kernel
pair of f , where f1 : Eq(f) → A and f2 : Eq(f) → A are the canonical projections: in
a variety of universal algebras Eq(f) is simply the kernel congruence on A defined by
Eq(f) = {(a1, a2) ∈ A× A | f(a1) = f(a2)}.

2.7. Definition. [6, 7, 2] A morphism f : A→ B in Qnd is Σ-special if (Eq(f), f1, f2)
is a Σ-equivalence relation.

The following result is a direct consequence of Theorem 3.9 in [2], and will be useful
later on:

2.8. Theorem. Let f : A→ B be a Σ-special homomorphism in Qnd. Then any congru-
ence R on A permutes with Eq(f) in the sense of the composition of relations:

R ◦ Eq(f) = Eq(f) ◦R.
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2.9. Corollary. Given a pushout of surjective homomorphisms

A B

C D

f

g h

l

where f is Σ-special, the induced homomorphism A
(g,f)−−→ C ×D B to the pullback is

surjective.

Proof. The proof is essentially the same as the one given in [10], Lemma 1.7 (which is
adapted from [9]).

3. Central extensions in the category of quandles

If C is a finitely complete category, a double equivalence relation C in C is an equivalence
relation internal in the category of equivalence relations in C. It can be represented by a
diagram

C

R

S

A

π1 π2 s1 s2

p2

p1

r2

r1

(5)

where r1 ◦ π1 = s1 ◦ p1, r1 ◦ π2 = s2 ◦ p1, r2 ◦ π1 = s1 ◦ p2 and r2 ◦ π2 = s2 ◦ p2. In this
case one usually says that C is a double equivalence relation on the equivalence relations
R and S.

3.1. Definition. Given equivalence relations R and S on A, a double equivalence relation
C on R and S (as in (5)) is called a centralizing relation when the square

C

R

S

A

p2

π1

r2

s1

is a pullback.

3.2. Definition. A connector between R and S is an arrow p : R×A S → A such that

1. p(x, x, y) = y 1’. p(x, y, y) = x
2. xSp(x, y, z) 2’. zRp(x, y, z)
3. p(x, y, p(y, u, v)) = p(x, u, v) 3’. p(p(x, y, u), u, v) = p(x, u, v)



CENTRAL EXTENSIONS IN THE VARIETY OF QUANDLES 207

In the Mal’tsev context [4] the existence of a connector between R and S is already
guaranteed by the existence of a partial Mal’tsev operation p : R×A S → A, i.e. when the
identities p(x, x, y) = y and p(x, y, y) = x in Definition 3.2 are satisfied. Accordingly, in a
Mal’tsev category the existence of a double centralizing relation on R and S is equivalent
to the existence of a partial Mal’tsev operation. Moreover, a connector is unique, when
it exists: accordingly, for two given equivalence relations, having a connector becomes a
property.

In a Mal’tsev variety a congruence R on an algebra A is called algebraically central
if there is a centralizing double relation on R and A × A, this latter being the largest
equivalence relation on A. In terms of commutators, this fact is expressed by the condition
[R,A× A] = ∆A.

Given a surjective homomorphism f : A → B in the variety Qnd of quandles such a
connector between the kernel pair Eq(f) and A×A may not be unique, or may not exist
at all. However, there is a special class of homomorphisms for which such a connector is
unique when it exists.

Given a homomorphism f : A→ B in Qnd, each fiber f−1(b) (for b ∈ B) is a subquan-
dle of A. We shall say that f has abelian symmetric fibers if f−1(b) ∈ AbSymQnd, for all
b ∈ B.

3.3. Proposition. If f : A→ B has symmetric fibers, then it is Σ-special.

Proof. Consider the kernel pair of f

Eq(f)

A

A

B

f1 δf

f

δf

f2

f

One has to check that (f1, δf ) is in Σ. Let a ∈ A and (a, a′) ∈ f−11 (a), then in particular
f(a) = f(a′), so that a′�−1a is such that f(a) = f(a′�−1a). It follows that (a, a′�−1a) ∈
Eq(f), and then

(a, a) � (a, a′ �−1 a) = (a� a, a� (a′ �−1 a)) = (a, (a′ �−1 a) � a) = (a, a′).

3.4. Remark. When a split epimorphism f : A→ B with section s : B → A has symmet-
ric fibers, then s(b)�− : f−1(b)→ f−1(b) is always injective: if x ∈ f−1(b) and y ∈ f−1(b)
are such that s(b) � x = s(b) � y, since s(b) ∈ f−1(b), we get x � s(b) = y � s(b), and
hence x = y by right invertibility.
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3.5. Lemma. Consider the following pullback

E ×B A A

E B.

π2

π1 f

p

If f : A → B has abelian symmetric fibers then so does π1 : E ×B A → E. Moreover, if
p : E → B is a surjective homomorphism, then f : A→ B has abelian symmetric fibers if
π1 : E ×B A→ E has abelian symmetric fibers.

Proof. The first assertion follows from the fact that if (e, a) ∈ E ×B A then the fibers
π−11 (e) and f−1(f(a)) are isomorphic. The proof of the second assertion is similar, the
surjectivity of p guaranteeing that, for any a ∈ A, there exists e ∈ E such that (e, a) ∈
E ×B A.

3.6. Lemma. [2] Let f : A → B be a split epimorphism, with section s : B → A, in Σ.
Consider the following pullback of f along a split epimorphism p : E → B, with section
t : B → E:

E ×B A

E

A

B.

π1 (1E, s ◦ p) f s

π2

(t ◦ f, 1A)

p

t

Then (1E, s ◦ p) and (t ◦ f, 1A) are jointly epimorphic.

Proof. Let (e, a) ∈ E ×B A; we shall show that (e, a) can be rewritten as a product
of two elements in the images of (1E, s ◦ p) and (t ◦ f, 1A), respectively. Since the split
epimorphism f is in Σ, there exists an element ka ∈ f−1(f(a)) such that sf(a) � ka = a.
Also, we always have e = (e �−1 tp(e)) � tp(e). Accordingly, by using the fact that
f(a) = f(ka) and p(e) = f(a), we see that

(e, a) = ((e�−1 tp(e)) � tp(e), sf(a) � ka)

= (e�−1 tp(e), sf(a)) � (tp(e), ka)

= (e�−1 tp(e), sp(e)) � (tf(ka), ka)

= (e�−1 tp(e), sp(e�−1 tp(e))) � (tf(ka), ka)

= (1E, s ◦ p)(e�−1 tp(e)) � (t ◦ f, 1A)(ka).
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3.7. Corollary. Let R be an equivalence relation and S be a Σ-equivalence relation on
the same quandle A in Qnd. If there is a connector on R and S, then it is unique.

Proof. This follows directly from Lemma 3.6.

3.8. Lemma. Let R be an equivalence relation and S be a Σ-equivalence relation on the
same quandle A. For a homomorphism p : R ×A S → A, the following conditions are
equivalent :

1. p is a partial Mal’tsev operation: p(x, y, y) = x and p(x, x, y) = y;

2. p is a connector between R and S.

Proof. This result is easily checked and also follows from Lemma 3.6.

From now on, we shall say that a surjective homomorphism with abelian symmetric
fibers f : A→ B in Qnd is an algebraically central extension if its kernel congruence Eq(f)
is algebraically central: there is a connector between Eq(f) and A× A.

3.9. Lemma. Let f : A→ B be an algebraically central extension with abelian symmetric
fibers, then Eq(f) is isomorphic to a product Q × A, where Q is an abelian symmetric
quandle.

Proof. Let C be the centralizing relation on Eq(f) and A × A; consider the following
diagram

C

Eq(f)

A× A

A B

Q 1

c1 c2
f

q

where q is the coequalizer of c1 and c2. By the Barr-Kock theorem [1, 5], the lower squares
are pullbacks. By Lemma 3.5, the homomorphism Q → 1 has abelian symmetric fibers,
hence Q is an abelian symmetric quandle.

The results in [2] will be useful to show that the category of abelian symmetric quan-
dles is admissible with respect to the class of surjective homomorphisms in the category
of quandles. In the following we shall characterize categorically central and normal ex-
tensions in Qnd with respect to the adjunction between the category of quandles and the
category of abelian symmetric quandles:

Qnd AbSymQnd⊥

I

H
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Observe that each component of the unit of the adjunction is a surjective homomor-
phism, since AbSymQnd is a subvariety of Qnd, thus in particular it is stable in Qnd under
subalgebras. The following theorem shows that the functor I preserves a certain type of
pullbacks. This is equivalent to the admissibility condition of the subvariety AbSymQnd
of Qnd.

3.10. Theorem. In the previous adjunction, the reflector I : Qnd→ AbSymQnd preserves
all pullbacks in Qnd of the form

P H(X)

A H(Y )

p2

p1 φ

f

(6)

where φ : H(X)→ H(Y ) is a surjective homomorphism lying in the subcategory AbSymQnd
and f : A→ H(Y ) is a surjective homomorphism.

Proof. Consider the following commutative diagram where:

� the square on the back is the given pullback, where φ : H(X)→ H(Y ) is a surjective
homomorphism in the subcategory AbSymQnd;

� the universal property of the unit ηP : P → HI(P ) induces a unique arrow
HI(p2) : HI(P )→ H(X) with HI(p2) ◦ ηP = p2;

� the universal property of the unit ηA : A → HI(A) induces a unique arrow
HI(f) : HI(A)→ H(Y ) with HI(f) ◦ ηA = f ;

� (P ′, π1, π2) is the pullback of HI(p1) along ηA.

P H(X)

A H(Y )

P ′ HI(P )

HI(A)

p2

p1 φ

f

γ

ηP

π1

π2

HI(p2)

HI(p1)

ηA HI(f)

The quandle homomorphism p1 is Σ-special by Lemma 3.5 since φ has abelian symmetric
fibers, thus the homomorphism γ is surjective by Corollary 2.9. The fact that π1 ◦ γ = p1
and HI(p2) ◦ π2 ◦ γ = p2 implies that γ is also injective. Indeed, this latter property
follows from the fact that the pullback projections p1 and p2 are jointly monomorphic.
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Accordingly, the arrow γ is bijective, thus an isomorphism. Since ηA is a surjective homo-
morphism it follows that the right face of the diagram is a pullback (see Proposition 2.7
in [17], for instance), and the pullback 6 is preserved by the functor I, as desired.

3.11. Corollary. The functor I preserves products of the type A × Q where Q is an
abelian symmetric quandle and A is any quandle.

Proof. Remark that A×Q is the following pullback

A×Q Q

A 1

p2

p1

where 1 is the terminal object in Qnd, i.e. the trivial quandle with one element.

3.12. Lemma. Consider the following pullback

E ×B A A

E B.

π2

π1 f

p

(7)

If f is an algebraically central extension with abelian symmetric fibers, then π1 is an
algebraically central extension with abelian symmetric fibers.

Moreover, if p : E → B is a surjective homomorphism, then f is an algebraically
central extension with abelian symmetric fibers if π1 is an algebraically central extension
with abelian symmetric fibers.

Proof. First remark that we already know that the property of having abelian sym-
metric fibers is preserved and reflected by pullbacks along surjective homomorphisms by
Lemma 3.5.

Let f : A → B be an algebraically central extension with abelian symmetric fibers.
Write pf : A × Eq(f) → A for the connector between A × A and Eq(f). Define the
quandle homomorphism pπ1 : (E ×B A)× Eq(π1)→ E ×B A as pπ1 ((e, a), (e′, b), (e′, c)) =
(e, pf (a, b, c)). We have

pπ1((e, a), (e′, b), (e′, b)) = (e, pf (a, b, b)) = (e, a)

and
pπ1((e, a), (e, a), (e, b)) = (e, pf (a, a, b)) = (e, b).

It is then a connector by Lemma 3.8.
Now let π1 : E×BA→ E be an algebraically central extension with abelian symmetric

fibers. Write pπ1 : (E ×B A)× Eq(π1) → E ×B A for the connector between (E ×B A)×
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(E ×B A) and Eq(π1). The surjectivity of p : E → B implies the surjectivity of the
homomorphism π̂2 : (E ×B A)× Eq(π1)→ A× Eq(f) defined by

π̂2((e, a), (e′, b), (e′, c)) = (a, b, c).

First let us show that Eq(π̂2) ⊂ Eq(π2 ◦ pπ1). Let

(((e0, a), (e′0, b), (e
′
0, c)), ((e1, a), (e′1, b), (e

′
1, c))) ∈ Eq(π̂2).

Since f has abelian symmetric fibers by Lemma 3.5, it is Σ-special by Proposition 3.3.

This means that the split epimorphism Eq(f)
f1
// A

δfoo is in Σ. In other terms, for all

b ∈ A and all (b, c) ∈ f−11 (b) there exists k(b,c) ∈ f−11 (b), where k(b,c) = (b, kc), such that
(b, b) � k(b,c) = (b, c). Such a k(b,c) = (b, kc) is unique by Remark 3.4: it follows that, for
any (b, c) ∈ Eq(f), the element kc ∈ A such that f(kc) = f(b) = f(c) and b � kc = c is
unique. Then, for i ∈ {0, 1}, we have

((ei, a), (e′i, b), (e
′
i, c)) = ((ei, a) �−1 (e′i, b), (e

′
i, b), (e

′
i, b)) � ((e′i, b), (e

′
i, b), (e

′
i, kc)).

Consequently we remark that

π2 ◦ pπ1((ei, a), (e′i, b), (e
′
i, c))

= π2 ◦ pπ1(((ei, a) �−1 (e′i, b), (e
′
i, b), (e

′
i, b)) � ((e′i, b), (e

′
i, b), (e

′
i, kc)))

= π2(pπ1((ei, a) �−1 (e′i, b), (e
′
i, b), (e

′
i, b)) � pπ1((e

′
i, b), (e

′
i, b), (e

′
i, kc))

= π2(((ei, a) �−1 (e′i, b)) � (e′i, kc))

= π2((ei �
−1 e′i) � e′i, (a�

−1 b) � kc) = (a�−1 b) � kc

for both i ∈ {0, 1}. This implies that Eq(π̂2) ⊂ Eq(π2 ◦ pπ1), and there is then a unique
quandle homomorphism pf : A× Eq(f)→ A such that pf ◦ π̂2 = π2 ◦ pπ1 , i.e. pf (a, b, c) =
(a �−1 b) � kc where kc is the unique element such that b � kc = c as above. Moreover,
we have

pf (a, b, b) = (a�−1 b) � b = a

for (a, b, b) ∈ A× Eq(f) and

pf (a, a, b) = (a�−1 a) � kb = a� kb = b

for (a, a, b) ∈ A× Eq(f), so pf is a connector by Lemma 3.8.

Before stating our main result, we recall that a surjective homomorphism f : A → B
is a normal extension when the homomorphism f1 in the pullback of f along itself is a
trivial extension

Eq(f) A

A B.

f2

f1 f

f

(see the Introduction for the definitions of trivial extension and of central extension).
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3.13. Theorem. Given a surjective homomorphism f : A → B in Qnd, the following
conditions are equivalent:

1. f is an algebraically central extension with abelian symmetric fibers;

2. f is a normal extension;

3. f is a central extension.

Proof. Let f : A → B be an algebraically central extension with abelian symmetric
fibers, then its kernel pair Eq(f) is isomorphic to a product Q × A with Q an abelian
symmetric quandle by Lemma 3.9. Corollary 3.11 shows that f is then a normal extension.

Every normal extension is a central extension.
Let f : A → B be a central extension. Then there is a surjective homomorphism

p : E → B such that the first projection π1 : E×AB → E in the pullback (7) is a trivial
extension. Then f : A → B is an algebraically central extension with abelian symmetric
fibers by Lemma 3.12, because π1 is the pullback of a morphism lying in AbSymQnd.

3.14. Remark. Note that there are surjective homomorphisms with abelian symmetric
fibers that are not algebraically central. Take for instance the quandle A given by the
following table :

� a b c d
a a c b a
b c b a b
c b a c c
d d d d d

and the quandle homomorphism f : A → {x, y} defined by f(a) = f(b) = f(c) = x and
f(d) = y. Its kernel pair Eq(f) has 10 elements, and thus can’t be isomorphic to a product
A×Q with Q an abelian symmetric quandles since A has 4 elements.

3.15. Remark. There are surjective algebraically central homomorphisms that do not
have symmetric fibers. Consider the additive group (Z/2Z,+, 0) and endow its underlying
set with the trivial quandle structure a � b = a for all a, b ∈ Z/2Z. Remark that the
group operation is a quandle homomorphism:

(a� b) + (a′ � b′) = a+ a′ = (a+ a′) � (b+ b′).

It follows that the Mal’tsev operation p : Z/2Z × Z/2Z × Z/2Z → Z/2Z defined by
p(a, b, c) = a−b+c is a connector between the congruences Z/2Z×Z/2Z and Z/2Z×Z/2Z.
The homomorphism Z/2 → 1 is then an algebraically central extension, whose (unique)
fiber is not symmetric, since 0 � 1 = 0 6= 1 = 1 � 0.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl
Susan Niefield, Union College: niefiels@union.edu
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