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THE TWO OUT OF THREE PROPERTY IN IND-CATEGORIES
AND A CONVENIENT MODEL CATEGORY OF SPACES

ILAN BARNEA

Abstract. In [Barnea, Schlank, 2015(2)], the author and Tomer Schlank studied a
much weaker homotopical structure than a model category, which we called a “weak
cofibration category”. We showed that a small weak cofibration category induces in a
natural way a model category structure on its ind-category, provided the ind-category
satisfies a certain two out of three property. The main purpose of this paper is to give
sufficient intrinsic conditions on a weak cofibration category for this two out of three
property to hold. We consider an application to the category of compact metrizable
spaces, and thus obtain a model structure on its ind-category. This model structure is
defined on a category that is closely related to a category of topological spaces and has
many convenient formal properties. A more general application of these results, to the
(opposite) category of separable C∗-algebras, appears in a paper by the author, Michael
Joachim and Snigdhayan Mahanta [Barnea, Joachim, Mahanta, 2017].

1. Introduction

In [Barnea, Schlank, 2016] the author and Tomer Schlank studied the concept of a weak
fibration category. This is a category C, equipped with two subcategories of weak equiva-
lences and fibrations, satisfying certain axioms. This notion was first studied by Anderson
[Anderson, 1978], who referred to it as a right homotopy structure, and is closely related
to the notion of a category of fibrant objects due to Brown [Brown, 1973]. The only dif-
ference is that we require arbitrary pullbacks to exist, and we do not require every object
to be fibrant. A weak fibration category is a much weaker notion than a model category
and its axioms are much easily verified.

If C is any category, its pro-category Pro(C) is the category of inverse systems in C.
That is, objects in Pro(C) are diagrams I // C, with I a cofiltered category. If X and Y
are objects in Pro(C) having the same indexing category, then a natural transformation
X // Y defines a morphism in Pro(C), but morphisms in Pro(C) are generally more
flexible.

Given a weak fibration category C, there is a very natural way to induce a notion of
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weak equivalence on the pro-category Pro(C). Namely, we define the weak equivalences in
Pro(C) to be the smallest class of maps that contains all (natural transformations that are)
levelwise weak equivalences, and is closed under isomorphisms of maps in Pro(C). IfW is
the class of weak equivalences in C, then we denote the class of weak equivalences in Pro(C)
by Lw

∼=(W). The maps in Lw
∼=(W) are called essentially levelwise weak equivalences by

Isaksen [Isaksen, 2004]. Note, however, that Lw
∼=(W) may not satisfy the two out of

three property. Weak fibration categories for which Lw
∼=(W) satisfies the two out of three

property are called pro-admissible.
The main result in [Barnea, Schlank, 2016] is that a pro-admissible weak fibration cat-

egory C induces in a natural way a model structure on Pro(C), provided C has colimits and
satisfies a technical condition called homotopically small. In [Barnea, Schlank, 2015(2)],
we explain that an easy consequence of this result is that any small pro-admissible weak
fibration category C induces a model structure on Pro(C). These model structures can
be shown to model the ∞-category of pro-objects in the underlying ∞-category of C (see
[Barnea, Harpaz, Horel, 2017, Theorem 5.2.1]).

Dually, one can define the notion of a weak cofibration category (see Definition 2.4),
and deduce that a small ind -admissible weak cofibration category induces a model struc-
ture on its ind -category (which is the dual notion of a pro-category). This is the setting
in which we work with in this paper, however, everything we do throughout the paper is
completely dualizable, so it can also be written in the “pro” picture.

Since the axioms of a weak cofibration category are usually not so hard to verify, the
results above essentially reduce the construction of model structures on ind-categories of
small categories to the verification of the two out of three property for Lw

∼=(W). This is
usually not an easy task.

The main purpose of this paper is to prove theorems giving sufficient intrinsic condi-
tions on a weak cofibration category from which one can deduce its ind-admissibility. We
apply these results to the category of compact metrizable spaces. This category has a
natural weak cofibration structure, which we show is ind-admissible. We do not know to
deduce the ind-admissibility of this weak cofibration category using the methods given in
[Barnea, Schlank, 2015(2)] (see Remark 1.5).

We will now state our main result. For this, we first need a definition:

1.1. Definition. Let C a weak cofibration category. An object D in C is called:

1. Cofibrant, if the unique map φ //D from the initial object is a cofibration.

2. Fibrant, if for every acyclic cofibration A //B in C and every diagram of the form

A

��

// D

B

there is a lift B //D.

We can now formulate our main result in this paper which is the following criterion
for ind-admissibility:
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1.2. Theorem. [see Theorem 4.14] Let C be a small simplicial weak cofibration category
(see Definition 2.20). Suppose that the following conditions are satisfied:

1. C has finite limits.

2. Every object in C is fibrant and cofibrant.

3. A map in C that is a homotopy equivalence in the simplicial category C is also a
weak equivalence.

Then C is ind-admissible.

In this paper we bring an application to the category of compact metrizable spaces and
continuous maps, denoted CM. This category has a natural weak cofibration structure
which we now define.

1.3. Definition. A map i : X // Y in CM is called a Hurewicz cofibration if for every
Z ∈ CM and every diagram of the form

{0} × Y
∐
{0}×X [0, 1]×X

��

// Z

[0, 1]× Y

there exists a lift [0, 1]× Y // Z.

1.4. Proposition. [see Propositions 5.10, 5.15 and Remark 5.18] With the weak equiv-
alences being the homotopy equivalences and the cofibrations being the Hurewicz cofibra-
tions, CM becomes a weak cofibration category that satisfies the hypothesis of Theorem
1.2. Thus CM is ind-admissible.

1.5. Remark. In [Barnea, Schlank, 2015(2)] we also give sufficient intrinsic conditions
on a weak cofibration category for its ind-admissibility. Namely, we show in Corollary 3.8
loc. cit. that if our weak cofibration category has finite limits and proper factorizations
then it is ind-admissible. The author does not know a way to deduce the ind-admissibility
of CM from this result since the author does not know of any factorization in CM into
a weak equivalence followed by a right proper map (see Definition 2.9 and Proposition
2.10).

1.6. Remark. Proposition 1.4 remains true if we replace CM by any (essentially) small
collection of locally compact Hausdorff spaces, that is closed under finite limits and col-
imits and contains all realizations of finite simplicial sets. See Section 5.8.

Since CM is ind-admissible, we have an induced model structure on the category
Ind(CM). We further show in Theorem 5.17 and Remark 5.18 that:
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1.7. Theorem. Let W denote the class of weak equivalences and let C denote the class of
cofibrations in CM. Then there exists a simplicial model category structure on Ind(CM)
such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The fibrations are F := (C ∩W)⊥.

Moreover, this model category is finitely combinatorial, with set of generating cofibra-
tions C and set of generating acyclic cofibrations C ∩W.

The model category Ind(CM) has the following further properties:

1. Every object in Ind(CM) is fibrant.

2. Ind(CM) is proper.

3. Ind(CM) is a cartesian monoidal model category.

1.8. Remark. Theorem 1.7 remains true if we replace CM by any (essentially) small
collection of compact Hausdorff spaces, that is closed under finite limits and colimits and
contains all realizations of finite simplicial sets. See Section 5.8.

It is well known that the category of topological spaces, with its usual model struc-
ture (with weak homotopy equivalences and Serre fibrations), while being a fundamental
object in homotopy theory, lacks some convenient properties as a model category. For
example, it is not cartesian closed and not combinatorial. Cartesian closure can easily
be achieved by restricting to the subcategory of compactly generated Hausdorff spaces,
however, this category of spaces is still not locally presentable, and thus, not combinato-
rial. Simplicial sets form a Quillen equivalent combinatorial (and cartesian closed) model
category, however, simplicial sets are discrete combinatorial objects and are quite far from
the geometric intuition. For some examples arising from geometric situations, it is useful
to have a model for topological spaces which is both convenient as a model category, and
who’s objects have a more topological nature. One attempt to solve this problem is J. H.
Smith’s idea of delta-generated spaces (see [Fajstrup, Rosicky, 2008]).

The model structure that we construct on Ind(CM) can be viewed as another possible
solution to this problem. First, as we have shown, it has many convenient properties.
It is simplicial, cartesian closed, finitely combinatorial, proper and every object in it is
fibrant. On the other hand, the underlying category of this model category contains,
as a full reflective subcategory, a very large category of spaces (which includes all CW -
complexes). Furthermore, it can be shown that a colocalization of this model structure
is Quillen equivalent to the usual model structure on topological spaces. These last two
claims will be addressed in a future paper.

The Gel’fand–Năımark correspondence implies that the category of compact metriz-
able spaces is equivalent to the opposite category of commutative separable unital C∗-
algebras, which we denote CSUC∗. Since we have natural equivalences of categories

Ind(CM)op ' Pro(CMop) ' Pro(CSUC∗),
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we see that we obtain a model structure also on the pro-category of commutative separable
unital C∗-algebras, possessing (the dual of) all the above mentioned properties.

A more general application of our main result in this paper is to the weak fibration
category of separable C∗-algebras denoted SC∗. This application appears in the paper
[Barnea, Joachim, Mahanta, 2017] by the author, Michael Joachim and Snigdhayan Ma-
hanta. In this paper we use the resulting model structure on Pro(SC∗) to extend Kas-
parov’s bivariant K-theory category (as well as other bivariant homology theories) from
separable C∗-algebras to projective systems of separable C∗-algebras (that is, to objects
of Pro(SC∗)).

1.9. Organization of the paper. We begin in Section 2 with a brief account of the
necessary background on ind-categories and homotopy theory in ind-categories. We also
define the notion of a quasi model category. This notion is weaker then a model category
but stronger then the notion of an almost model category, defined in [Barnea, Schlank,
2015(2)]. In Section 3 we prove results about quasi model categories (generalized from
the theory of model categories) that we will need in the next section. In Section 4, we
prove our main result of this paper, Theorem 4.14, which gives sufficient conditions for
the ind-admissibility of a weak cofibration category. We end with Section 5 in which we
give an application to the weak cofibration category of compact metrizable spaces.

1.10. Acknowledgements. I would like to thank Tomer Schlank, Michael Joachim and
Snigdhayan Mahanta for many fruitful conversations. Especially, I would like to thank
the last two for the idea of the proof of Proposition 4.12.

2. Preliminaries: homotopy theory in ind-categories

In this section we review the necessary background on ind-categories and homotopy the-
ory in ind-categories. The results presented here are not new, but we recall them for the
convenience of the reader. We do bring one new definition, that of a quasi model category
(see Definition 2.3). Most of the references that we quote are written for pro-categories,
but we bring them here translated to the “ind” picture which we use in this paper. Stan-
dard references on pro-categories include [Artin, Mazur, 1969] and [Artin, Grothendieck,
Verdier, 1972]. For the homotopical parts the reader is referred to [Edwards, Hastings,
1976], [Isaksen, 2004] and the papers by the author and Schlank listed in the bibliography.

2.1. Ind-categories. In this subsection we bring general background on ind-categories.
A non-empty category I is called filtered if the following conditions hold: for every

pair of objects s and t in I, there exists an object u ∈ I, together with morphisms s //u
and t // u; and for every pair of morphisms f and g in I, with the same source and
target, there exists a morphism h in I such that h ◦ f = h ◦ g. A category is called small
if it has only a set of objects and a set of morphisms.

If C is any category, the category Ind(C) has as objects all diagrams in C of the form
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I // C such that I is small and filtered. The morphisms are defined by the formula

HomInd(C)(X, Y ) := limscolimtHomC(Xs, Yt).

Composition of morphisms is defined in the obvious way.
Thus, if X : I // C and Y : J // C are objects in Ind(C), providing a morphism

X // Y means specifying for every s in I an object t in J and a morphism Xs
// Yt in

C. These morphisms should satisfy a compatibility condition. In particular, if p : I // J
is a functor, and φ : X // Y ◦ p = p∗Y is a natural transformation, then the pair (p, φ)
determines a morphism νp,φ : X // Y in Ind(C) (for every s in I we take the morphism
φs : Xs

// Yp(s)). Taking X = p∗Y and φ to be the identity natural transformation, we
see that any p : I // J determines a morphism νp,Y : p∗Y // Y in Ind(C). If I = J
and we take p to be the identity functor, we see that any natural transformation X //Y
induces a morphism in Ind(C).

The functor p : I //J is called (right) cofinal if for every j in J the over category pj/ is
nonempty and connected. If p is cofinal then the morphism it determines, νp,Y : p∗Y //Y ,
is an isomorphism.

The word ind-object refers to objects of ind-categories. A simple ind-object is one
indexed by the category with one object and one (identity) map. Note, that for any
category C, there is a natural isomorphism between C and the full subcategory of Ind(C)
spanned by the simple objects. In the sequel we will abuse notation and consider objects
and morphisms in C as objects and morphisms in Ind(C), through this isomorphism.

If T is a poset, then we view T as a category which has a single morphism u // v iff
u ≤ v. Thus, a poset T is filtered iff T is non-empty, and for every a, b in T there exists
an element c in T such that c ≥ a, b. A filtered poset will also be called directed. A poset
T is called cofinite if for every element x in T the set Tx := {z ∈ T |z ≤ x} is finite.

Let C be a category with finite colimits and M a class of morphisms in C. If I is a
small category and F : X // Y a morphism in CI , then:

1. The map F will be called a level-wise M-map, if for every i ∈ I the morphism
Xi

// Yi is in M . We will denote this by F ∈ Lw(M).

2. The map F will be called a cospecial M -map, if I is a cofinite poset and for every
t ∈ I the natural map

Xt

∐
colims<tXs

colims<tYs // Yt

is in M . We will denote this by F ∈ coSp(M).

We denote by R(M) the class of morphisms in C that are retracts of morphisms in M .
We denote by M⊥ (resp. ⊥M) the class of morphisms in C having the right (resp. left)
lifting property with respect to all the morphisms in M .

We denote by Lw
∼=(M) the class of morphisms in Ind(C) that are isomorphic to a

morphism that comes from a natural transformation which is a levelwise M -map. The
maps in Lw

∼=(W) are called essentially levelwise weak equivalences by Isaksen [Isaksen,
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2004]. We denote by coSp
∼=(M) the class of morphisms in Ind(C) that are isomorphic

to a morphism that comes from a natural transformation which is a cospecial M -map.

2.2. From a weak cofibration category to a quasi model category. In
[Barnea, Schlank, 2015(2)] the notion of an almost model category was introduced. It
is a weaker notion then a model category that was used as an auxiliary notion which
was useful in showing that certain weak cofibration categories are ind-admissible. In this
paper we also consider a similar auxiliary notion, and for the same purpose. However, it
would be more convenient for us to consider a slightly stronger notion, which we call a
quasi model category. A quasi model category has the same structure as a model category
and satisfies all the axioms of a model category, except (maybe) one third of the two out
of three property for its weak equivalences. Namely:

2.3. Definition. A quasi model category is a quadruple (M,W ,F , C) satisfying the
following axioms:

1. M is complete and cocomplete.

2. W ,F , C are subcategories of M that are closed under retracts.

3. For every pair X
f−→ Z

g−→ Y of composable morphisms in C, we have that f, g◦f ∈ W
implies g ∈ W.

4. C ∩W ⊆ ⊥F and C ⊆ ⊥(F ∩W).

5. There exist functorial factorizations in M into a map in C ∩W followed by a map
in F and into a map in C followed by a map in F ∩W.

A quasi model category is clearly a weaker notion then a model category. We also
recall the following notion from [Barnea, Schlank, 2015(2)]:

2.4. Definition. A weak cofibration category is a category C with an additional structure
of two subcategories

Cof,W ⊆ C

that contain all the isomorphisms such that the following conditions are satisfied:

1. C has all finite limits.

2. W has the two out of three property.

3. The subcategories Cof and Cof ∩W are closed under cobase change.

4. Every map A // B in C can be factored as A
f−→ C

g−→ B, where f is in Cof and g
is in W.
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The maps in Cof are called cofibrations, and the maps inW are called weak equivalences.

The structure of weak cofibration category was first studied by Anderson [Anderson,
1978], who referred to it as a left homotopy structure, and is closely related to the dual
notion of a category of fibrant objects due to Brown [Brown, 1973]. Other variants of
this notion were studied by Baues [Baues, 1988], Cisinski [Cisinski, 2010], Radlescu-Banu
[Radulescu-Banu, 2009], Szumio [Szumi lo, 2014] and others.

2.5. Definition. A weak cofibration category (C,W , Cof) is called

1. ind-admissible, if the class Lw
∼=(W), of morphisms in Ind(C), satisfies the two out

of three property.

2. almost ind-admissible, if the class Lw
∼=(W), of morphisms in Ind(C), satisfies the

following portion of the two out of three property:

For every pair X
f−→ Z

g−→ Y of composable morphisms in Ind(C) we have:

(a) If f, g belong to Lw
∼=(W) then g ◦ f ∈ Lw

∼=(W).

(b) If f, g ◦ f belong to Lw
∼=(W) then g ∈ Lw

∼=(W).

2.6. Theorem. [Barnea, Schlank, 2015(2), Theorem 3.14] Let (C,W , Cof) be a small
almost ind-admissible weak cofibration category. Then there exists a quasi model category
structure on Ind(C) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The fibrations are F := (Cof ∩W)⊥.

3. The cofibrations are C := R(coSp
∼=(Cof)).

Furthermore, we have F ∩W = C⊥ and C ∩W = R(coSp
∼=(Cof ∩W)).

2.7. Remark.

1. If, in Theorem 2.6, the weak cofibration category (C,W , Cof) is also ind-admissible,
then the quasi model structure on Ind(C) described there is clearly a model structure.
Moreover, this model structure can be shown to model the∞-category of ind-objects
in the underlying ∞-category of C (see [Barnea, Harpaz, Horel, 2017, Theorem
5.2.1]).

2. Theorem 2.6 remains true if we replace small weak cofibration category by a model
category. (The proof of [Isaksen, 2004, Theorem 4.15] applies verbatim to this
more general context).

The following notion is due to Dwyer-Kan [Dwyer, Kan, 1980] and was further devel-
oped by Barwick-Kan [Barwick, Kan, 2012]:
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2.8. Definition. A relative category is a pair (C,W), consisting of a category C, and a
subcategory W ⊆ C that contains all the isomorphisms and satisfies the two out of three
property. The maps in W are called weak equivalences.

We now recall the notions of left and right proper maps in relative categories and the
relation of these concepts to the almost ind-admissibility condition, appearing in Theorem
2.6.

2.9. Definition. Let (C,W) be a relative category. A map f : A //B in C will be called:

1. Left proper, if for every pushout square of the form

A

i
��

f // B

j
��

C // D

such that i is a weak equivalence, the map j is also a weak equivalence.

2. Right proper, if for every pullback square of the form

C

j
��

// D

i
��

A
f // B

such that i is a weak equivalence, the map j is also a weak equivalence.

We denote by LP the class of left proper maps in C and by RP the class of right proper
maps in C.

If C is a category and M,N are classes of morphisms in C, we will denote by M ◦ N
the class of maps A //B in C can be factored as A

f−→ C
g−→ B, where f is in N and g is

in M . The following proposition is the main motivation for introducing the concepts of
left and right proper morphisms:

2.10. Proposition. [Barnea, Schlank, 2015(2), Proposition 3.7] Let (C,W) be a relative

category, and let X
f−→ Y

g−→ Z be a pair of composable morphisms in Ind(C). Then:

1. If C has finite limits and colimits, and Mor(C) = RP ◦ LP , then f, g ∈ Lw
∼=(W)

implies that g ◦ f ∈ Lw
∼=(W).

2. If C has finite limits, and Mor(C) = RP ◦ W, then g, g ◦ f ∈ Lw
∼=(W) implies that

f ∈ Lw
∼=(W).

3. If C has finite colimits, and Mor(C) =W ◦LP , then f, g ◦ f ∈ Lw
∼=(W) implies that

g ∈ Lw
∼=(W).
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2.11. Remark. In a left proper model category C, the cofibration-acyclic fibration fac-
torizations give factorizations of the form Mor(C) = (W∩RP )◦LP . Thus, by Proposition
2.10, every left proper model category is almost ind-admissible, and so, induces a quasi
model structure on Ind(C) (see Theorem 2.6 and Remark 2.7(2)).

2.12. Left proper simplicial and monoidal weak cofibration categories.
In this subsection we recall the notions of a left proper, simplicial and monoidal quasi
model categories and weak cofibration categories. If a small almost ind-admissible weak
cofibration category possesses one of these notions, the induced quasi model structure
on its ind-category, given by Theorem 2.6, possesses the corresponding notion. For more
details the reader is referred to [Barnea, Schlank, 2017].

2.13. Definition. Let C be a quasi model category or a weak cofibration category. Then
C is called left proper if for every pushout square of the form

A

i
��

f // B

j
��

C // D

such that f is a cofibration and i is a weak equivalence, the map j is a weak equivalence.

The following proposition is shown in [Barnea, Schlank, 2017, Corollary 3.3], based on
the proof of [Isaksen, 2004, Theorem 4.15]:

2.14. Proposition. Let C be a small left proper almost ind-admissible weak cofibration
category. Then with the quasi model structure defined in Theorem 2.6, Ind(C) is a left
proper quasi model category.

We can define the notion of a Quillen adjunction between quasi model categories, in
two different ways, just as in the case of model categories:

2.15. Definition. [Barnea, Schlank, 2017, Corollary 5.4] Let C,D be quasi model cate-
gories, and let

F : C−→←−D : G

be an adjunction. We say that this adjunction is a Quillen pair if one of the following
equivalent conditions is satisfied:

1. The functor F preserves cofibrations and trivial cofibrations.

2. The functor G preserves fibrations and trivial fibrations.

In this case we say that F is a left Quillen functor and G is a right Quillen functor.
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2.16. Definition. Let B,C,D be categories and let (−)⊗(−) : B×C //D be a bifunctor.
We have a naturally induced prolongation of ⊗ to a bifunctor (which we also denote by
⊗)

(−)⊗ (−) : Ind(B)× Ind(C) // Ind(D).

If B = {Bi}i∈I is an object in Ind(B) and C = {Cj}j∈J is an object in Ind(C), then B⊗C
is the object in Ind(D) given by the diagram

{Bi ⊗ Cj}(i,j)∈I×J .

2.17. Definition. Let (M,⊗, I) be a symmetric monoidal category which is also a quasi
model category (resp. weak cofibration category). We say thatM, with this structure, is a
monoidal quasi model category (resp. monoidal weak cofibration category) if the following
conditions are satisfied:

1. The functor ⊗ :M×M //M is a part of a two variable adjunction (resp. commutes
with finite colimits in every variable separately).

2. For every cofibration j : X // Y in M and every cofibration i : L //K in M the
induced map

X ⊗K
∐
X⊗L

Y ⊗ L // Y ⊗K

is a cofibration (in M), which is acyclic if either i or j is.

3. I is a cofibrant object in M.

2.18. Proposition. [Barnea, Schlank, 2017, Theorem 5.15] Let (M,⊗, I) be a small
almost ind-admissible monoidal weak cofibration category. Then with the quasi model
structure described in Theorem 2.6 and with the natural prolongation of ⊗ (see Definition
2.16), Ind(M) is a monoidal quasi model category.

2.19. Definition. Let C be a quasi model category which is also tensored over the cate-
gory of simplicial sets S. We say that C, with this structure, is a simplicial quasi model
category, if the following conditions are satisfied:

1. The action (−)⊗ (−) : S × C // C is part of a two variable adjunction.

2. For every cofibration j : X // Y in S and every cofibration i : L // K in C the
induced map

X ⊗K
∐
X⊗L

Y ⊗ L // Y ⊗K

is a cofibration (in C), which is acyclic if either i or j is.

Let Sf denote the category of finite simplicial sets, that is, Sf is the full subcategory
of S spanned by simplicial sets having only a finite number of non-degenerate simplices.
There is a natural equivalence of categories Ind(Sf )

∼−→ S, given by taking colimits (see
[Adamek, Rosicky, 1994]). We say that a map in Sf is a cofibration or a weak equivalence,
if it is so as a map in S.



THE TWO OUT OF THREE PROPERTY 631

2.20. Definition. Let C be a weak cofibration category which is also tensored over Sf .
We say that C, with this structure, is a simplicial weak cofibration category if the following
conditions are satisfied:

1. The action (−)⊗ (−) : Sf × C // C commutes with finite colimits in every variable
separately.

2. For every cofibration j : X // Y in Sf and every cofibration i : L //K in C the
induced map

X ⊗K
∐
X⊗L

Y ⊗ L // Y ⊗K

is a cofibration (in C), which is acyclic if either i or j is.

2.21. Proposition. [Barnea, Schlank, 2017, Theorem 5.23] Let C be a small almost
ind-admissible simplicial weak cofibration category. Then with the quasi model structure
described in Theorem 2.6 and with the natural prolongation of the action (see Definition
2.16), Ind(C) is a simplicial quasi model category.

3. Quasi model categories

In this section we develop some theory for quasi model categories. These results will
be used in the next section to show the ind-admissibility of certain weak cofibration
categories. We begin by generalizing some theorems from model category theory to quasi
model categories. All the proofs given in the beginning of this section are straightforward
generalizations of proofs appearing in [Hovey, 1991].

We first prove the following generalization of Ken Browns Lemma:

3.1. Lemma. Let D be a quasi model category and let C be a relative category. Suppose
G : D //C is a functor which takes trivial fibrations between fibrant objects to weak equiv-
alences. Then G takes all weak equivalences between fibrant objects to weak equivalences.

Proof. Let f : A // B be a weak equivalence between fibrant objects in C. We factor
the map (idA, f) : A // A × B in the quasi model category C into a trivial cofibration

followed by a fibration A
q−→ C

p−→ A×B. From the following pullback diagram:

A×B //

��

A

��
B // ∗

it follows that the natural maps π0 : A×B //A and π1 : A×B //B are fibrations. We
have

(π1 ◦ p) ◦ q = π1 ◦ (p ◦ q) = π1 ◦ (idA, f) = f.

Since f, q are weak equivalences and C is a quasi model category, it follows that π1 ◦ p
is also a weak equivalence in C. Similarly one shows that π0 ◦ p is a weak equivalence in
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C. Thus π0 ◦ p and π1 ◦ p are trivial fibrations between fibrant objects. It follows that
G(π0 ◦ p) and G(π1 ◦ p) are weak equivalences in D. Since

G(π0 ◦ p) ◦G(q) = G(π0 ◦ p ◦ q) = G(π0 ◦ (idA, f)) = G(idA) = idG(A)

is also a weak equivalence in D, and D is a relative category, it follows that G(q) is a
weak equivalence in D. Since D is a quasi model category the weak equivalences in D are
closed under composition, so we have that

G(f) = G((π1 ◦ p) ◦ q) = G(π1 ◦ p) ◦G(q)

is a weak equivalence in D.

3.2. Corollary. Consider a Quillen pair:

F : C−→←−D : G,

where C is a model category and D is a quasi model category. Then G takes weak equiva-
lences between fibrant objects to weak equivalences.

Proof. This follows from the previous lemma and Definition 2.15.

We now come to our main result of this section.

3.3. Proposition. Let C be a simplicial quasi model category (see Definition 2.19). Then
a map in C, between fibrant cofibrant objects, is a weak equivalence iff it is a simplicial
homotopy equivalence.

Proof. Let f : A //B be a weak equivalence between fibrant cofibrant objects. The left
action of S on C is a bifunctor ⊗ : S ×C // C which is part of a two variable adjunction,
denoted (⊗,Map, hom). It follows that for every cofibrant object X of C, we have a
Quillen adjunction (see Definition 2.15)

(−)⊗X : S−→←−C : Map(X,−).

Since A and B are fibrant, it follows from Corollary 3.2 that

Map(X, f) : Map(X,A) //Map(X,B)

is a weak equivalence in S. In particular it induces isomorphism on connected components
f∗ : π0Map(X,A) // π0Map(X,B).

Taking X = B, we find a map g : B // A in C such that f ◦ g ∼ idB. It follows that
f ◦ g ◦ f ∼ f , so taking X = A, we find that g ◦ f ∼ idA. Thus f is a simplicial homotopy
equivalence.

Let f : A //B be a simplicial homotopy equivalence between fibrant cofibrant objects.
We factor f , in the quasi model category C, into a trivial cofibration followed by a fibration
A

g−→ C
p−→ B. Since the weak equivalences in D are closed under composition, it is enough

to show that p is a weak equivalence.
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Let f ′ : B // A be a simplicial homotopy inverse to f . Since f ◦ f ′ ∼ idB and
Map(B,B) is a Kan-complex, we get that there exists a homotopy H : ∆1⊗B //B such
that H|∆{1}⊗B = idB and H|∆{0}⊗B = f ◦ f ′.

The map ∆{0} //∆1 is an acyclic cofibration in S, and the map φ //B is a cofibration
in C. Since C is a simplicial quasi model category, it follows that the map

∆{0} ⊗B //∆1 ⊗B
is an acyclic cofibration in C. Thus the following diagram:

∆{0} ⊗Bg◦f
′
//

��

C

p

��
∆1 ⊗B H // B,

has a lift H ′ : ∆1 ⊗B // C. We define q : B // C to be the composition

B ∼= ∆{1} ⊗B // ∆1 ⊗B H′ // C.

Then p ◦ q = idB, and H ′ is a simplicial homotopy between g ◦ f ′ and q.
The object C is also fibrant cofibrant and g is a weak equivalence. As we have shown

in the beginning of the proof, it follows that g is a homotopy equivalence. Let g′ : C //A
be a simplicial homotopy inverse to g. Then we have

p ∼ p ◦ g ◦ g′ ∼ f ◦ g′,
so it follows that

q ◦ p ∼ (g ◦ f ′) ◦ (f ◦ g′) ∼ idC .

Since Map(C,C) is a Kan-complex, we get that there exists a homotopy K : ∆1⊗C //C
such that K|∆{0}⊗C = idC and K|∆{1}⊗C = q ◦ p.

The maps ∆{0} // ∆1 and ∆{1} // ∆1 are acyclic cofibrations in S, and the map
φ // C is a cofibration in C. Since ⊗ : S × C // C is a left Quillen bifunctor, it follows
that the maps ∆{0} ⊗ C //∆1 ⊗ C and ∆{1} ⊗ C //∆1 ⊗ C are acyclic cofibrations in
C. The map

∆{0} ⊗ C //∆1 ⊗ C K−→ C

is just idC so it is also a weak equivalence in C. Since C is a quasi model category, it
follows that K is a weak equivalence in C. Since C is a quasi model category the weak
equivalences in C are closed under composition. Since q ◦ p is just the composition

∆{1} ⊗ C //∆1 ⊗ C K−→ C,

we get that q ◦ p is a weak equivalence in C. The following diagram:

C
= //

p
��

C
= //

q◦p
��

C

p
��

B
q // C

p // B

shows that p is a retract of q ◦ p, which finishes our proof.
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3.4. Definition. Let C be a quasi model category.

1. A fibrant replacement functor in C is an endofunctor R : C // C with image in
the fibrant objects of C, together with a natural transformation idC //R which is a
level-wise weak equivalence.

2. A cofibrant replacement functor in C is an endofunctor Q : C // C with image in
the cofibrant objects of C, together with a natural transformation Q // idC which is
a level-wise weak equivalence.

3.5. Lemma. Let C be a quasi model category. Then the following hold:

1. Any fibrant replacement functor preserves weak equivalences. That is, if R : C // C
is a fibrant replacement functor and X // Y is a weak equivalence in C, then
R(X) //R(Y ) is a weak equivalence.

2. Any cofibrant replacement functor reflects weak equivalences. That is, if Q : C //C is
a cofibrant replacement functor and X //Y is a map in C such that Q(X) //Q(Y )
is a weak equivalence, then X // Y is a weak equivalence.

Proof.

1. Let X // Y be a weak equivalence in C. By considering the following diagram

X

$$

∼ //

∼
��

Y

∼
��

R(X) // R(Y )

and the definition of a quasi model category, it follows that R(X) // R(Y ) is a
weak equivalence.

2. Let X // Y be a map in C such that Q(X) // Q(Y ) is a weak equivalence. By
considering the following diagram

Q(X)

$$

∼ //

∼
��

Q(Y )

∼
��

X // Y

and the definition of a quasi model category, it follows that X // Y is a weak
equivalence.
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Proposition 3.3 has the following interesting corollary:

3.6. Proposition. Let C be a simplicial quasi model category. Then C is a model category
iff there exists a fibrant replacement functor that reflects weak equivalences and a cofibrant
replacement functor that preserves weak equivalences such that either one of the following
holds:

1. This fibrant replacement functor preserves cofibrant objects.

2. This cofibrant replacement functor preserves fibrant objects.

Proof. Clearly, if C is an actual model category, then there exist such cofibrant and
fibrant replacement functors in C. Simply choose the functors obtained by any functorial
factorization in the model category C.

Conversely, let R : C // C be a fibrant replacement functor that reflects weak equiva-
lences and let Q : C // C be a cofibrant replacement functor that preserves weak equiv-
alences. With out loss of generality, we assume that R preserves cofibrant objects. We
wish to show that the weak equivalences in C are precisely the maps X // Y in C such
that R(Q(X)) //R(Q(Y )) is a simplicial homotopy equivalence in C. This will show that
the weak equivalences in C satisfy the two out of three property, and thus C is a model
category.

So let X // Y be a weak equivalence in C. By our assumption on Q, we have that
Q(X) //Q(Y ) is a weak equivalence in C. By Lemma 3.5, we have that

R(Q(X)) //R(Q(Y ))

is a weak equivalence in C. Since R preserves cofibrant objects, we see that R(Q(X)) and
R(Q(Y )) are fibrant cofibrant. It thus follows from Proposition 3.3 that

R(Q(X)) //R(Q(Y ))

is a simplicial homotopy equivalence in C.
Conversely, let X //Y be a map in C such that R(Q(X)) //R(Q(Y )) is a simplicial

homotopy equivalence in C. Since R(Q(X)) and R(Q(Y )) are fibrant cofibrant objects,
we have by Proposition 3.3 that R(Q(X)) //R(Q(Y )) is a weak equivalence in C. By our
assumption on R, we have that Q(X) // Q(Y ) is a weak equivalence in C. By Lemma
3.5, we have that X // Y is a weak equivalence in C.

4. Criteria for the two out of three property

In this section we prove our main results of this paper, namely, we prove theorems giving
sufficient conditions on a weak cofibration category that insure its ind-admissibility. In
the first subsection we prove two preliminary criteria for ind-admissibility (Theorems 4.2
and 4.6), and in the second we prove our main result (Theorem 4.14).
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For the sake of clarity, let us explain briefly the role played by quasi model categories
and the theory developed in the previous section in the proof of our main result. We begin
with a weak cofibration categoryM that satisfies certain hypothesis and we wish to show
that it is ind-admissible. We cannot use Proposition 2.10 for this because we don’t know
how to obtain factorizations of the form Mor(M) = RP ◦ W . However, we can easily
obtain factorizations of the form Mor(M) = RP ◦ LP and Mor(M) = W ◦ LP . These
can be obtained by a certain mapping cylinder factorization, as will be explained below.
Thus, using Proposition 2.10, we can deduce that M is almost ind-admissible, and there
is an induced quasi model structure on Ind(M). Knowing this, we can use the previously
developed theory for quasi model categories on Ind(M). Doing so, together with other
lines of proof that depend on the specific properties of the given weak cofibration category,
we are able to show that M is not only almost ind-admissible but also ind-admissible.

4.1. Preliminary criteria.

4.2. Theorem. Let (M,W , C) be a small almost ind-admissible simplicial weak cofibra-
tion category. Suppose that M has functorial factorizations into a cofibration followed by
a weak equivalence. ThenM is ind-admissible iff there exists a fibrant replacement functor
in the quasi model category Ind(M) given by Theorem 2.6, that reflects weak equivalences
and preserves cofibrant objects.

Proof. By Theorem 2.6, there exists an induced quasi model category structure on
Ind(M). By Proposition 2.21 this quasi model category is also simplicial. Using Proposi-
tion 3.6, we see that in order to prove our theorem it is enough to show that there exists
a cofibrant replacement functor on Ind(M) that preserves weak equivalences.

By [Barnea, Schlank, 2015(1), Theorem 5.7], we can use the functorial factorization in
M into a cofibration followed by a weak equivalence to produce a functorial factorization
in Ind(M) into a morphism in coSp

∼=(C) followed by a morphism in Lw
∼=(W). For any

object X in Ind(M), we can factor the unique map φ //X using this functorial factor-
ization and obtain a cofibrant replacement functor Q : Ind(M) // Ind(M). It remains to
show that Q preserves the weak equivalences in Ind(M), that is, that Q preserves maps
in Lw

∼=(W). So let f : X // Y be a map in Lw
∼=(W). Then f is isomorphic to a natural

transformation f ′ : X ′ // Y ′ that is a levelwise W map, on a (small) cofiltered category
T . By [Artin, Grothendieck, Verdier, 1972, Proposition 8.1.6], we can choose a cofinite
directed set J and a cofinal functor p : J // T . Then p∗f ′ : p∗X ′ // p∗Y ′ is a natural
transformation that is a levelwise W map, on the cofinite cofiltered set J . By the con-
struction of the functorial factorization given in [Barnea, Schlank, 2015(1), Theorem 5.7],
we see that applying the functor Q to f : X //Y is isomorphic to the Reedy construction
on p∗X ′ // p∗Y ′ (see [Barnea, Schlank, 2015(1), Definition 4.3]). We have a diagram in
MJ

(p∗X ′)Reedy
Lw(W) //

��

p∗X ′

Lw(W)

��
(p∗Y ′)Reedy

Lw(W) // p∗Y ′.
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It follows that the map between the Reedy constructions (p∗X)Reedy // (p∗Y )Reedy is in
Lw(W), and thus, that the map Q(X) //Q(Y ) is in Lw

∼=(W).

Let (M,W , C) be a small almost ind-admissible simplicial weak cofibration category
with functorial factorizations into a cofibration followed by a weak equivalence. By The-
orem 4.2 in order to show thatM is ind-admissible it is enough to show that there exists
a fibrant replacement functor in the quasi model category Ind(M) that reflects weak
equivalences and preserves cofibrant objects. We wish to formulate sufficient conditions
for such a fibrant replacement functor to exist. In this paper we only do this assuming
a rather strong assumption, namely, that every object in Ind(M) is already fibrant. In
this case we can clearly choose idInd(M) as our fibrant replacement functor.

4.3. Lemma. Let M be a small almost ind-admissible weak cofibration category, and
consider the quasi model structure induced on Ind(M) by Theorem 2.6. Then every object
in Ind(M) is fibrant iff every acyclic cofibration in M admits a left inverse (that is, a
retracting map).

Proof. Suppose that every acyclic cofibration in M admits a left inverse. Let X be an
object in Ind(M). We need to show that X is fibrant. Let i : A // B be an acyclic
cofibration in M. It is enough to show that every diagram of the form

A

i
��

// X

B

has a lift h : B //X. Let p : B // A be a left inverse to i, that is, we have p ◦ i = idA.
Then we can choose h to be the composition B

p−→ A //X.
Now suppose that every object in Ind(M) is fibrant. Let i : A // B be an acyclic

cofibration in M. We need to show that i admits a left inverse. Consider the diagram

A

i
��

= // A.

B

Since the object A is fibrant in Ind(M), we have a lift p : B //A. Then p is a left inverse
to i.

The last lemma leads to the following definition:

4.4. Definition. An object D in a weak cofibration category M is called fibrant if for
every acyclic cofibration A //B in M and every diagram of the form

A

��

// D

B

there is a lift B //D.
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4.5. Lemma. Let M be a weak cofibration category. Then every object in M is fibrant
iff every acyclic cofibration in M admits a left inverse.

Proof. Exactly like the proof of Lemma 4.3.

4.6. Theorem. Let M be a small almost ind-admissible simplicial weak cofibration cat-
egory. Suppose that M has functorial factorizations into a cofibration followed by a weak
equivalence and that very object in M is fibrant. Then M is ind-admissible.

Proof. By Theorem 4.2 in order to show that M is ind-admissible it is enough to show
that there exists a fibrant replacement functor in the quasi model category Ind(M) that
reflects weak equivalences and preserves cofibrant objects. By Lemmas 4.3 and 4.5, every
object in Ind(M) is fibrant. Thus, we can simply choose the identity functor on Ind(M)
as our fibrant replacement functor.

4.7. Remark. The almost ind-admissibility condition on a weak cofibration category
M, appearing in Theorems 4.2 and 4.6, can be verified by checking that M has finite
limits and factorizations of the form Mor(M) = RP ◦ LP and Mor(M) = W ◦ LP (see
Proposition 2.10).

4.8. Our main criterion: special weak cofibration categories.

4.9. Definition. Let (M,W , C) be a simplicial weak cofibration category.
Let f : A // B be a morphism in M. We define the mapping cylinder of f to be the

pushout

A
i0 //

f

��

∆1 ⊗ A

��
B

j // C(f).

We define a morphism p : C(f) = B
∐

A ∆1 ⊗ A // B to be the one induced by the
commutative square

A

f

��

i0 // ∆1 ⊗ A

��

''
∆0 ⊗ A ∼= A,

f
ww

B = // B

and we define a morphism i : A // C(f) = B
∐

A ∆1 ⊗ A to be the composition

A
i1−→ ∆1 ⊗ A −→ C(f).

Clearly f = pi, and we call this the mapping cylinder factorization.
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4.10. Lemma. Let (M,W , C) be a simplicial weak cofibration category such that every
object in M is cofibrant. Then the mapping cylinder factorization is a functorial factor-
ization in M into a cofibration followed by a weak equivalence.

Proof. Since every object inM is cofibrant,M is a Brown category of cofibrant objects.
Let B be any object ofM. Since B is cofibrant and ∆{0} //∆1 is an acyclic cofibration,
we get that

B ∼= ∆{0} ⊗B i0−→ ∆1 ⊗B

is an acyclic cofibration. A similar argument shows that

B tB ∼= (∆{0} t∆{1})⊗B (i0,i1)−−−→ ∆1 ⊗B

is a cofibration. Since the composition

B
i0−→ ∆1 ⊗B π−→ ∆{0} ⊗B ∼= B

is the identity, we get that π is a weak equivalence by two out of three. We thus obtain
that (∆1 ⊗ B, π, i0, i1) is a cylinder object for B. Now the result follows from Brown’s
factorization lemma [Brown, 1973].

4.11. Lemma. Let (M,W , C) be a simplicial weak cofibration category such that every
object in M is cofibrant. Then the map jp in the mapping cylinder factorization is sim-
plicially homotopic to the identity map on C(f) via a cofiber preserving homotopy. That
is, there exists a morphism H : ∆1 ⊗ C(f) // C(f) satisfying Hi1 = idC(f), Hi0 = jp
and such that the following diagram commutes:

∆1 ⊗ C(f) //

H
��

∆0 ⊗ C(f) ∼= C(f)

p

��
C(f)

p // B.

Proof. Since C is a simplicial weak cofibration category, we have that the functor ∆1 ⊗
(−) : C // C commutes with pushouts. Thus, we have

∆1 ⊗ C(f) ∼= ∆1 ⊗ (B tA (∆1 ⊗ A)) ∼= ∆1 ⊗B t∆1⊗A ∆1 ⊗ (∆1 ⊗ A) ∼=

∼= ∆1 ⊗B t∆1⊗A (∆1 ×∆1)⊗ A.

We define the homotopy H to be the map

∆1 ⊗B t∆1⊗A (∆1 ×∆1)⊗ A ∼= ∆1 ⊗ C(f) // C(f) ∼= B tA ∆1 ⊗ A,

induced by:

1. The natural map ∆1 ⊗B //∆0 ⊗B ∼= B.
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2. The natural map ∆1 ⊗ A //∆0 ⊗ A ∼= A.

3. The map (∆1 ×∆1)⊗A //∆1 ⊗A induced by the simplicial map ∆1 ×∆1 //∆1

that sends (0, 0), (0, 1), (1, 0) to 0 and (1, 1) to 1.

It is not hard to verify that these maps indeed define a map between the pushout
diagrams, and thus a map H as required. It is also clear that this H has the required
properties.

4.12. Proposition. Let (M,W , C) be a simplicial weak cofibration category such that
every object in M is cofibrant. Suppose that every homotopy equivalence in the simplicial
category C is a weak equivalence. Then the map p in the mapping cylinder factorization
is right proper.

Proof. Consider a pullback square in C

C(f)×B C
k
��

θ // C(f)

p

��
C

g // B,

such that g is a weak equivalence. We need to show that θ is a weak equivalence. Since p is
a weak equivalence, it follows from the two out of three property for the weak equivalences
in C that it is enough to show that k is a weak equivalence. We will show this by
constructing a homotopy inverse to k. We define the morphism l : C // C(f) ×B C to
be the one induced by the commutative square

C
j◦g //

=

��

C(f)

p

��
C

g // B.

Since j is a right inverse to p this is indeed well defined. It remains to show that l is a
homotopy inverse to k.

It is readily verified that kl = idC . By Lemma 4.11, the map jp is simplicially
homotopic to the identity map on C(f) via a cofiber preserving homotopy. That is, there
exists a morphism H : ∆1 ⊗ C(f) // C(f) satisfying Hi1 = idC(f), Hi0 = jp and such
that the following diagram commutes:

∆1 ⊗ C(f) //

H
��

∆0 ⊗ C(f) ∼= C(f)

p

��
C(f)

p // B.

The canonical map θ : C(f)×B C // C(f) induces a map

∆1 ⊗ θ : ∆1 ⊗ (C(f)×B C) //∆1 ⊗ C(f).
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Consider the homotopy

Φ : ∆1 ⊗ (C(f)×B C) // C(f)×B C,

induced by the commutative square

∆1 ⊗ (C(f)×B C)
H◦(∆1⊗θ) //

��

C(f)

p

��
C

g // B,

the left vertical map being the composite

∆1 ⊗ (C(f)×B C) //∆0 ⊗ (C(f)×B C) ∼= C(f)×B C // C.

From the definition it follows now that Φi0 = idC(f)×BC and Φi1 = lk, demonstrating that
lk is homotopic to idC(f)×BC .

4.13. Definition. A small simplicial weak cofibration categoryM is called special if the
following conditions are satisfied:

1. M has finite limits.

2. Every object in M is fibrant and cofibrant.

3. A map in M that is a homotopy equivalence in the simplicial category M is also a
weak equivalence.

4.14. Theorem. Let M be a special weak cofibration category (see Definition 4.13).
Then M is left proper and ind-admissible.

Proof. Since every object inM is cofibrant,M is a Brown category of cofibrant objects.
It follows from [Goerss, Jardine, 1999, Lemma 8.5] that M is left proper. According to
Lemma 4.10, the mapping cylinder factorization gives a functorial factorization in M
into a cofibration followed by a weak equivalence. Using condition 3 of Definition 4.13,
Proposition 4.12, and the fact that M is left proper, we see that the mapping cylinder
factorization gives a factorization in M of the form

Mor(M) = (RP ∩W) ◦ LP.

Using condition 1 and Proposition 2.10, we see that M is almost ind-admissible (see
Definition 2.5). Thus our theorem now follows from Theorem 4.6.



642 ILAN BARNEA

4.15. Theorem. Let (M,W , C) be a special weak cofibration category (see Definition
4.13). Then there exists a simplicial model category structure on Ind(M) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The cofibrations are C := R(coSp
∼=(C)).

3. The fibrations are F := (C ∩W)⊥.

Moreover, this model category is finitely combinatorial, with set of generating cofibra-
tions C and set of generating acyclic cofibrations C ∩W.

The model category Ind(M) has the following further properties:

1. Every object in Ind(M) is fibrant.

2. Ind(M) is proper.

Proof. The fact that the prescribed weak equivalences fibrations and cofibrations give
a finitely combinatorial model structure on Ind(M), with set of generating cofibrations
C and set of generating acyclic cofibrations C ∩ W follows from Theorems 2.6 and 4.14.
The fact that it is simplicial follows from Proposition 2.21.

As for the further properties; the first one follows from Lemmas 4.3 and 4.5. Right
properness follows from the fact that every model category in which every object is fibrant
is right proper (see for example [Lurie, 2009, Proposition A.2.4.2]) and left properness
follows from the fact that M is left proper (by Theorem 4.14) and Proposition 2.14.

5. Compact metrizable spaces

In the previous section we defined the notion of a special weak cofibration category, and
showed that every special weak cofibration category is ind admissible. In this section we
discuss a way to construct special weak cofibration categories. We end by an example
from the category of compact metrizable spaces.

5.1. Constructing special weak cofibration categories. Let C be a small cat-
egory with finite colimits which is tensored over Sf and the action commutes with finite
colimits in every variable separately.

5.2. Proposition. Let D be a simplicial weak cofibration category (see Definition 2.20),
and let J : C //D be a functor such that:

1. The functor J commutes with finite colimits and the simplicial action.

2. The functor J lands in the cofibrant objects of D.

Then if we define a map f in C to be a weak equivalence or a cofibration if J(f) is so
in D, C becomes a simplicial weak cofibration category in which every object is cofibrant.
If, furthermore, the functor J : C //D is fully faithful and lands in the fibrant objects of
D, then every object in C is fibrant.
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Proof. It is easy to see that the cofibrations and the weak equivalences in C are subcate-
gories, the weak equivalences in C have the two out of three property and the cofibrations
and acyclic cofibrations in C are closed under cobase change.

Since J commutes with finite colimits and the simplicial action and D is a simplicial
weak cofibration category, it is not hard to see that for every cofibration j : K // L in
Sf and every cofibration i : X // Y in C the induced map

K ⊗ Y
∐
K⊗X

L⊗X // L⊗ Y

is a cofibration in C, which is acyclic if either i or j is.
We now define for every morphism f : A //B in C the mapping cylinder factorization

of f

A
i−→ B

∐
A

∆1 ⊗ A p−→ B

just as in Definition 4.9. Since J lands in the cofibrant objects in D it follows that every
object of C is cofibrant. It can thus be shown, just like in Lemma 4.10, that the mapping
cylinder factorization is a functorial factorization in C into a cofibration followed by a
weak equivalence.

It is easy to see that if the functor J : C //D is furthermore fully faithful and lands
in the fibrant objects of D, then every object in C is fibrant.

The last proposition brings us close to a special weak cofibration category (see Defi-
nition 4.13). We now wish to consider a specific example of a category D and a functor
J , as in the last proposition, that will indeed produce a special weak cofibration category
structure on C.

First note that C is enriched in S, with the defining property that for every A,B ∈ C
and L ∈ Sf we have

HomS(L,MapC(A,B)) ∼= HomC(L⊗ A,B).

Consider the enriched dual Yoneda embedding

Y : A 7→ MapC(A,−) : C // (SC)op.

We endow the category SC with the projective model structure. In particular, this makes
(SC)op into a weak cofibration category. The category SC, in the projective structure,
is a simplicial model category (see for example [Lurie, 2009, Remark A.3.3.4]). Note,
that the notion of a simplicial model category is self dual. That is, if A is a simplicial
model category then Aop is a simplicial model category, with the natural dual simplicial
structure. In particular, it follows that (SC)op is a simplicial model category with

⊗(SC)op := homop
SC : S × (SC)op // (SC)op.

5.3. Lemma. The functor Y : C //(SC)op commutes with finite colimits and the simplicial
action.
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Proof. The fact that Y commutes with finite colimits is clear. It is left to show that
there are coherent natural isomorphisms

MapC(K ⊗ A,−) ∼= K ⊗(SC)op MapC(A,−)

for K ∈ Sf and A ∈ C. Thus, for every K ∈ Sf and A,B ∈ C, we need to supply an
isomorphism

MapC(K ⊗ A,B) ∼= homS(K,MapC(A,B)),

but this is clear.

The following lemma is clear

5.4. Lemma. The functor Y : C // (SC)op lands in the cofibrant objects of (SC)op iff for
every A,B ∈ C the simplicial set MapC(A,B) is a Kan complex.

5.5. Lemma. The functor Y : C // (SC)op lands in the fibrant objects of (SC)op.

Proof. For every A ∈ C and every X ∈ S, we denote

FA
X := MapC(A,−)×X ∈ SC.

By [Lurie, 2009, Remark A.3.3.5], for every cofibration X // Y in S the map FA
X

//FA
Y

is a cofibration in the projective structure on SC. In particular, the map FA
φ

// FA
∆0 is a

cofibration in SC, and thus
FA

∆0 = MapC(A,−) ∈ SC

is cofibrant.

We now come to our main conclusion.

5.6. Theorem. Let C be a small category with finite limits and colimits, that is tensored
over Sf and the action commutes with finite colimits in every variable separately. Suppose
that for every A,B ∈ C the simplicial set MapC(A,B) is a Kan complex. Consider the
enriched dual Yoneda embedding

Y : A 7→ MapC(A,−) : C // (SC)op.

We endow the category SC with the projective model structure, and we define a map f in
C to be a weak equivalence or a cofibration if Y (f) is a weak equivalence or a cofibration
in (SC)op. Then C is a special weak cofibration category.

Proof. It is well known that Y is fully faithful. Thus, using Proposition 5.2 and Lemmas
5.3, 5.4, 5.5, we are only left to show that a map in C that is a homotopy equivalence in
the simplicial category C is also a weak equivalence. But this follows from the definition
of weak equivalences in C and [Lurie, 2009, Proposition 1.2.4.1].
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5.7. Remark. Let C be as in Theorem 5.6 and let i : A // B be a map in C. Then i is
a cofibration iff for every D ∈ C and every acyclic cofibration K // L in Sf and every
commutative diagram of the form

K

��

//MapC(B,D)

i∗

��
L //MapC(A,D),

there exists a lift L //MapC(B,D). By adjointness this is equivalent to requiring that
for every D ∈ C and every acyclic cofibration K // L in Sf and every diagram of the
form

K ⊗B
∐

K⊗A L⊗ A

��

// D

L⊗B
there exists a lift L⊗B //D.

5.8. Compact metrizable spaces. In this subsection we consider an application of
Theorems 4.15 and 5.6. Let Top denote the category of topological spaces, and let T be
a full subcategory of Top having the following properties:

1. T is closed under finite limits and colimits.

2. All spaces in T are locally compact Hausdorff.

3. T contains all realizations of finite simplicial sets.

4. T is small.

The category T is naturally tensored over Sf by the following action:

K ⊗X := |K| ×X,

for K ∈ Sf and X ∈ T (| − | denotes geometric realization). Let

Y : A 7→ MapT (A,−) : T // (ST )op

denote the enriched dual Yoneda embedding (MapT is defined as in the paragraph before
Lemma 5.3).

5.9. Definition. Consider the projective model structure on ST . We define a map f in
T to be a weak equivalence or a cofibration if Y (f) is a weak equivalence or a cofibration
in (ST )op.
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5.10. Proposition. With the weak equivalences and cofibrations defined in Definition
5.9, T is a special weak cofibration category.

Proof. By definition T is small and admits finite limits and colimits. It is also not hard
to see that the left action of Sf on T defined above commutes with finite colimits in every
variable separately.

For A,B ∈ T , we denote by HomTop(A,B) the set of continuous maps from A to B
endowed with the compact open topology. Since A is locally compact Hausdorff, we have
a natural bijection

Sing(HomTop(A,B))n = Top(|∆n|,HomTop(A,B)) ∼= Top(|∆n|×A,B) = T (∆n⊗A,B).

It follows that Sing(HomTop(A,B)) ∼= MapT (A,B) and thus the simplicial set MapT (A,B)
is a Kan complex. Now the proposition follows from Theorem 5.6.

Our objective now is to give a more familiar description to the weak equivalences and
the cofibrations in T .

5.11. Definition. A map i : X // Y in T is called a Hurewicz cofibration if for every
Z ∈ T and every diagram of the form

{0} × Y
∐
{0}×X [0, 1]×X

��

// Z

[0, 1]× Y

there exists a lift [0, 1]× Y // Z.

5.12. Remark. By taking Z to be {0} × Y
∐
{0}×X [0, 1] × X and the horizontal arrow

to be the identity in the definition above, it is not hard to see that a map X // Y is a
Hurewicz cofibration iff the induced map

{0} × Y
∐
{0}×X

[0, 1]×X // [0, 1]× Y

admits a left inverse (that is, a retracting map). Since the cartesian product in T com-
mutes with finite colimits, if follows that for every Hurewicz cofibration X //Y in T and
every A ∈ T , the map A×X // A× Y is also a Hurewicz cofibration

5.13. Remark. By the exponential law for Top considered in the proof of Proposition
5.10, it follows that a map i : X // Y in T is a Hurewicz cofibration iff for every Z ∈ T
and every commutative diagram of the form

{0}

��

// HomTop(Y, Z)

i∗

��
[0, 1] // HomTop(X,Z),

there exists a lift [0, 1] // HomTop(Y, Z).
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5.14. Lemma. Let i : X // Y be a map in T . Then the map i is a Hurewicz cofibration
iff for every Z ∈ T the induced map HomTop(Y, Z) //HomTop(X,Z) is a Serre fibration.

Proof. If for every Z ∈ T the induced map HomTop(Y, Z) // HomTop(X,Z) is a Serre
fibration, then clearly i is a Hurewicz cofibration (see Remark 5.13).

Suppose i is a Hurewicz cofibration. Let Z be an object in T . It is enough to show
that for every n ≥ 0 and every commutative diagram of the form

{0} × [0, 1]n

��

// HomTop(Y, Z)

i∗

��
[0, 1]× [0, 1]n // HomTop(X,Z),

there exists a lift [0, 1]n+1 // HomTop(Y, Z). By the exponential law for Top considered
in the proof of Proposition 5.10, this is equivalent to requiring that for every n ≥ 0 and
every diagram of the form

{0} × [0, 1]n × Y
∐
{0}×[0,1]n×X [0, 1]× [0, 1]n ×X

��

// Z

[0, 1]× [0, 1]n × Y

there exists a lift [0, 1]n+1×Y //Z. Again by the same rule, this is equivalent to requiring
that for every n ≥ 0 and every commutative diagram of the form

{0}

��

// HomTop([0, 1]n × Y, Z)

��
[0, 1] // HomTop([0, 1]n ×X,Z),

there exists a lift [0, 1] // HomTop([0, 1]n × Y, Z). But since i : X // Y is a Hurewicz
cofibration, we have by Remark 5.12 that [0, 1]n × X // [0, 1]n × Y is also a Hurewicz
cofibration, so the lift exists by Remark 5.13.

5.15. Proposition. Let i : X // Y be a map in T . Then the following hold:

1. The map i is a weak equivalence in T iff it is a homotopy equivalence.

2. The map i is a cofibration in T iff it is a Hurewicz cofibration.

Proof.

1. This follows from Definition 5.9 and [Lurie, 2009, Proposition 1.2.4.1].

2. By Remark 5.7, we see that a map i : X // Y in T is a cofibration iff for every
Z ∈ T and every acyclic cofibration K // L in Sf and every diagram of the form
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|K| × Y
∐
|K|×X |L| ×X

��

// Z

|L| × Y

there exists a lift |L| ×Y //Z. It follows that every cofibration in T is a Hurewicz
cofibration. The opposite direction follows from Lemma 5.14 and the fact that the
functor Sing : Top // S sends Serre fibrations to Kan fibrations.

5.16. Proposition. If all the spaces in T are compact, then the weak cofibration cate-
gory T described in Proposition 5.10 is a monoidal weak cofibration category, under the
categorical product.

Proof. By taking Z to be {0} × Y
∐
{0}×X [0, 1]×X and the horizontal arrow to be the

identity in Definition 5.11, it is not hard to see that every Hurewicz cofibration X // Y
is an embedding. Since X is compact and Y is Hausdorff, it is also a closed embedding.
Now the result follows from Proposition 5.15, [Strøm, 1968, Theorem 6] and [Whitehead
1978, Theorem 5.9].

We obtain the following:

5.17. Theorem. Suppose that all the spaces in T are compact, and consider the weak
cofibration structure on T described in Proposition 5.10. Let W denote the class of weak
equivalences and let C denote the class of cofibrations in T . Then there exists a simplicial
model category structure on Ind(T ) such that:

1. The weak equivalences are W := Lw
∼=(W).

2. The cofibrations are C := R(coSp
∼=(C)).

3. The fibrations are F := (C ∩W)⊥.

Moreover, this model category is finitely combinatorial, with set of generating cofibra-
tions C and set of generating acyclic cofibrations C ∩W.

The model category Ind(T ) has the following further properties:

1. Every object in Ind(T ) is fibrant.

2. Ind(T ) is proper.

3. Ind(T ) is a cartesian monoidal model category.
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Proof. By Proposition 5.10 T is a special weak cofibration category, so the result is
given almost entirely by Theorem 4.15. We only need to show Property (3) above.

We have shown in [Barnea, Schlank, 2017, Remark 4.11] that the natural prolongation
of the categorical product in T to a bifunctor

Ind(T )× Ind(T ) // Ind(T )

is exactly the categorical product in Ind(T ). Now the result follows from Proposition 5.16
and Proposition 2.18.

5.18. Remark. Let CM be the category of compact metrizable spaces. By the Gel’fand–
Năımark correspondence, the category of compact Hausdorff spaces and continuous maps
between them is equivalent to the opposite category of commutative unital C∗-algebras
and unital ∗-homomorphisms between them. Restricting to separable C∗-algebras, we
obtain an equivalence between our category CM of compact metrizable spaces and the
opposite category of commutative unital separable C∗-algebras. Since every unital sepa-
rable C∗-algebra is isomorphic to a unital sub-C∗-algebra of the C∗-algebra of bounded
operators on l2, we see that the category of unital separable C∗-algebras is essentially
small. In particular, we get that the category CM is essentially small. We can therefore
assume that we are working with an equivalent small category. Thus T = CM satisfies
the hypothesis listed in the beginning of Section 5.8, as well as those of Theorem 5.17.
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2010, p. 317–393.

Dwyer W., Kan D. Simplicial localizations of categories, J. Pure Appl. Algebra 17, 1980,
p. 267–284.
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