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A DOLD-KAN THEOREM FOR SIMPLICIAL LIE ALGEBRAS

P. CARRASCO AND A.M. CEGARRA

Abstract. We introduce and study hypercrossed complexes of Lie algebras, that is,
non-negatively graded chain complexes of Lie algebras L = (Ln, ∂n) endowed with an
additional structure by means of a suitable set of bilinear maps Lr × Ls → Ln. The
Moore complex of any simplicial Lie algebra acquires such a structure and, in this way,
we prove a Dold-Kan type equivalence between the category of simplicial Lie algebras
and the category of hypercrossed complexes of Lie algebras. Several consequences of
examining particular classes of hypercrossed complexes of Lie algebras are presented.

1. Introduction and summary

It is well known that the Moore complex functor N : Simpl(Ab) → Ch(Ab) sets up
an equivalence between the categories of simplicial abelian groups and (non-negatively
graded) chain complexes. This seminal fact was first proven independently by A. Dold
and D. Kan [Dold (1958), Kan (1958)], and was soon extended to the general ground
context of abelian categories in [Dold-Puppe (1961)]. Since then, the existence of any
generalization for simplicial objects in non-abelian categories has been extensively studied,
and a long list of relevant Dold-Kan type theorems can be found in the literature. We
refer the reader to the recent paper [Bourn (2007)], where D. Bourn proves that the
Moore complex functor is monadic when the ground category is semi-abelian (like groups
or Lie algebras), which means that the category of simplicial objects in the category is
equivalent to the category of algebras for the induced monad on the category of internal
chain complexes. Also of interest is the subsequent paper by S. Lack and R. Street [Lack,
Street (2015)] generalizing Bourn’s theorem both to more general source categories and
settings others than simplicial ones.

In [Carrasco, Cegarra (1991)], the authors gave an extension of the Dold-Kan theorem
for arbitrary simplicial groups (not just abelian ones). Our result there states that the
Moore complex functor N : Simpl(Gp)→ Ch(Gp) underlies an enriched one

N : Simpl(Gp)→ HXCh(Gp), (1)

which establishes an equivalence between the category of simplicial groups and the cate-
gory of hypercrossed complexes of groups, that is, chain complexes of groups (Gn, ∂n) en-
dowed with an additional structure in the form of certain binary operations Gr×Gs → Gn,
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satisfying suitable axioms. The stratagem was to codify all the operations acquired by
the Moore complex of a simplicial group that are needed to rebuild it up to isomorphism.

Both the notion of hypercrossed complexes of groups and the above equivalence (1)
transpose without difficulty to the context of Lie groups, so that there is an equivalence

N : Simpl(Lie Gp)→ HXCh(Lie Gp), (2)

between the category of simplicial Lie groups and the category of hypercrossed complexes
of Lie groups. Lie’s second and Cartan-Lie’s theorems assure us that the Lie functor
establishes an equivalence between the category of simply connected Lie groups and the
category of finite-dimensional real Lie algebras. Then, by transporting through this Lie’s
equivalence, we can derive an adequate infinitesimal counterpart of the notion of hy-
percrossed complexes of Lie groups, differential hypercrossed complexes, or hypercrossed
complexes of finite-dimensional real Lie algebras, as well as obtain from (2) a Dold-Kan
type equivalence

N : Simpl(f. d. LieR-Alg)→ HXCh(f. d. LieR-Alg), (3)

between the category of simplicial finite-dimensional real Lie algebras and the category
of differential hypercrossed complexes.

A similar route can be followed starting with complex Lie groups and ending with an
equivalence like (3) but replacing R with the field C of complex numbers. Furthermore, by
(3), for example, simplicial finite-dimensional real Lie algebras with Moore complexes triv-
ial at dimensions higher than 1 correspond to differential crossed modules [Baez (2002)],
and those with trivial Moore complexes at dimensions higher than 2 correspond to dif-
ferential 2-crossed modules [Martins, Picken (2011)], [Jurco (2012)]. However, these are,
respectively, particular instances of crossed modules of Lie algebras and 2-crossed modules
of Lie algebras, defined in the context of abstract Lie algebras over any commutative ring
R in [Kassel, Loday (1982)] and [Ellis (1993)], where the authors capture the structure of
a Moore complex of Lie R-algebras of length 1 or 2 in their definitions of crossed module
and 2-crossed module, respectively.

Consequently, we were persuaded of the potential interest of developing a theory of
hypercrossed complexes for abstract Lie algebras over any ground commutative ring R,
with the aim of obtaining the equivalence (3) merely as a particular case of a general
Dold-Kan type correspondence,

N : Simpl(Lie R-Alg)→ HXCh(Lie R-Alg), (4)

which is underlain by the Dold-Kan correspondence N : Simpl(R-Mod) → Ch(R-Mod).
This is the main goal of this paper.

Of course, Bourn’s aforementioned theorem applies in our context of Lie algebras.
Therefore, the monad induced by the Moore complex functor on the category of chain
complexes of Lie algebras gives “hypercrossed complexes”. However, their explicit (com-
putational) description here is outside the scope of the Bourn theory (at least until a full
analysis of the actual form of this monad is made).
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The plan of this paper, in summary, is as follows. After this introductory section, the
paper is organized into six sections, each with subsections:

Section 2 is preparatory. Its three subsections are dedicated to setting some notations
and needed basic constructions concerning the simplicial category ∆, the total order on
the sets S(n) of all surjections [n] � [r] in ∆, and the category of simplicial Lie algebras.

In Section 3 we introduce and study higher semidirect products of Lie algebras. This
is a key construction in our discussion since just the structure of a 2n-semidirect product
is acquired by the algebra of n-simplices Ln of any simplicial Lie algebra L when it is
analyzed through its Moore complex, as we show in Section 5. In a first subsection here,
we provide a needed brief account of the Schreier theory for extensions of Lie algebras.

Section 4 is entirely devoted to presenting our linear models for simplicial Lie algebras,
the hypercrossed complexes of Lie algebras. These are pairs (L,Φ) consisting of chain
complexes of Lie algebras L = (Ln, ∂n) enriched with an additional structure by means of
a suitable set Φ of bilinear maps Lr×Ls → Ln, which satisfy some well behaved properties
summarized in eight axioms. Some technical results are also included.

Section 5 contains our main result in the paper- the enriched Dold-Kan equivalence
(4). To obtain it, we dedicate a first subsection to analyzing the structure of the algebras
of n-simplices in any simplicial Lie algebra. As mentioned above, we conclude that they
are higher semidirect products. In the second subsection we introduce the enriched Moore
complex N(L) = (N(L),Φ(L)) of any simplicial Lie algebra L, and we prove that N(L) is
actually a hypercrossed complex of Lie algebras. Finally, in the third subsection we show
that, from any hypercrossed complex, one can build a simplicial Lie algebra whose enriched
Moore complex takes us back to our given hypercrossed complex, up to isomorphism.
Thus, the functor N in (4) is an equivalence of categories.

In Section 6, we show the consequences of examining certain particular classes of
hypercrossed complexes of Lie algebras, like as chain complexes of modules, crossed com-
plexes of Lie algebras, hypercrossed crossed of Lie algebras with finitely many non trivial
terms, crossed modules of Lie algebras, and braided or symmetric crossed modules of
Lie algebras. By the enriched Dold-Kan equivalence (4), these are respectively related
to simplicial modules, Dakin’s simplicial T-complexes [Dakin (1977)] of Lie algebras,
Duskin-Schanuel’s m-hypergroupoids [Duskin (1975), Glenn (1982)] of Lie algebras, 1-
hypergroupoids of Lie algebras (= nerves of internal groupoids in the category of Lie
algebras), and simplicial deloopings of 1-hypergroupoids of Lie algebras.

Finally, Section 7 is devoted to gathering most of the more technical proofs, which we
have placed there so as not to hamper the flow of the paper.

Throughout the paper, all modules and Lie algebras are to be understood as being
over a (any) fixed ground commutative ring R.

2. Simplicial preliminaries

We employ the standard symbolism and nomenclature which can be found in texts on
simplicial theory (as in [Goerss, Jardine (1999)] and [May (1967)], for example). For
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definiteness or emphasis we state the following.

2.1. On the simplicial category. Let ∆ denote the simplicial category, whose objects
are the ordered sets [n] = {0, . . . , n}, and whose arrows are the (weakly) monotone maps
between them.

For any map α : [n] → [r] in ∆, we call r range of α, and denote it by rα. Also, we
will denote by R(α) the ordered set of positive integers defined by

R(α) = {i | i < n and α(i) = α(i+ 1)}.

If R(α) = {i1, . . . , ip}, we always assume that the elements are written in order, that is,
with i1 < · · · < ip.

The coface maps, that is, the injections [n−1] ↪→ [n] in ∆ which omit the ith element,
are denoted by δi : [n − 1] ↪→ [n], while the codegeneracy maps, that is, the surjections
[n+ 1] � [n] with R(σi) = {i}, are denoted by σi : [n+ 1] � [n]. Recall that these maps
satisfy the well-know cosimplicial identities: δjδi = δiδj−1, etc.

Any monotonic α : [n]→ [m] has a unique factorization

α = δkq · · · δk1σi1 · · ·σip (5)

with 0 ≤ k1 < · · · < kq ≤ m, 0 ≤ i1 < · · · < ip < n, and n + q = m + p [Mac
Lane (2013), Chap. VII, §5, Lemma], where {i1, . . . , ip} = R(α), and {k1, . . . , kq} is the
ordered set of elements of [m] not in the image α[n] of α. Since the cosimplicial identities
suffice to put any composite of δ’s and σ’s into the canonical form (5), the simplicial
category ∆ is generated by the coface maps δi : [n− 1] ↪→ [n] and the codegeneracy maps
σi : [n+ 1] � [n], 0 ≤ i ≤ n, subject to the cosimplicial identities.

For any integer n ≥ 0, we write ∆≤n for the full subcategory of ∆ with objects
[0], . . . [n], and denote the inclusion functor by ın : ∆≤n ↪→ ∆.

2.2. On the totally ordered sets S(n). For every integer n ≥ 0, let S(n) denote
the set of all surjections α : [n] � [rα] in ∆, with domain [n]. Let us stress that if R(α) =
{i1, . . . , ip}, then rα = n− p and we have the canonical representation α = σi1 · · · σip .

The set S(n) admits an antilexicographic order, defined as follows: Given α, β ∈ S(n)
with R(α) = {i1, . . . , ip} and R(β) = {j1, . . . , jq}, we say that α < β if i1 = j1, ..., ik = jk
but ik+1 > jk+1 (k ≥ 0) or i1 = j1, ..., ip = jp and p < q. This is a total order in S(n).
The least element of S(n) is the identity map, denoted by

n = id[n] : [n]→ [n],

while
ωn = σ0 · · ·σn−1 : [n] � [0]

is the greatest one. For example, the order in S(4) is

4 < σ3 < σ2 < σ2σ3 < σ1 < σ1σ3 < σ1σ2 < σ1σ2σ3 < σ0

< σ0σ3 < σ0σ2 < σ0σ2σ3 < σ0σ1 < σ0σ1σ3 < σ0σ1σ2 < σ0σ1σ2σ3 = ω4.
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It is easily verified that, for any 0 ≤ j < n, the correspondence

S(n− 1)→ S(n), µ 7→ µσj,

is an order preserving injective map, whose image consists of those α ∈ S(n) such that
j ∈ R(α). Thus, we have an isomorphism of ordered sets

S(n− 1) ∼= {α ∈ S(n) | j ∈ R(α)}, µ 7→ µσj, (6)

whose inverse is the map

{α ∈ S(n) | j ∈ R(α)} ∼= S(n− 1), α 7→ αδj.

Similarly, if for each surjective monotone map µ : [n− 1] � [r − 1], we define

µ+ : [n] � [r]

by µ+(i) = µ(i) if i < n, and µ+(n) = r, then we have an order preserving bijection

S(n− 1) ∼= {α ∈ S(n) | n− 1 /∈ R(α)}, µ 7→ µ+, (7)

whose inverse is the map

{α ∈ S(n) | n− 1 /∈ R(α)} → S(n− 1), α 7→ α− ,

where, for any surjection α : [n] � [r] with n− 1 /∈ R(α), α− : [n− 1] � [r− 1] is defined
by α−(i) = α(i) for any i ∈ [n− 1].

2.3. On simplicial Lie algebras. The category of simplicial Lie algebras, denoted
by Simpl(Lie Alg), is the category of contravariant functors L : ∆op → Lie Alg, from the
simplicial category into the category of Lie algebras. If L is any simplicial Lie algebra,
and α : [n] → [m] is any map in ∆, then we write α∗ : Lm → Ln for the induced
homomorphism L(α) : L[m]→ L[n]. Since the category ∆ is generated by the coface and
codegeneracy maps, in order to define a simplicial Lie algebra L, it suffices to write down
its Lie algebras of n-simplices Ln, n ≥ 0, together with homomorphisms

di = δ∗i : Ln → Ln−1, 0 ≤ i ≤ n (face homomorphisms)

si = σ∗i : Ln → Ln+1, 0 ≤ i ≤ n (degeneracy homomorphisms)

satisfying the simplicial identities: didj = dj−1di if i < j, etc.
For each integer n ≥ 0, we write Simpl≤n(Lie Alg) for the category of n-truncated

simplicial Lie algebras, that is, the category of functors L : ∆op
≤n → Lie Alg.

Every simplicial Lie algebra L gives rise to an n-truncated one ı∗nL by composition
with the inclusion functor ın : ∆≤n ↪→ ∆≤n+1 . This is the n-truncation functor

ı∗n : Simpl(Lie Alg)→ Simpl≤n(Lie Alg),
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whose right adjoint, the n-coskeleton functor,

coskn : Simpl≤n(Lie Alg)→ Simpl(Lie Alg),

can be described by iteration of successive simplicial kernels [Duskin (1975)]. Recall that,
given any n-truncated simplicial Lie algebra, L, its (n+ 1)-simplicial kernel, ∆n+1(L), is
the Lie subalgebra of the product Ln+2

n defined by

∆n+1(L) = {(x0, · · · , xn+1) | dixj = dj−1xi for 0 ≤ i < j ≤ n+ 1}.

There are homomorphisms di : ∆n+1(L)→ Ln, 0 ≤ i ≤ n+ 1, the projections

di(x0, . . . , xn+1) = xi,

and sj : Ln → ∆n+1(L), 0 ≤ j ≤ n, defined by

sjx = (sj−1d0x, . . . , sj−1dj−1x, x, x, sjdj+1x, . . . , sjdnx),

making of

∆n+1(L) //d0

dn+1

//... Ln

...
s0

xx

sn

��
//d0

dn
//... Ln−1

...
s0

zz

sn−1

��
· · · L1

//d0

d1
// L0

s0
��

an (n+ 1)-truncated simplicial Lie algebra.

3. Higher semidirect products of Lie algebras

When a simplicial Lie algebra is analyzed through its Moore complex, each Lie algebra
of n-simplices has a certain structure in terms of the Lie algebras which appear in the
Moore complex. This structure is that we present here under the name of higher semidirect
product of Lie algebras, and it is perhaps of interest to Lie algebra theorists independent
of its use here. For a natural precedent of this notion in group theory we refer the reader
to [Carrasco, Cegarra (1991)] and [Antokoletz (2008)].

3.1. Schreier theory for extensions of Lie algebras. The long-known results
of Schreier on group extensions [Schreier (1926)] can be stated in the same manner for
extensions of Lie algebras. We provide below a brief account of this theory, and for more
details we refer to [Alekseevsky, Michor, Ruppert (2004)], [Inassaridze, Khmaladze, Ladra
(2008)], [Frégier (2014)], and the references therein.

Let L1
u1
↪→ L

π2
� L2 be an extension of Lie algebras with a linear map u2 : L2 ↪→ L

such that π2u2 = idL2 , so that L = u1L1 ⊕ u2L2, as a module, and u1L1 is an ideal of L.
There is a pair of induced bilinear maps

(Φ : L1 × L2 → L1, φ : L2 × L2 → L1) (8)



A DOLD-KAN THEOREM FOR SIMPLICIAL LIE ALGEBRAS 1171

determined by the equations

Φ(x, y) = u1[u1x, u2y], φ(y, y′) = u1

(
[u2y, u2y

′]− u2[y, y′]
)
,

which satisfy

Φ([x, x′], y) = [x,Φ(x′, y)]− [x′,Φ(x, y)], (9)

φ(y, y′) = 0, (10)

Φ(Φ(x, y), y′)− Φ(Φ(x, y′), y) = Φ(x, [y, y′]) + [x, φ(y, y′)], (11)

φ(y, [y′, y′′]) + φ(y′, [y′′, y]) + φ(y′′, [y, y′]) (12)

= Φ(φ(y, y′), y′′) + Φ(φ(y′, y′′), y) + Φ(φ(y′′, y), y′).

The mapping Φ can be rephrased in terms of derivations of the Lie algebra L1, as
condition (9) says that, for any y ∈ L2, Φ(−, y) : L1 → L1 is a derivation. Thus Φ can
be presented as a linear map Φ : L2 → Der(L1), y 7→ Φ(−, y), and condition (11) can be
written as

[Φ(−, y),Φ(−, y′)] = Φ(−, [y, y′]) + adφ(y,y′).

The pair of bilinear maps (Φ, φ) in (8) determines the structure of the Lie algebra
extension, as L = u1L1 ⊕ u2L2 with Lie bracket

[u1x+ u2y, u1x
′ + u2y

′] = u1

(
[x, x′] + Φ(x, y)− Φ(x′, y) + φ(x′, y′)

)
+ u2[y, y′],

and one can easily check that, if (Φ, φ) satisfies (9)-(12), then the above formula gives a
Lie algebra structure on L = u1L1 ⊕ u2L2. Such a pair is called a 2-cocycle of L2 with
coefficients in L1, and the set of all these is denoted by Z2(L2, L1).

If (Φ, φ), (Ψ, ψ) ∈ Z2(L2, L1) are two such 2-cocycles, it is plain to see that they give
isomorphic extensions of L2 by L1 if and only if there is a linear map ρ : L2 → L1 such
that

Φ(x, y) = Ψ(x, y) + [x, ρy],

φ(y, y′) = [ρy, ρy′]− ρ[y, y′] + Ψ(ρy, y′)−Ψ(ρy′, y) + ψ(y, y′),

the corresponding isomorphism being

L = u1L1 ⊕ u2L2 → L′ = u1L1 ⊕ u2L2, u1x+ u2y 7→ u1(x+ ρy) + u2y.

We say that ρ makes the 2-cocycles cohomologous, and the quotient set

H2(L2, L1) = Z2(L2, L1)/cohomology

is the second (non-abelian) cohomology set of L2 with coefficients in L1. In this way, there
is a natural bijection

Ext(L2, L1) ∼= H2(L2, L1).
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Under this correspondence, a 2-cocycle (Φ, φ) ∈ Z2(L2, L1) gives rise to a split exten-
sion, that is, to a semidirect product Lie algebra

L = u1L1 o u2L2,

if and only if (Φ, φ) is cohomologous to a 2-cocycle of the form (Ψ, 0), where the map
Ψ : L2 → Der(L1), y 7→ Ψ(−, y), is an homomorphism (so that L1 is a right Lie L2-algebra,
with action x · y = Ψ(x, y)).

3.2. Higher semidirect products. Throughout this section, S = (S,≤) denotes any
given totally ordered finite set with r elements, denoted by α, β, . . ., and whose least and
greatest elements are respectively written as 1S and ωS. Of course S ∼= {1, . . . , r}, but
the content of the following sections will justify to consider here arbitrary totally ordered
finite sets.

Suppose that L is a Lie algebra and {Lα}α∈S a family of Lie algebras, indexed by the
totally ordered set S, with monomorphisms of Lie algebras uα : Lα ↪→ L, such that L, as
a module, is the internal direct sum of the submodules uαLα,

L =
⊕
α∈S

uαLα.

This means that each x ∈ L can be written as a sum x =
∑

α∈S uαxα with each xα ∈ Lα,
and this representation is unique. Then, we say that

3.3. Definition. L is an r-semidirect product of the Lie algebras Lα, α ∈ S, and we
write

L =o
α∈S

uαLα,

if, for every β ∈ S, the submodule
⊕

α≤β uαLα is an ideal of L.
This condition is equivalent to the requirement that, for any β < γ,

[uβLβ, uγLγ] ⊆
⊕
α≤β

uαLα.

(Observe that the order in which the subalgebras Lα appear is essential).

Suppose that L = oα∈SLα is an r-semidirect product of the Lie algebras Lα, as
above. If, for any β, γ ∈ S, y ∈ Lβ, z ∈ Lγ, we write

[uβy, uγz] =
∑
α∈S

uαΦβ,γ
α (y, z),

with Φβ,γ
α (x, y) ∈ Lα, then we have defined bilinear maps

Φβ,γ
α : Lβ × Lγ → Lα, α, β, γ ∈ S, (13)
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which completely determine the Lie algebra structure of L, to which we refer as the
structure bilinear maps of the r-semidirect product Lie algebra L. These structure maps
are easily seen to satisfy the following nine conditions:

• For any α, β ∈ S, and y, y′ ∈ Lβ,

Φβ,β
α (y, y′) =

{
[y, y′] if α = β,

0 if α 6= β.
(14)

• For α and β < γ, y ∈ Lβ, z ∈ Lγ,

Φβ,γ
α (y, z) = 0 if α > β. (15)

Φγ,β
α (z, y) = −Φβ,γ

α (y, z) (16)

(Thus, among all these maps Φβ,γ
α , the relevant ones are those with α ≤ β < γ.)

• For α < β, x, x′ ∈ Lα, y, y′ ∈ Lβ,

Φα,β
α ([x, x′], y) = [x,Φα,β

α (x′, y)]− [x′,Φα,β
α (x, y)]. (17)

Φα,β
α (x, [y, y′]) = Φα,β

α (Φα,β
α (x, y), y′)− Φα,β

α (Φα,β
α (x, y′), y). (18)

(Thus, each Φα,β
α defines a right Lie algebra action of Lβ on Lα.)

• For α < β < γ, y, y′ ∈ Lβ, z, z′ ∈ Lγ,

Φβ,γ
α (y, [z, z′]) =

∑
α≤ξ≤β

Φξ,γ
α (Φβ,γ

ξ (y, z), z′)−
∑
α≤ξ≤β

Φξ,γ
α (Φβ,γ

ξ (y, z′), z). (19)

Φβ,γ
α ([y, y′], z) =

∑
α≤ξ<β

Φξ,β
α (Φβ,γ

ξ (y, z), y′)−
∑
α≤ξ<β

Φξ,β
α (Φβ,γ

ξ (y′, z), y). (20)

• For α < β < γ, x ∈ Lα, y,∈ Lβ, z,∈ Lγ,

[x,Φβ,γ
α (y, z)] +

∑
α<ξ≤β

Φα,ξ
α (x,Φβ,γ

ξ (y, z)) = Φα,γ
α (Φα,β

α (x, y), z)− Φα,β
α (Φα,γ

α (x, z), y). (21)

• For α < β < γ < δ, y ∈ Lβ, z,∈ Lγ, t ∈ Lδ,∑
α<ξ≤β

Φξ,γ
α (Φβ,δ

ξ (y, t), z) +
∑
β<ξ≤γ

Φβ,ξ
α (y,Φγ,δ

ξ (z, t)) (22)

=
∑
α≤ξ≤β

Φξ,δ
α (Φβ,γ

ξ (y, z), t) +
∑
α<ξ<β

Φξ,β
α (Φγ,δ

ξ (z, t), y).

And conversely, given a family of Lie algebras {Lα}α∈S, a module L =
⊕

α∈S uαLα
which is direct sum of the modules Lα with inclusions uα : Lα ↪→ L, and a set of bilinear
maps

{Φβ,γ
α : Lβ × Lγ → Lα}α,β,γ∈S (23)
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satisfying the conditions (14)-(22), then there is a Lie algebra structure on L, with Lie
bracket given by the formula[∑

α∈S

uαxα,
∑
α∈S

uαyα

]
=
∑
α∈S

uα

(
[xα, yα] +

∑
β, γ ∈ S
α ≤ β < γ

(
Φβ,γ
α (xβ, yγ)− Φβ,γ

α (yβ, xγ)
))
, (24)

such that each uα : Lα ↪→ L becomes a monomorphism of Lie algebras and L =

oα∈SuαLα is an r-semidirect product with set of structure bilinear maps (23).

Let L = oα∈SuαLα be an r-semidirect product of Lie algebras Lα, as above. The
submodule of L direct sum of the Lα with α ∈ S \ {1S} is then an (r − 1)-semidirect

product of the Lie algebras Lα with α > 1S, written as o1S<αuαLα, whose structure
maps are those Φβ,γ

α in (23) with 1S < α, β, γ. This is not a Lie subalgebra, but a quotient
of L. Indeed, we have a (non-necessarily split) extension of Lie algebras

L1S
� � u1S // L =o

α∈S
uαLα

π // //o
1S<α

uαLα, π(
∑

α∈S(n) uαxα) =
∑

1S<α
uαxα , (25)

and the partial set of structure maps {Φβ,γ
1S

: Lβ×Lγ → L1S}1S≤β<γ deserves to be referred

as the 2-cocycle defining the r-semidirect product L =oα∈SuαLα as an extension of the

(r − 1)-semidirect product o1S<α∈SuαLα by L1S . This is why: If we introduce the maps

Φ1S : L1S ×
(o

1S<α

uαLα

)
→ L1S , φ1S :

(o
1S<α

uαLα

)
×
(o

1S<α

uαLα

)
→ L1S ,

defined, for any x ∈ L1S , x =
∑

1S<α

uαxα, y =
∑

1S<α

uαyα ∈o
1S<α

uαLα, by
Φ1S(x,x) =

∑
1S<α

Φ1S ,α
1S

(x, xα),

φ1S(x,y) =
∑

1S<β<γ

Φβ,γ
1S

(xβ, yγ)− Φβ,γ
1S

(yβ, xγ).
(26)

then the bracket operator of the Lie algebra extension L =o
α∈S

uαLα is given, in terms of

the brackets [x, y] of L1S and [u,v] ofo
1S<α

Lα by the formula[
u1Sx+ u, u1Sy + v

]
= u1S

(
[x, y] + Φ1S(x,v)− Φ1S(y,u) + φ1S(u,v)

)
+ [u,v].

This means that the pair (Φ, φ) is just the Schreier 2-cocycle (8) associated to the extension
of Lie algebras (25), and thus we are legitimated to think of the set {Φβ,γ

1S
}1S≤β<γ as a

2-cocycle of the Lie algebrao1S<αuαLα with coefficients in L1S
1.

1However, it should be stressed that not every 2-cocycle (Φ, φ) ∈ Z2(o1S<αuαLα, L1S ) produces a Lie
algebra extension which is an r-semidirect product of the Lie algebras Lα, α ∈ S, since, for example, the
requirement φ1S (uαxα, uαyα) = 0 for any α > 1S and xα, yα ∈ Lα (check in the formula (26)) does not
necessarily holds.
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Similarly, we can consider oα<ωSuαLα, the (r − 1)-semidirect product of the Lie
algebras Lα with α < ωS, the greatest index of S, whose structure maps are those Φβ,γ

α

with γ < ωS. In this case, we find an extension of Lie algebras

o
α<ωS

uαLα
� � // L =o

α∈S
uαLα

π // // LωS ,oo π
(∑

α∈S(n) uαxα
)

= xωS ,

which is split, as uωS : LωS ↪→ L is a Lie algebra monomorphism. Hence, L is an ordinary

semidirect product of LωS byoα<ωSuαLα, and thus we can see it as an iterated ordinary
semidirect product. However, the converse is false, as for example in an iterated ordinary
semidirect product Lie algebra, say L = (L1 o L2) o L3, the Lie subalgebra L1 is not
required to be an ideal.

Example: 3-semidirect products. A Lie algebra L is a 3-semidirect product of sub-
algebras L1, L2 and L3, L = L1 o L2 o L3, if L = L1 ⊕ L2 ⊕ L3 as a module, and both
submodules L1 and L1 + L2 are ideals. Then, there are four bilinear maps

Φ2,3
2 : L2 × L3 → L2, (y, z) 7→ y · z,

Φ1,2
1 : L1 × L2 → L1, (x, y) 7→ x · y,

Φ1,3
1 : L1 × L3 → L1, (x, z) 7→ x · z,

Φ2,3
1 : L2 × L3 → L1, (y, z) 7→ 〈y, z〉,

the three first ones defining right Lie actions, and the last of them satisfying the equations

〈[y, y′], z〉 = 〈y, z〉 · y′ − 〈y′, z〉 · y,
〈y, [z, z′]〉 = 〈y, z〉 · z′ − 〈y, z′〉 · z + 〈y · z, z′〉 − 〈y · z′, z〉,
[x, 〈y, z〉] = (x · y) · z − (x · z) · y − x · (y · z),

in whose terms the Lie bracket product on L is given by (x, x′ ∈ L1, y, y′ ∈ L2, z, z′ ∈ L3)

[x+ y + z, x′ + y′ + z′] =
(
[x, x′] + x · y′ − x′ · y + x · z′ − x′ · z + 〈y, z′〉 − 〈y′, z〉

)
+
(
[y, y′] + y · z′ − y′ · z

)
+ [z, z′].

We have a 2-cocycle (Φ2,3
2 , 0) ∈ Z2(L3, L2), defining the ordinary semidirect product

Lie algebra L2 oL3 as an extension of L3 by L2, and a 2-cocycle (Φ, φ) ∈ Z2(L2 oL3, L1),
defining L as an extension of L2 o L3 by L1, given by{

Φ(x, y + z) = x · y + x · z,
φ
(
y + z, y′ + z′

)
= 〈y, z′〉 − 〈y′, z〉.

Let us stress that, in general, the short exact sequence L1 ↪→ L1 oL2 oL3 � L2 oL3

is not split, so there is no action of L2oL3 on L1 such that L1o (L2oL3) = L1oL2oL3.
However, we have the identity L1 o L2 o L3 = (L1 o L2) o L3, where L3 acts on L1 o L2

by
(x+ y) · z = x · z + 〈y, z〉+ y · z.
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4. Hypercrossed complexes of Lie algebras

We present here our linear models for simplicial Lie algebras, the hypercrossed complexes
of Lie algebras. To help motivate the reader we refer to Section 5, where we discuss
some of the examples to which our results are applied. Such as simplicial Lie algebras
can be view as the infinitesimal replica of simplicial 1-connected Lie groups, hypercrossed
complexes of Lie algebras can be regarded as the infinitesimal counterpart of hypercrossed
complexes of 1-connected Lie groups [Carrasco, Cegarra (1991), Jurco (2012)], so the name
of differential hypercrossed complexes for them could be also appropriate. Indeed, this last
terminology is used in [Martins, Picken (2011)] for the particular cases of crossed modules
and 2-crossed modules of Lie algebras, which are termed differential crossed and 2-crossed
modules respectively (see Subsection 6.12 for details).

Given a chain complex of Lie algebras

L = · · · → Ln+1
∂→ Ln

∂→ Ln−1 · · · → L1
∂→ L0,

for any surjection α : [n] � [r] in ∆, we write Lα by Lr. That is,

Lα = Lrα (α ∈ S(n)). (27)

It will be convenient to have the following concepts.

4.1. Definition. An enriched complex of Lie algebras is a pair (L,Φ), where L is a
chain complex of Lie algebras, and Φ = {Φβ,γ

n : Lβ × Lγ → Ln} a set of bilinear maps,
one for each n ≥ 1 and β, γ ∈ S(n) such that n ≤ β < γ and R(β) ∩R(γ) = ∅.

4.2. Definition. Given any enriched complex of Lie algebras (L,Φ), we define its ex-
tended set of structure bilinear maps Φext ⊇ Φ,

Φext =
{

Φβ,γ
α : Lβ × Lγ → Lα, α, β, γ ∈ S(n), n ≥ 0

}
, (28)

as follows: For any integer n ≥ 0, the additional maps Φβ,γ
n : Lβ × Lγ → Ln are defined

by

Φn,n
n (x, y) = [x, y], (29)

Φβ,γ
n (x, y) = −Φγ,β

n (y, x) if β > γ. (30)

Φβ,γ
n (x, y) = 0 if R(β) ∩R(γ) 6= ∅. (31)

and, for each integer n ≥ 1, and each α ∈ S(n) with α > n, the additional bilinear maps
Φβ,γ
α : Lβ × Lγ → Lα are defined, by recursion on n, by

• if R(β) ∩R(γ) 6= ∅, then

Φβ,γ
α (x, y) =

{
0 if R(α) ∩R(β) ∩R(γ) = ∅,

Φβδk,γδk
αδk

(x, y) if k = minR(α) ∩R(β) ∩R(γ) 6= ∅.
(32)
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• if R(β) ∩R(γ) = ∅, then,

Φβ,γ
α (x, y) =

∑
i∈R(α,β,γ)

(−1)m−i Φβδi,γδi
αδm

(x, y), (33)

where m = minR(α), and

R(α, β, γ) =
{
i | 1 ≤ i ≤ m, (i, i− 1) ∈ R(β)×R(γ) ∪R(γ)×R(β)

}
. (34)

Note that, by definition, if R(β)∩R(γ) = ∅ then, for any α > n such that R(α, β, γ) =
∅, Φβ,γ

α (x, y) = 0. In particular,

Φn,γ
α (x, y) = 0, for any α, γ ∈ S(n) such that n < α. (35)

By induction on n, it can be easily proven that, for any α, β, γ ∈ S(n), x ∈ Lβ, y ∈ Lγ,

Φβ,γ
α (x, y) = −Φγ,β

α (y, x). (36)

We are now ready to state the main notion in this paper.

4.3. Definition. A hypercrossed complex of Lie algebras is an enriched complex (L,Φ)
subject to the following eight conditions, for all n ≥ 0:

• For any β ∈ S(n) with n < β, x, x′ ∈ Ln, y, y′ ∈ Lβ,

Φn,β
n ([x, x′], y) = [x,Φn,β

n (x′, y)]− [x′,Φn,β
n (x, y)]. (37)

Φn,β
n (x, [y, y′]) = Φn,β

n (Φn,β
n (x, y), y′)− Φn,β

n (Φn,β
n (x, y′), y). (38)

Thus, each Φn,β
n : Ln × Lβ → Ln, β > n, defines a Lie algebra action of Lβ on Ln.

• For any β, γ ∈ S(n) with n < β < γ and R(β)∩R(γ) = ∅, y, y′ ∈ Lβ, and z, z′ ∈ Lγ,

Φβ,γ
n (y, [z, z′]) =

∑
ξ≤β

Φξ,γ
n (Φβ,γ

ξ (y, z), z′)−
∑
ξ≤β

Φξ,γ
n (Φβ,γ

ξ (y, z′), z). (39)

Φβ,γ
n ([y, y′], z) =

∑
ξ<β

Φξ,β
n (Φβ,γ

ξ (y, z), y′)−
∑
ξ<β

Φξ,β
n (Φβ,γ

ξ (y′, z), y). (40)

Note that the equations (39) and (40) above always hold for any β, γ ∈ S(n) such that
n < β < γ and R(β) ∩R(γ) 6= ∅.
• For any β, γ ∈ S(n) with n < β < γ, x ∈ Ln, y ∈ Lβ, and z ∈ Lγ,

[x,Φβ,γ
n (y, z)] +

∑
n<ξ≤β

Φn,ξ
n (x,Φβ,γ

ξ (y, z)) = Φn,γ
n (Φn,β

n (x, y), z)− Φn,β
n (Φn,γ

n (x, z), y). (41)
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• For any β, γ, δ ∈ S(n) with n < β < γ < δ, y ∈ Lβ, z ∈ Lγ, and t ∈ Lδ,∑
n<ξ≤β

Φξ,γ
n (Φβ,δ

ξ (y, t), z) +
∑
β<ξ≤γ

Φβ,ξ
n (y,Φγ,δ

ξ (z, t)) (42)

=
∑
ξ≤β

Φξ,δ
n (Φβ,γ

ξ (y, z), t) +
∑
n<ξ<β

Φξ,β
n (Φγ,δ

ξ (z, t), y).

• For any β, γ ∈ S(n) with R(β) ∩R(γ) = ∅, y ∈ Lrβ+1, and z ∈ Lγ,

Φβ,γ
n (∂y, z) = Φβ+,γσn

σn (y, z) + ∂Φ
β+,γσn
n+1 (y, z). (43)

• For any β, γ ∈ S(n) with R(β)∩R(γ) = ∅ and n < β < γ, y ∈ Lrβ+1, and z ∈ Lrγ+1,

Φβ,γ
n (∂y, ∂z) = Φβ+,γ+

σn (y, z) + ∂Φ
β+,γ+
n+1 (y, z). (44)

By a morphism of hypercrossed complexes of Lie algebras f : (L,Φ) → (L′,Φ′) we
mean a morphism of chain complexes f : L → L′ compatible with the bilinear operators
Φβ,γ
n in the natural sense as it might be expected; that is, for any n ≥ 1, and α, β ∈ S(n)

with n < α < β and R(α) ∩R(β) = ∅,

fΦβ,γ
n (x, y) = Φ′β,γn (fx, fy) (x ∈ Lr(β), y ∈ Lr(γ)).

We denote by HXCh(Lie Alg) the so defined category of hypercrossed complexes.
The next result will come in quite handy.

4.4. Lemma. Let (L,Φ) be a hypercrossed complex of Lie algebras. Then,

• for any α, β, γ ∈ S(n), y ∈ Lrβ+1, and z ∈ Lγ,

Φβ,γ
α (∂y, z) = Φβ+,γσn

ασn (y, z) + ∂Φβ+,γσn
α+

(y, z). (45)

• for any α, β, γ ∈ S(n), y ∈ Lrβ+1, and z ∈ Lrγ+1,

Φβ,γ
α (∂y, ∂z) = Φβ+,γ+

ασn (y, z) + ∂Φβ+,γ+
α+

(y, z). (46)

Proof. This is given in Subsection 7.1.

5. A Dold-Kan type theorem for simplicial Lie algebras

We state and prove here the main result of the paper; namely, there is an enriched Dold-
Kan correspondence establishing an equivalence between the category of simplicial Lie
algebras and the category of hypercrossed complexes of Lie algebras.
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5.1. Structure of the Lie algebra of n-simplices of a simplicial Lie alge-
bra. If L is any simplicial Lie algebra, we denote by N(L) its Moore complex; that is,
N(L) = L is the chain complex of Lie algebras

L = · · · → Ln+1
∂→ Ln → · · · → L1 → L0

with L0 = L0,

Ln+1 =
n⋂
i=0

ker(di : Ln+1 → Ln),

and differential ∂ : Ln+1 → Ln given by restriction of dn+1 : Ln+1 → Ln.
For any α ∈ S(n), we have induced monomorphism α∗ : Lrα ↪→ Ln which, recalling

from (27) the notation Lα = Lrα , restricts to Lα ⊆ Lrα giving a canonical injection

α∗ : Lα ↪→ Ln,

and thus, every α∗Lα ⊆ Ln is a Lie subalgebra isomorphic to Lα.
If L is any simplicial module, it is part of the classical Dold-Kan-Puppe Theorem

(see [Goerss, Jardine (1999), Chap. III, §2, Prop. 2.2], for a recent proof) that L is
uniquely determined by its Moore complex L, as each Ln is the internal direct sum of the
submodules α∗Lα,

Ln =
⊕
α∈S(n)

α∗Lα, (47)

and the face and degeneracy operators

di : Ln → Ln−1, sj : Ln−1 → Ln, 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1, (48)

satisfy the formulas

di(α
∗x) =


(αδi)

∗x if i or i− 1 ∈ D(α),

0 if i < n and i, i− 1 /∈ D(α),

α∗−∂x if i = n and n− 1 /∈ D(α).

(49)

sj(µ
∗y) = (µσj)

∗x. (50)

Next fact is crucial for our deliberations.

5.2. Proposition. Let L be a simplicial module with Moore complex N(L) = L.
Suppose that, for any m ≤ n, the module Lm has a given Lie algebra structure, such

that the face and degeneracy operators di : Lm → Lm−1 and sj : Lm−1 → Lm are all
homomorphisms of Lie algebras. That is, we are assuming that the n-truncation ı∗nL of
L, is actually an n-truncated simplicial Lie algebra.

Then, the Lie algebra Ln is a 2n-semidirect product of the subalgebras α∗Lα, with α
following the antilexicographic order of S(n). That is,

Ln = o
α∈S(n)

α∗Lα



1180 P. CARRASCO AND A.M. CEGARRA

with structure determined by the bilinear maps

Φβ,γ
α : Lβ × Lγ → Lα, α, β, γ ∈ S(n), (51)

such that
[β∗x, γ∗y] =

∑
α∈S(n)

α∗Φβ,γ
α (x, y), x ∈ Lβ, y ∈ Lγ.

Proof. We must prove that, for any ξ ∈ S(n), the submodule
∑

α<ξ α
∗Lα ⊆ Ln is an

ideal. To do that, we show below that∑
α<ξ

α∗Lα =
⋂
β≥ξ

ker(dβ : Ln → Lrβ), (52)

where, for any β ∈ S(n) with R(β) = {j1, . . . , jq}, dβ = dj1 · · · djq : Ln → Lrβ .
Suppose first α, β ∈ S(n), with α < β. If R(α) = {i1, . . . , ip} and R(β) = {j1, . . . , jq},

then there is a k such that i1 = j1, ...,ik = jk, but ik+1 > jk+1, and the simplicial identities
imply that, for any xα ∈ Lα,

dβα
∗xα = dj1 · · · djkdjk+1

· · · djqsip · · · sik+1
sjk · · · sj1(xα)

= djk+1−k · · · djq−ksip−k · · · sik+1−k(xα)

= djk+2−k−1 · · · djq−k−1sip−k−1 · · · sik+1−k−1(djk+1−kxα) = 0.

Thus, we have that
∑

α<ξ α
∗Lα ⊆

⋂
β≥ξ ker(dβ).

We now prove (52) by induction (in the reverse order) on ξ ∈ S(n). For ξ = ωn, the
greatest element in S(n), and any x =

∑
α∈S(n) α

∗xα, we have

dωnx =
∑

α∈S(n)

dωnα
∗xα = dωnω

∗
nxωn = d0 · · · dn−1sn−1 · · · s0(xωn) = xωn .

Hence, x ∈ ker(dωn) if and only if xωn = 0, that is, if and only if x ∈
∑

α<ωn
α∗Lα.

Proceeding inductively, let us assume that the equality in (52) holds for some ξ ∈ S(n).
Then, for ξ′ the precedent of ξ in S(n), we have⋂

β≥ξ′
ker(dβ) = ker(dξ′) ∩

⋂
β≥ξ

ker(dβ) = ker(dξ′) ∩
∑
α<ξ

α∗Lα,

so that any element x ∈
⋂
β≥ξ′ ker(dβ) is of the form x =

∑
α<ξ α

∗xα, with xα ∈ Lα, and
satisfies that

0 = dξ′x =
∑
α<ξ′

dξ′α
∗xα + dξ′ξ

′∗(xξ′) = 0 + xξ′ = xξ′ .

Therefore, x ∈
∑

α<ξ′ α
∗Lα as required.
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The following technical lemma is useful later.

5.3. Lemma. Let L be a simplicial Lie algebra and let N(L) = L be its Moore complex.
The structure bilinear maps Φβ,γ

α : Lβ × Lγ → Lα in (51) satisfy the following equations

Φβ,γ
α (x, y) =


0 if m = 0,

Φβδm,γδm
αδm

(x, y)− Φβ,γ
αδmσm−1

(x, y) if m ∈ R(α, β, γ)

−Φβ,γ
αδmσm−1

(x, y) otherwise,

(53)

for any α, β, γ ∈ S(n), with n < α and R(β) ∩ R(γ) = ∅, where m = minR(α), and
R(α, β, γ) is the set defined in (34).

Proof. This is given in Subsection 7.2.

5.4. The enriched Moore complex of a simplicial Lie algebra. Recalling from
Definition 4.1 the notion of enriched complex of Lie algebras, we state the following

5.5. Definition. The enriched Moore complex of the simplicial Lie algebra L is the pair

N e(L) = (L,Φ), (54)

where L = N(L) is the Moore complex of L, and Φ = Φ(L) is the set of those structure
bilinear maps of the Lie algebras Ln in (51), Φβ,γ

n : Lβ × Lγ → Ln, with n ≥ 1 and such
that n ≤ β < γ and R(β) ∩R(γ) = ∅.

With the following technical lemma we will be ready to prove the main result of this
subsection, stated in Proposition 5.7 below.

5.6. Lemma. Let L be a simplicial Lie algebra and let N e(L) = (L,Φ) be its enriched
Moore complex. For every integer n ≥ 0, the structure bilinear maps Φβ,γ

α : Lβ×Lγ → Lα
of the 2n-semidirect product Lie algebra Ln in (51) are precisely those belonging to the
extended set of maps Φext in (28) of (L,Φ).

Proof. This is given in Subsection 7.3.

5.7. Proposition. The enriched Moore complex of any simplicial Lie algebra is a hy-
percrossed complex of Lie algebras.

Proof. After Lemma 5.6, equalities (37)-(42) hold thanks to equalities (17)-(22). Hence,
it remains to verify only the equations (43) and (44).
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For, observe first that for any β, γ ∈ S(n), y ∈ Lr(β)+1 and z ∈ Lγ, we have

[β∗∂y, γ∗z]
(7)
= [dn+1β

∗
+y, dn+1(γσn)∗z] = dn+1[β∗+x, (γσn)∗y]

= dn+1

∑
ξ∈S(n+1)

ξ∗Φ
β+,γσn
ξ (y, z) =

∑
ξ∈S(n+1)

dn+1ξ
∗Φ

β+,γσn
ξ (y, z)

=
∑

ξ ∈ S(n+ 1)
n /∈ R(ξ)

ξ∗−∂Φ
β+,γσn
ξ (y, z) +

∑
ξ ∈ S(n+ 1)
n ∈ R(ξ)

(ξδn)∗Φ
β+,γσn
ξ (y, z)

(7),(6)
=

∑
α∈S(n)

α∗
(
∂Φβ+,γσn

α+
(y, z) + Φβ+,γσn

ασn (y, z)
)
.

As, on the other hand, [β∗∂y, γ∗z] =
∑

α∈S(n) α
∗Φβ,γ

α (∂y, z), by comparing the component

at α = n, we get the required equality in (43), Φβ,γ
n (∂y, z) = Φβ+,γσn

σn (y, z)+∂Φ
β+,γσn
n+1 (y, z).

Similarly, for any β, γ ∈ S(n), y ∈ Lrβ+1 and z ∈ Lrγ+1, we have

[β∗∂y, γ∗∂z]
(7)
= [dn+1β

∗
+y, dn+1γ

∗
+z] = dn+1[β∗+x, γ

∗
+y]

= dn+1

∑
ξ∈S(n+1)

ξ∗Φ
β+,γ+
ξ (y, z) =

∑
ξ∈S(n+1)

dn+1ξ
∗Φ

β+,γ+
ξ (y, z)

=
∑

ξ ∈ S(n+ 1)
n /∈ R(ξ)

ξ∗−∂Φ
β+,γ+
ξ (y, z) +

∑
ξ ∈ S(n+ 1)
n ∈ R(ξ)

(ξδn)∗Φ
β+,γ+
ξ (y, z)

(7),(6)
=

∑
α∈S(n)

α∗
(
∂Φβ+,γ+

α+
(y, z) + Φβ+,γ+

ασn (y, z)
)
.

As, on the other hand, [β∗∂y, γ∗∂z] =
∑

α∈S(n) α
∗Φβ,γ

α (∂y, ∂z), by comparing the compo-

nent at α = n, we get the required equality in (44).

Lemma 5.6 above is also key to prove the following fact, later needed.

5.8. Lemma. Let L be a simplicial module with Moore complex N(L) = L. Suppose that,
for any m ≤ n, the module Lm has a given Lie algebra structure such that the face and
degeneracy operators di : Lm → Lm−1 and sj : Lm−1 → Lm are all homomorphisms of Lie
algebras. Let {Φβ,γ

α : Lβ ×Lγ → Lα}α,β,γ∈S(n) be the set of structure bilinear maps (51) of

Ln =oα∈S(n)α
∗Lα, as in Proposition 5.2. Then,

(i) The bilinear maps Φη,µ
τ : Lη × Lµ → Lτ , defined for τ, η, µ,∈ S(n + 1) \ {n + 1}

by the formulas (32) and (33), satisfy the equations (14)-(22). Hence, the submodule of
Ln+1 =

⊕
τ∈S(n+1) τ

∗Lτ generated by the degenerated elements, Dn+1(L) =
⊕

n+1<τ τ
∗Lτ ,

has a canonical structure of Lie algebra, which is a (2n+1 − 1)-semidirect product of the
Lie algebras Lτ , with τ ∈ S(n+ 1), τ > n+ 1,

Dn+1(L) = o
n+1<τ

τ ∗Lτ
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with bracket [−,−]Dn+1(L) defined, for η, µ ∈ S(n+ 1) \ {n+ 1}, x ∈ Lη, y ∈ Lµ, by

[η∗x, µ∗y]Dn+1(L) =
∑
τ>n+1

τ ∗Φη,µ
τ (x, y), (55)

(ii) The restricted linear maps below are homomorphisms of Lie algebras.

di : Dn+1(L)→ Ln, si : Ln → Dn+1(L), 0 ≤ i ≤ n.

Proof. (i) The n-truncated simplicial Lie algebra ı∗nL is itself the n-truncation of the
simplicial Lie algebra L′ = cosknı∗nL, whose Moore complex is the chain complex of Lie
algebras

L′ = · · · → 0→ 0→ L′n+1 → Ln → Ln−1 → · · · → L0,

whose n-truncation Ln → · · · → L0 is the same as the n-truncation of L,

L′n+1 = {(0, . . . , 0, x) ∈ ∆n+1(ı∗nL)} =
n⋂
i=0

ker(di : Ln → Ln−1) = Ker(∂ : Ln → Ln−1),

and the boundary ∂ : L′n+1 → Ln the inclusion map.
By Proposition 5.2 (ii), the Lie algebra L′n+1 = ∆n+1(ı∗nL) is a 2n+1-semidirect product

of the subalgebras τ ∗L′τ , with τ ∈ S(n+ 1). Indeed,

∆n+1(ı∗nL) = o
τ∈S(n+1)

τ ∗L′τ ,

where, by Lemma 5.6, the corresponding structure bilinear maps Φη,µ
τ : L′η × L′µ → L′τ ,

τ, η, µ ∈ S(n+1), satisfy the equations (29)-(33). Among them, those Φη,µ
τ : Lη×Lµ → Lτ

with τ, η, µ > n + 1 verify the equations (32) and (33), and therefore they coincide
with those considered in the hypothesis of the lemma. It follows that

{
Φη,µ
τ , τ, η, µ ∈

S(n + 1) \ {n + 1}
}

is just the set of structure bilinear maps of a (2n+1 − 1)-semidirect

product Lie algebra structure on Dn+1(L) =
⊕

n+1<τ τ
∗Lτ . Thus, Dn+1(L) =oτ>n+1Lτ

is a (2n − 1)-semidirect product Lie algebra with bracket (55).
Note that, as in (25), ∆n+1(ı∗nL) is a 2n-semidirect product extension of the Lie algebra

Dn+1(L) by L′n+1,

L′n+1
� � // ∆n+1(ı∗nL) = o

τ∈S(n+1)

Lτ
π // // Dn+1(L) = o

n+1<τ
Lτ .

Hence, for any 0 ≤ i ≤ n, the linear maps in (ii) are homomorphisms of Lie algebras, as
the triangles below commute and the others linear maps therein are.
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∆n+1(ı∗nL) π // //

di %%

Dn+1(L)

dizz
Ln

Ln
si
$$

si
yy

∆n+1(ı∗nL) π // // Dn+1(L)

5.9. The enriched Dold-Kan correspondence. The enriched Moore complex (L,Φ)
of a simplicial Lie algebra L, (54), depends naturally on L, and the correspondence which
assigns to each simplicial Lie algebra its enriched Moore complex is the function on objects
of a functor

N e : Simpl(Lie Alg)→ HXCh(Lie Alg), (56)

to which we refers as the enriched Dold-Kan correspondence for Lie algebras.

5.10. Theorem. The enriched Dold-Kan correspondence (56) is an equivalence of cate-
gories.

Proof. Since the functor N e is clearly full and faithful, we only have to prove that, for
any hypercrossed complex of Lie algebras (L′,Φ′), there is simplicial Lie algebra L with
an isomorphism of hypercrossed complexes of Lie algebras N e(L) ∼= (L′,Φ′).

For any given such a (L′,Φ′), by the classical Dold-Kan-Puppe theorem, we can choose
a simplicial module L, with Moore complex N(L) = L say, together with an isomorphism
of chain complexes of modules L ∼= L′ (indeed, such L is, up to isomorphism, the simplicial
module described in (47), (49), and (50)). Now, we transport along the isomorphism
L ∼= L′ both the Lie algebra structures on the modules L′n as the set of structure bilinear
maps Φ′ on the chain complex L′ to Lie algebra structures on the modules Ln and a set
of structure bilinear maps Φ on L, such that the isomorphism becomes an isomorphism of
hypercrossed complexes of Lie algebras, (L,Φ) ∼= (L′,Φ′). Then, the proof of the theorem
will be complete if we show that there is a structure of simplicial Lie algebra on the
simplicial module L such that N e(L) = (L,Φ).

To do that, it suffices to prove that, for any integer n ≥ 0, the module Ln =⊕
α∈S(n) α

∗Lα has a structure of Lie algebra with bracket defined by the formula

[β∗x, γ∗y] =
∑

α∈S(n)

α∗Φβ,γ
α (x, y), β, γ ∈ S(n), x ∈ Lβ, y ∈ Lγ,

where the maps Φβ,γ
α are those belonging to the extended set of maps Φext (28) of (L,Φ),

as well as the face and degeneracy linear maps, di : Ln → Ln−1 and sj : Ln−1 → Ln, are
actually homomorphisms of Lie algebras.

We proceed recursively on n. For n = 0 there is nothing to prove, as L0 = L0 is a Lie
algebra with bracket [x, y] = Φ0,0

0 (x, y), see (29). Making hypothesis of induction, let us
assume that the n-truncation ı∗nL of L is an n-truncated simplicial Lie algebra, where the

structure of each Lm, m ≤ n, as a 2m-semidirect product Lm =oα∈S(m)α
∗Lα, according

to Proposition 5.2, is given by the bilinear maps Φβ,γ
α ∈ Φ∗ for α, β, γ ∈ S(m). Hence,

Lemma 5.8(i) asserts us that the bilinear maps of Φext

Φη,µ
τ : Lη × Lµ → Lτ , τ, η, µ ∈ S(n+ 1) \ {n+ 1},
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verify the equations (14)-(22), and that they form the set of structure maps of a (2n+1−1)-

semidirect product Lie algebra Dn+1(L) = on+1<ττ
∗Lτ , whose underlaying module is

the submodule Dn+1(L) =
⊕

n+1<τ τ
∗Lτ of Ln+1 =

⊕
τ∈S(n+1) τ

∗Lτ = Ln+1 ⊕Dn+1(L).

But then, from equations (29)-(33) and (37)-(42), it is easily seen that the whole set
of all maps Φη,µ

τ ∈ Φext with η, µ ∈ S(n + 1) satisfy the equations (14)-(22). Therefore,
there is a Lie algebra structure on Ln+1, with Lie bracket given by the formula

[η∗x, µ∗y] =
∑

τ∈S(n+1)

τ ∗Φη,µ
τ (x, y), η, µ ∈ S(n+ 1), x ∈ Lη, y ∈ Lµ,

such that Ln+1 = oτ∈S(n+1)τ
∗Lτ is a 2n+1-semidirect product with structure bilinear

maps the Φη,µ
τ ∈ Φext above. Note that, as in (25), Ln+1 is a 2n+1-semidirect product

extension of Dn+1(L) by Ln+1,

Ln+1
� � // Ln+1 = o

τ∈S(n+1)

Lτ
π // // Dn+1(L) = o

n+1<τ
Lτ ,

defined by the 2-cocycle {Φη,µ
n+1 : Lη × Lµ → Ln+1}n+1≤η<µ.

We now show that the linear maps si : Ln → Ln+1 in (48), 0 ≤ i ≤ n, are homomor-
phisms of Lie algebras: By Lemma 5.8(ii), we know that, when we restrict their ranges
to Dn+1(L), then they are homomorphism of Lie algebras si : Ln → Dn+1(L). Therefore,
for any β, γ ∈ S(n), x ∈ Lβ, y ∈ Lγ, we have

si[β
∗x, γ∗y] = [siβ

∗x, siγ
∗y]Dn+1(L) = [(βσi)

∗x, (γσi)
∗y]Dn+1(L)

(55)
=

∑
n+1>τ

τ ∗Φβσi,ασi
τ (x, y).

As the Lie bracket of siβ
∗x and siγ

∗x in Ln+1 is

[siβ
∗x, siγ

∗y] = [(βσi)
∗x, (γσi)

∗y] =
∑

τ∈S(n+1)

τ ∗Φβσi,ασi
τ (x, y)

= Φβσi,ασi
n+1 (x, y) +

∑
n+1>τ

τ ∗Φβσi,ασi
τ (x, y) = Φβσi,ασi

n+1 (x, y) + si[β
∗x, γ∗y],

we get the required equality si[β
∗x, γ∗y] = [siβ

∗x, siγ
∗y] since Φβσi,ασi

n+1 (x, y) = 0 by (31).
Finally, we prove that the linear maps di : Ln+1 → Ln in (48) are homomorphisms of

Lie algebras: For 0 ≤ i ≤ n, the result follows from Lemma 5.8(ii), since the triangles
below commute.

Ln+1
di
""

π
xxxx

Dn+1(L)
di // Ln

Hence, it only remains to prove that dn+1 : Ln+1 → Ln is a homomorphism of Lie algebras.
That is, for any η, µ ∈ S(n+ 1), x ∈ Lη, y ∈ Lµ,

dn+1[η∗x, µ∗x] = [dn+1η
∗x, dn+1µ

∗y]. (57)
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To do that, we distinguish four cases.

(a) Case: n ∈ R(η) and n ∈ R(µ). According to (6), we can write η = βσn and µ =
γσn, where β = ηδn and γ = ησn. Then, as we have already proven that sn = σ∗n : Ln →
Ln+1 is a homomorphism of Lie algebras, we have

dn+1[η∗x, µ∗y] = dn+1[σ∗nβ
∗x, σ∗nγ

∗y] = dn+1[snβ
∗x, snγ

∗y] = dn+1sn[β∗x, α∗y]

= [β∗x, α∗y] = [dn+1snβ
∗x, dn+1snγ

∗y] = [dn+1η
∗x, dn+1µ

∗y].

To treat with the other cases, let us first compute dn+1[η∗x, µ∗x] as follows,

dn+1[η∗x, µ∗x] = dn+1

∑
τ∈S(n+1)

τ ∗Φη,µ
τ (x, y) =

∑
τ∈S(n+1)

dn+1τ
∗Φη,µ

τ (x, y) (58)

=
∑

τ ∈ S(n+ 1)
n ∈ R(τ)

(τδn+1)∗Φη,µ
τ (x, y) +

∑
τ ∈ S(n+ 1)
n /∈ R(τ)

τ ∗−∂Φη,µ
τ (x, y)

(6),(7)
=

∑
α∈S(n)

α∗Φη,µ
ασn(x, y) +

∑
α∈S(n)

α∗∂Φη,µ
α+

(x, y)

=
∑

α∈S(n)

α∗
(
Φη,µ
ασn(x, y) + ∂Φη,µ

α+
(x, y)

)
.

(b) Case: n /∈ R(η) and n ∈ R(µ). In this case, by the bijections (6) and (7), we can
write η = β+ and µ = γσn, where β = η− and γ = µδn+1. Hence,

[dn+1η
∗x, dn+1µ

∗y] = [η∗−∂x, (µδn+1)∗y] = [β∗∂x, γ∗y] =
∑

α∈S(n)

α∗Φβ,γ
α (∂x, y),

dn+1[η∗x, µ∗y]
(58)
=

∑
α∈S(n)

α∗
(
Φβ+,γσn
ασn (x, y) + ∂Φβ+,γσn

α+
(x, y)

)
,

and, by comparison, we see that equation (57) holds by equations (45) in Lemma 4.4.

(c) Case: n ∈ R(η) and n /∈ R(µ). This follows from the case (b) above:

dn+1[η∗x, µ∗y] = −dn+1[µ∗y, η∗x]
(b)
= −[dn+1µ

∗y, dn+1η
∗x] = [dn+1η

∗x, dn+1µ
∗y].

(d) Case: n /∈ R(η) and n /∈ R(µ). By the bijection (7), we can write η = β+ and
µ = γ+, where β = η− and γ = η−. Hence,

[dn+1η
∗x, dn+1µ

∗y] = [η∗−∂x, µ
∗
−∂y] = [β∗∂x, γ∗∂y] =

∑
α∈S(n)

α∗Φβ,γ
α (∂x, ∂y),

dn+1[η∗x, µ∗y]
(58)
=

∑
α∈S(n)

α∗
(
Φβ+,γ+
ασn (x, y) + ∂Φβ+,γ+

α+
(x, y)

)
.

and, by comparison, equation (57) follows from equations (46) in Lemma 4.4.
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6. Some particular cases

In this section, hypercrossed complexes of Lie algebras are specialized, and it is shown
the meaning of the enriched Dold-Kan equivalence in these particular examples.

6.1. Chain complexes of modules and simplicial modules. As usually, we iden-
tify any module with the abelian Lie algebra that itself defines when it is endowed with
the identically zero Lie bracket. Thus, we regard the category of simplicial modules, de-
noted by Simpl(Mod), as the full subcategory of the category of simplicial Lie algebras
defined by the simplicial abelian Lie algebras.

Similarly, we regard the category of chain complexes of modules, Ch(Mod), as the
full subcategory of the category of hypercrossed complexes defined by those of the form
(L, 0), where L is any chain complex of modules and all the maps in the set of structure
bilinear maps Φ = 0 are the constantly zero maps.

By construction, the square

Simpl(Mod) N //
_�

��

Ch(Mod)
_�

��
Simpl(Lie Alg) Ne

// HXCh(Lie Alg)

becomes commutative, and thus the equivalence of Theorem 5.10 restricts to that given
by the classical Dold-Kan-Puppe correspondence.

6.2. Crossed complexes and simplicial T-complexes of Lie algebras. Crossed
modules of Lie algebras were first defined by C. Kassel and J.L. Loday in [Kassel, Loday
(1982)]. In [Porter (1987)], T. Porter shows how these can be seen as internal categories
in the category of Lie algebras. We recall below their definition, as well as the notion of
crossed complexes of Lie algebras, which are the analogous to crossed complexes of groups
by J.H.C. Whitehead [Whitehead (1949)].

6.3. Definition. A crossed module of Lie algebras consists of a homomorphism of Lie
algebras ∂ : L1 → L0 together with a right Lie action of L0 on L1, denoted by (y1, y0) 7→
y1 · y0, such that

∂(y1 · y0) = [∂y1, y0], y1 · ∂y′1 = [y1, y
′
1],

for any x ∈ L0 and y, y′ ∈ L1.
A crossed complex of Lie algebras consists of a chain complex of Lie algebras

L = · · · → L2 → L1 → L0,

where Ln is abelian for n ≥ 2, together with a right Lie action of L0 on each Ln, for
n ≥ 1, denoted by (yn, y0) 7→ yn · y0, such that, for any y0 ∈ L0, y1, y

′
1 ∈ L1, and yn ∈ Ln

with n ≥ 2,

∂(y1 · y0) = [∂y1, y0], y′1 · ∂y1 = [y′1, y1], ∂(yn · y0) = ∂(yn) · y0, yn · ∂y1 = 0. (59)

Crossed complexes of Lie algebras are related to hypercrossed complexes as follows.
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6.4. Proposition. A crossed complex of Lie algebras L is the same thing as a hyper-
crossed complex of Lie algebras (L,Φ) where Φβ,γ

n = 0 : Lβ×Lγ → Ln, for any β, γ ∈ S(n)
with R(β) ∩ R(γ) = ∅ and n < β < γ. Indeed, such a hypercrossed complex is identified
with that crossed complex defined by the complex L and the right actions of L0 on each
Ln defined by

yn · y0 = Φn,ωn
n (yn, y0). (60)

Proof. This is given in Subsection 7.4.

Thanks to the above fact, the category of crossed complex of Lie algebras, denoted
by XCh(Lie Alg), can be regarded as a full subcategory of the category of hypercrossed
complexes.

Next, we shall identify the category of simplicial T-complexes of Lie algebras as the full
subcategory of the category of simplicial Lie algebras to which this subcategory correspond
by the enriched Dold-Kan-Puppe equivalence (56).

Simplicial T-complexes were introduced by N.K. Dakin as a short of simplicial sets
with canonical fillers [Dakin (1977)]. More precisely, recall that a simplicial set X is
said to satisfy the extension condition if every k-horn has a filler; i.e., if for any n-tuple
(x0, . . . , xk−1, xk+1, . . . , xn) of n− 1 simplices xi of X such that dixj = dj−1xi if i < j and
i, j 6= k, there is an n-simplex x such that dix = xi for i 6= k. A simplicial T-complex is a
pair (X,T ) where X is a simplicial set and T =

⋃
n≥1 Tn with Tn ⊆ Xn, a set of simplices

of X called thin, such that
(T1) all degenerate elements of X are thin,
(T2) any horn in X has a unique thin filler,
(T3) if all faces but one of a thin simplex are thin, then so also is the remaining face.
A simplicial T-complex in any algebraic category C is defined to be a simplicial T-

complex (X,T ) in which X is a simplicial object in C and each Tn a subobject of Xn.
For instance, simplicial T-complexes of groups were first studied in [Ashley (1989)], where
they are shown to be equivalent to crossed complexes of groups by mean of a generalized
Dold-Kan correspondence, see also [Nan Tie I (1989), Nan Tie II (1989)]. Below is the
counterpart for simplicial T-complexes of Lie algebras.

By [Ashley (1989), Chap. 3, Proposition 1.2], if (L, T ) is any simplicial T -complex
of Lie algebras, then every thin simplex is a sum of degenerated elements, and therefore
Tn = Dn(L), the submodule of Ln generated by the degenerated n-simplices, for any
n ≥ 1. Hence, we say that a simplicial Lie algebra L is a simplicial T-complex of Lie
algebras when the pair

(
L, D =

⋃
n≥1Dn(L)

)
is. In this way, the category of simplicial

T-complexes of Lie algebras, denoted by T-Simpl(Lie Alg), is a full subcategory of the
category of simplicial Lie algebras.

6.5. Theorem. The equivalence of Theorem 5.10 restricts by giving an equivalence be-
tween the category of simplicial T-complexes of Lie algebras and the category of crossed
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complexes of Lie algebras:

T-Simpl(Lie Alg) //
N
∼

e

_�

��

XCh(Lie Alg)
_�

��
Simpl(Lie Alg) //

N
∼

e

HXCh(Lie Alg).

Proof. Let L be any simplicial Lie algebra with enriched Moore complex N e(L) = (L,Φ).
By [Ashley (1989), Chap. 3, Theorem 1.5], the pair (L, D) always satisfies the axioms
(T1), (T2) and (T3). Therefore, L is a simplicial T-complex of Lie algebras if and only
if each submodule Dn =

⊕
β>n β

∗Lβ of Ln =
⊕

β∈S(n) β
∗Lβ is actually a Lie subalgebra,

that is, if and only if [β∗x, γ∗y] ∈ Dn for any β, γ ∈ S(n) with β, γ > n, x ∈ Lβ, y ∈ Lγ.
By the construction in (51) of the bilinear maps Φβ,γ

α , this last requirement is equivalent
to have Φβ,γ

n (x, y) = 0. Since, by (16), Φβ,γ
n (x, y) = −Φγ,β

n (y, x) if β > γ, and, by Lemma
5.6 and (31), Φβ,γ

n (x, y) = 0 whenever R(β) ∩ R(γ) 6= ∅, we can conclude that L is a
simplicial T-complex of Lie algebras if and only if Φβ,γ

n = 0, for any β, γ ∈ S(n) with
R(β) ∩ R(γ) = ∅ and n < β < γ. That is, after Proposition 6.4, L is a simplicial T-
complex of Lie algebras if and only if N e(L) is a crossed complex of Lie algebras.

6.6. Hypergroupoids of Lie algebras. For m any positive integer, m-dimensional
hypergroupoids were first defined by J. Duskin and S. Schanuel [Duskin (1975)], and
systematically studied by P.G. Glenn in [Glenn (1982)]. These are simplicial sets in
which, for any n > m and 0 ≤ k ≤ n, any k-horn has a unique filler. Let

m-Hypgd(Lie Alg)

denote the category of m-hypergroupoids of Lie algebras, that is, the full subcategory of
Simp(Lie Alg) defined by those simplicial Lie algebras whose underlaying simplicial set is
an m-hypergroupoid.

6.7. Lemma. A simplicial Lie algebra is an m-hypergroupoid if and only if it has trivial
Moore complex at dimension higher than m.

Proof. It is a direct consequence of [Bullejos, Cegarra, Duskin (1993), Lemma 1.1].

Hence, if we state

6.8. Definition. An m-hypercrossed complex of Lie algebras is an hypercrossed complex
(L,Φ) such that Lk = 0 for all k > m.

and we denote by m-HXCh(Lie Alg) the full subcategory of HXCh(Lie Alg) with objects
the m-hypercrossed complexes of Lie algebras, we get from Theorem 5.10 the following

6.9. Theorem. The enriched Dold-Kan correspondence of Theorem 5.10 restricts to an
equivalence between the categories of m-hypergroupoids and of m-hypercrossed complexes
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of Lie algebras:

m-Hypgd(Lie Alg) //
N
∼

e

_�

��

m-HXCh(Lie Alg)
_�

��
Simpl(Lie Alg) //

N
∼

e

HXCh(Lie Alg).

The m-hypergroupoids and the m-hypercrossed complexes of Lie algebras naturally
arise in the classification of simplicial Lie algebras by their homotopy m-type. To explain
this, briefly, recall that the homotopy groups of a simplicial Lie algebra L are defined as
the homology groups of its Moore complex:

πn(L) = Hn(N(L)), n ≥ 0,

and that a simplicial map f : L → L′ between simplicial Lie algebras is a weak m-
equivalence if it induces isomorphisms πn(f) : πn(L) ∼= πn(L′) for all 0 ≤ n ≤ m. Let

HomSimpl(Lie Alg),

denote the category of fractions of Simpl(Lie Alg) where the weak m-equivalences have
been inverted; that is, the homotopy category of m-types of simplicial Lie algebras. By
the enriched Dold-Kan correspondence, these homotopy categories easily find correspond-
ing equivalent categories in the context of hypercrossed complexes of Lie algebras: A
morphism f : (L,Φ)→ (L′,Φ) in HXCh(Lie Alg) is said to be a weak m-equivalence if the
underlying chain morphism f : L → L′ induces isomorphisms Hn(f) : Hn(L) ∼= Hn(L′)
for all 0 ≤ n ≤ m. The homotopy category of m-types of hypercrossed complexes of Lie
algebras, denoted by

HomHXCh(Lie Alg),

is then defined to be the category of fractions of the category HXCh(Lie Alg) where all
weak m-equivalences have been inverted. Let also

Ho m-HXCh(Lie Alg), Hom-Hypgd(Lie Alg),

be the respective localized categories of the categories m-HXCh(Lie Alg) and m-Hypgd(Lie Alg)
over all their respective weak equivalences.

6.10. Lemma. The category m-HXCh(Lie Alg) is a reflective subcategory of HXCh(Lie Alg).
For any hypercrossed complex of Lie algebras (L,Φ), the reflection arrow pr : (L,Φ) →
(L,Φ) is a weak m-equivalence.

Proof. If (L,Φ) is any given hypercrossed complex of Lie algebras, the image ∂Lm+1 ⊆
Lm is an ideal: For any y ∈ Lm+1 and z ∈ Lm,

[∂y, z]
(29)
= Φm,m

m (∂y, z)
(43)
= Φm+1,σm

σm (y, z) + ∂ Φm+1,σm
m+1 (y, z)

(33)
= ∂ Φm+1,σm

m+1 (y, z).

Let L = · · · 0→ Lm/∂Lm+1 → Lm−1 → · · · → L0 be the complex of Lie algebras with
the same (m − 1)-truncation as L, Lm = Lm/∂Lm+1, the differential ∂ : Lm/∂Lm+1 →
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Lm−1 is the induced by the differential ∂ : Lm → Lm−1 of L, and Lk = 0 for all k > m. Let

(L,Φ) the m-hypercrossed complex in which, for any n < m, Φ
β,γ

n = Φβ,γ
n , and the bilinear

maps Φ
β,γ

m are the given by the composition of the corresponding Φβ,γ
m : Lβ × Lγ → Lm

with the projection map pr : Lm → Lm/∂Lm+1.
It is plain to see that (L,Φ) remains a hypercrossed complex, and that the canonical

chain morphism

· · · // Lm+1

��

// Lm //

pr

��

Lm−1
// · · · // L0

· · · // 0 // Lm/∂Lm+1
// Lm−1

// · · · // L0

gives a reflection morphism of hypercrossed complexes pr : (L,Φ) → (L,Φ), which is a
weak m-equivalence.

6.11. Proposition. All the categories below are equivalent.

HomSimpl(Lie Alg), Hom-Hypgd(Lie Alg), HomHXCh(Lie Alg), Hom-HXCh(Lie Alg).

Proof. The equivalence HomSimpl(Lie Alg) ' HomHXCh(Lie Alg) is induced by the
enriched Dold-Kan-Puppe equivalence in Theorem 5.10, whose restricted equivalence be-
tween the categories ofm-hypergroupoids and ofm-hypercrossed complexes of Lie algebras
induces the equivalence Hom-Hypgd(Lie Alg) ' Hom-HXCh(Lie). Finally, the equiva-
lence HomHXCh(Lie Alg) ' Hom-HXCh(Lie Alg) follows from Lemma 6.10 above.

6.12. Crossed and 2-crossed modules. For lower values of m, m-hypercrossed com-
plexes of Lie algebras can be already found in the literature, although the identification
is not trivial and requires of some work. This is the goal of this subsection.

The easier case is when m = 1. Recalling from Definition 6.3 the notion of crossed
module of Lie algebras, we have

6.13. Proposition. A crossed module of Lie algebras is the same thing as an 1-hyper-
crossed complex of Lie algebras. Indeed, such a 1-hypercrossed complex is identified with
the crossed module defined by the differential ∂ : L1 → L0 and the action of L0 on L1

defined by

y1 · y0
(60)
= Φ1,σ0

1 (y1, y0).

Proof. This, in fact, has already been done: A crossed module of Lie algebras is the
same thing as a crossed complex of Lie algebras L with Lk = 0 for all k ≥ 2 which, by
Proposition 6.4, is the same as a 1-hypercrossed complex of Lie algebras.

Hence, if XM(Lie Alg) denotes the category of crossed modules of Lie algebras, The-
orem 6.9 particularizes by giving the following well-known result [Ellis (1993), Theorem
2]:
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6.14. Corollary. The enriched Dold-Kan restricts to an equivalence between the cate-
gories of 1-hypergroupoids and of crossed modules of Lie algebras:

1-Hypgd(Lie Alg) //
N
∼

e

_�

��

XM(Lie Alg)
_�

��
Simpl(Lie Alg) //

N
∼

e

HXCh(Lie Alg).

We stress the relevance of 1-hypergroupoids by recalling that they are the same as
nerves of internal categories (= internal groupoids) in the category of Lie algebras [Porter
(1987), Glenn (1982)].

Next, we prove that the notion of 2-hypercrossed complex of Lie algebras is equivalent
to that of 2-crossed modules of Lie algebras, first studied by G.J. Ellis in [Ellis (1993)].
Note that the definition of a 2-crossed module of Lie algebras, that we recall below, is
a differential replica of the definition of 2-crossed module of Lie groups [Martins, Picken
(2011), Jurco (2012)] and, by this reason, they also appear under the name of differential
2-crossed modules.

6.15. Proposition. A 2-hypercrossed complex of Lie algebras is the same thing as a 2-

crossed module of Lie algebras, that is, a 2-truncated complex of Lie algebras L2
∂→ L1

∂→
L0, together with right Lie actions of L0 on L1 and L2, denoted by (yn, y0) 7→ yn · y0,
n = 1, 2, and a bilinear map {−,−} : L1 × L1 → L2, such that the following conditions
hold 2:

∂(y1 · y0) = [∂y1, y0], (61)

∂(y2 · y0) = ∂y2 · y0, (62)

∂{y1, y
′
1} = y1 · ∂y′1 − [y1, y

′
1], (63)

{∂y2, ∂y
′
2} = [y′2, y2], (64)

{∂y2, y1}+ {y1, ∂y2} = y2 · ∂y1, (65)

{y1, y
′
1} · y0 = {y1 · y0, y

′
1}+ {y1, y

′
1 · y0}, (66)

{y1, [y
′
1, y
′′
1 ]} = {y1, y

′
1} · ∂y′′1 + {[y1, y

′
1], y′′1} − {y1, y

′′
1} · ∂y′1 − {[y1, y

′′
1 ], y′1}, (67)

{[y1, y
′
1], y′′1} = {y′1, ∂{y1, y

′′
1}} − {y1, ∂{y′1, y′′1}}. (68)

Indeed, any 2-hypercrossed complex (L,Φ) is identified with the 2-crossed module defined

by the differentials L2
∂→ L1

∂→ L0, and the right Lie actions of L0 on L1 and L2 and the
bilinear map {−,−} respectively defined by

y1 · y0 = Φ1,σ0
1 (y1, y0), y2 · y0 = Φ2,σ0σ1

2 (y2, y0), {y1, y
′
1} = Φσ1,σ0

2 (y1, y
′
1). (69)

Proof. This is fully given in Subsection 7.5. However, to be used before, we shall
prove here how, for any given 2-hypercrossed complex (L,Φ), the maps Φσ1,σ0

2 and Φ2,σ0σ1
2

2There is a mistake in the formulation of the fourth axiom in [Ellis (1993)].
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determine the two Lie actions Φ2,σ1
2 ,Φ2,σ0

2 : L2 ×L1 → L2. In effect, letting Φext = {Φβ,γ
α }

its extended set of structure bilinear maps, we have

Φ2,σ1
2 (y2, y1)

(33)
= −Φσ0,σ1σ2

σ2
(y2, y1)

(43)
= −Φσ0,σ1

2 (∂y2, y1)
(30)
= Φσ1,σ0

2 (y1, ∂y2),

Φ2,σ0
2 (y2, y1)

(30)
= −Φσ0,2

2 (y1, y2)
(33)
= −Φσ0σ1,σ2

σ2
(y1, y2)

(43)
= −Φσ0σ1,2

2 (∂y1, y2)

(30)
= Φ2,σ0σ1

2 (y2, ∂y1).

Therefore, in terms of (69), we have

Φ2,σ1
2 (y2, y1) = {y1, ∂y2}, Φ2,σ0

2 (y2, y1) = y2 · ∂y1. (70)

Therefore, if 2-XM(Lie Alg) denotes the category of 2-crossed modules of Lie algebras,
Theorem 6.9 particularizes by giving the following result.

6.16. Corollary. [Ellis (1993)] The enriched Dold-Kan-Puppe equivalence restricts to
an equivalence between the categories of 2-hypergroupoids and of 2-crossed modules of Lie
algebras:

2-Hypgd(Lie Alg) //
N
∼

e

_�

��

2-XM(Lie Alg)
_�

��
Simpl(Lie Alg) //

N
∼

e

HXCh(Lie Alg).

6.17. Delooping: Braided and symmetric crossed modules of Lie algebras.
Recall that a simplicial Lie algebra is reduced if L0 = 0. Let

Ω : redSimpl(Lie Alg)→ Simpl(Lie Alg)

be the simplicial loop construction, which on any reduced simplicial Lie algebra L is the
simplicial Lie algebra ΩL with

(ΩL)n = ker(d0 : Ln+1 → Ln),

and for each map α : [n]→ [r] in ∆ the induced (ΩL)r → (ΩL)n is given by restriction of
the homomorphism (α+1)∗ : Lr+1 → Ln+1 attached by L to the map α+1 : [n+1]→ [r+1]
defined by (α + 1)(0) = 0 and (α + 1)(i+ 1) = α(i) + 1, for 0 ≤ i ≤ n, that is,

(α + 1)(j) =

{
0 if j = 0,
α(j − 1) + 1 if 0 < j ≤ n+ 1.

Thus, for each 0 ≤ i ≤ n the face operator di on (ΩL)n is given by restriction of di+1 on
Ln+1, and similarly for si.
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In this section, we pay attention to those L such that ΩL is a 1-hypergroupoid of Lie
algebras, that is, the nerve of an internal category (= internal groupoid) in the category
of Lie algebras. Even more, we deal here with the categories

Ω−p(1-Hypgd(Lie Alg))

of simplicial p-deloopings of 1-hypergroupoids of Lie algebras, recursively defined for inte-
gers p ≥ 1 by the pullback squares

Ω−1(1-Hypgd(Lie Alg)) //
_�

��

1-Hypgd(Lie Alg)
_�

��
redSimpl(Lie Alg) Ω // Simpl(Lie Alg),

Ω−p−1(1-Hypgd(Lie Alg)) //
_�

��

Ω−p(1-Hypgd(Lie Alg))
_�

��
redSimpl(Lie Alg) Ω // Simpl(Lie Alg).

These categories Ω−p(1-Hypgd(Lie Alg)) are closely related to the category of crossed
modules of Lie algebras. To precise this relationship between them, first note that the loop
construction above has a natural counterpart on hypercrossed complexes of Lie algebras:
There is a commutative square

redSimpl(Lie Alg) //
N
∼

e

Ω ��

redHXCh(Lie Alg)

Ω��
Simpl(Lie Alg) //

N
∼

e

HXCh(Lie Alg),

(71)

where N e is the enriched Dold-Kan-Puppe correspondence, redHXCh(Lie Alg) is the cat-
egory of those hypercrossed complexes of Lie algebras (L,Φ) which are reduced in the
sense that L0 = 0, and

Ω : redHXCh(Lie Alg)→ HXCh(Lie Alg)

is the loop construction: (ΩL,ΩΦ), on any reduced hypercrossed complex (L,Φ), is the
hypercrossed complex with

(ΩL)n = Ln+1, (ΩΦ)α,βn = Φα+1,β+1
n+1 . (72)

Since both functors N e in (71) are equivalences, it is not necessary to check the axioms
for (ΩL,ΩΦ). One simply observes that, so defined, the square commutes.

Now, recall from Proposition 6.13 that the category 1-HXCh(Lie Alg), of 1-hypercrossed
complex of Lie algebras, is identified with the category XM(Lie Alg), of crossed modules
of Lie algebras. Hence, the categories Ω−p(XM(Lie Alg)), of p-delooping crossed modules
of Lie algebras, can be recursively defined by the pullback squares

Ω−1(XM(Lie Alg)) //
_�

��

XM(Lie Alg)
_�

��
redHXCh(Lie Alg) Ω // HXCh(Lie Alg),

Ω−p−1(XM(Lie Alg)) //
_�

��

Ω−p(XM(Lie Alg))
_�

��
redHXCh(Lie Alg) Ω // HXCh(Lie Alg).
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Since, by Corollary 6.14, N e : 1-Hypgd(Lie Alg) ' XM(Lie Alg) is an equivalence of
categories, the commutativity of the square (71) gives the following

6.18. Proposition. The enriched Dold-Kan correspondence restricts to an equivalence

N e : Ω−p(1-Hypgd(Lie Alg)) ' Ω−p(XM(Lie Alg)), p ≥ 1.

It is clear that Ω−p( XM(Lie Alg)), the category of p-delooping crossed modules of
Lie algebras, consists of those hypercrossed complexes (L,Φ) such that Lk = 0 for k /∈
{p+ 1, p}, and therefore we have

6.19. Corollary. The category Ω−p(1-Hypgd(Lie Alg)) consists of those simplicial Lie
algebras whose Moore complex is trivial at dimensions outside the range [p + 1, p] or, in
other words, the (p− 1)-reduced (p+ 1)-hypergroupoids of Lie algebras.

Next, we analyze the categories Ω−p(XM(Lie Alg)), first for p = 1 and then for upper
p.

6.19.1. Braided crossed modules of Lie algebras. The category of delooping
crossed modules of Lie algebras, Ω−1(XM(Lie Alg)), consists of those hypercrossed com-
plexes (L,Φ) such that Lk = 0 for all k /∈ {2, 1}; that is, the category of reduced 2-
hypercrossed complexes which, by Proposition 6.15, are identified with those 2-crossed
modules that are reduced in the sense that they have the trivial Lie algebra at dimension
zero. According the description in Proposition 6.15 of the 2-crossed modules, we have the
following one for delooping crossed modules of Lie algebras

6.20. Proposition. A delooping crossed module of Lie algebras is the same thing as a
“braided crossed module of Lie algebras” 3; that is, a pair

(∂ : L→M, {−,−} : M ×M → L),

where ∂ is a homomorphism of Lie algebras and {−,−} a bilinear map, such that the
following four conditions hold

∂{x, x′} = [x′, x], (73)

{∂y, ∂y′} = [y′, y], (74)

{∂y, x}+ {x, ∂y} = 0, (75)

{x, [x′, x′′]}+ {x′′, [x, x′]}+ {x′, [x, x′′]} = 0. (76)

Indeed, each delooping crossed module of Lie algebras (L,Φ) is identified with the
braided crossed module defined by the differential ∂ : L2 → L1 and the bilinear map
{−,−} : L1 × L1 → L2, defined by

{y1, y
′
1}

(69)
= Φσ1,σ0

2 (y1, y
′
1). (77)

3It is well known that braided strict categorical groups [Joyal, Street (1991)] are the same as braided
crossed modules of groups [Brown, Gilbert (1989), Arvasi, Ulualan (2005)]. Braided crossed modules of
Lie algebras can be regarded as the differential replica of the braided crossed modules of Lie groups, and
this is why we have adopted the given name for them.
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Note that, if (L,Φ) is any delooping crossed module, its loop 1-hypercrossed complex
Ω(L,Φ) = (ΩL,ΩΦ) becomes then identified with the crossed module defined by the
homomorphism ∂ : L2 → L1 and the right action of L1 on L2 defined by

y2 · y1
(72)
= Φ1+1,σ0+1

1+1 (y2, y1) = Φ2,σ1
2 (y2, y1)

(70)
= {y1, ∂y2}.

Thus, we have the commutative square

Ω−1(1-Hygpd(Lie Alg)) Ω //

N
∼

e

��

1-Hygpd(Lie Alg))
N
∼

e

��
BXM(Lie Alg) Ω // XM(Lie Alg),

where the loop functor

Ω : BXM(Lie Alg) −→ XM(Lie Alg) (78)

carries any braided crossed module (∂ : L→M, {−,−}) to the crossed module given by
the homomorphism ∂ : L→M and the right action of M on L defined by y ·x = {x, ∂y}.

Note that the loop functor Ω in (78) is faithful but, in general, neither full nor surjective
in objects. Also that a braided crossed module of Lie algebras is not properly a crossed
module, but it have an “underlying” crossed module by the faithful Ω construction.

6.20.1. Symmetric crossed modules of Lie algebras. Recall that the category of
p-delooping crossed modules of Lie algebras, Ω−p(XM(Lie Alg)), consists of those hyper-
crossed complexes (L,Φ) such that Lk = 0 for all k /∈ {p+ 1, p}.

6.21. Proposition. For any integer p ≥ 2, a p-delooping crossed module of Lie algebras
is the same thing as a “symmetric crossed module of Lie algebras” 4, that is, a pair

(∂ : L→M, {−,−} : M ×M → L),

where ∂ is a homomorphism of Lie algebras and {−,−} a bilinear map satisfying

∂{x, x′} = [x′, x], (79)

{∂y, ∂y′} = [y′, y], (80)

{x, x′}+ {x′, x} = 0, (81)

{x, [x′, x′′]}+ {x′, [x′′, x]}+ {x′′, [x, x′]} = 0. (82)

Indeed, each p-delooping crossed module of Lie algebras (L,Φ) is identified with the
symmetric delooping crossed module defined by the homomorphism ∂ : Lp+1 → Lp and the
bilinear map

{−,−} = Φ
σp,σp−1

p+1 : Lp × Lp → Lp+1. (83)

Proof. This is given in Subsection 7.6.

4It is well known that symmetric strict categorical groups are the same as symmetric crossed modules of
groups [Bullejos, Carrasco, Cegarra (1993)]. Symmetric crossed modules of Lie algebras are the differential
counterpart of symmetric crossed modules of Lie groups, and this is why the name we adopt for them. But
symmetric crossed modules of groups are also the same as stable crossed modules of groups [Conduché
(1984)], so the name of stable crossed modules of Lie algebras would be also appropriate.
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If (L,Φ) is any 2-delooping crossed module, identified with the symmetric crossed
module (∂ : L3 → L2, {−,−} = Φσ2,σ1

3 : L2 × L2 → L3), then its loop delooping crossed
module Ω(L,Φ) = (ΩL,ΩΦ) is identified with the braided crossed module defined by the
homomorphism ∂ : (ΩL)2 =L3 −→ (ΩL)1 =L2 and the bilinear map

(ΩΦ)σ1,σ02

(72)
= Φσ1+1,σ0+1

2+1

(83)
= Φσ2,σ1

3 = {−,−}.

Thus, we have the commutative square

Ω−2(1-Hygpd(Lie Alg)) Ω //

N
∼

e

��

Ω−1(1-Hygpd(Lie Alg))
N
∼

e

��
SXM(Lie Alg) �

� // BXM(Lie Alg),

where SXM(Lie Alg) ↪→ BXM(Lie Alg) denotes the natural embedding of the category of
symmetric crossed modules into the category of braided crossed modules.

Similarly, if p ≥ 3 and (L,Φ) is any p-delooping crossed module, which is identified
with the symmetric crossed module (∂ : Lp+1 → Lp, {−,−} = Φ

σp,σp−1

p+1 : Lp×Lp → Lp+1),
then its loop (p− 1)-delooping crossed module Ω(L,Φ) = (ΩL,ΩΦ) is identified with the
same symmetric crossed module as (L,Φ) does, since it is defined by the homomorphism

∂ : (ΩL)p=Lp+1 −→ (ΩL)p−1 =Lp

together with the bilinear map

(ΩΦ)σp−1,σp−2
p

(72)
= Φ

σp−1+1,σp−2+1
p+1 = Φ

σp,σp−1

p+1

(83)
= {−,−}.

Hence, we have the commutative square

Ω−p(1-Hygpd(Lie Alg)) Ω //

N
∼

e

��

Ω−p+1(1-Hygpd(Lie Alg))

N
∼

e

��
SXM(Lie Alg) SXM(Lie Alg).

To finish, we shall stress the following immediate consequences (cf. [Conduché (1984),
Corollaire 3.5]).

6.22. Corollary. The loop functor

Ω : Ω−2(1-Hygpd(Lie Alg))→ Ω−1(1-Hygpd(Lie Alg))

is an embedding; that is, the loop functor establishes an embedding of the category of
simplicial Lie algebras whose Moore complex is trivial at other dimensions than 2 and
3 into the category of simplicial Lie algebras whose Moore complex is trivial at other
dimensions than 1 and 2.
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For any p ≥ 3, the functor Ωp−2 : Ω−p(1-Hygpd(Lie Alg)) → Ω−2(1-Hygpd(Lie Alg))
is an equivalence of categories; that is, the iterated loop functor Ωp−2 establishes an equiv-
alence between the category of simplicial Lie algebras whose Moore complex is trivial at
other dimensions than p and p+1 and the category of simplicial Lie algebras whose Moore
complex is trivial at other dimensions than 2 and 3.

If p ≥ 2, every simplicial Lie algebra whose Moore complex is trivial at other dimen-
sions than p and p+ 1 is an ∞-loop simplicial Lie algebra.

7. Some proofs

As we said in the introduction, to avoid hampering the flow of the paper most of the more
technical proofs have been brought to this section.

7.1. Proof of Lemma 4.4. First note that, due to formulas (31) and (32), both equa-
tions (43) and (44) trivially hold for any β, γ ∈ S(n) such that R(β) ∩R(γ) 6= ∅.

Proof of (45): The equation holds if α = n, owing to condition (43). Therefore we
have to prove only the case when α > n, that we do by induction on n. The case n = 0 is
trivial. Then, let α, β, γ ∈ S(n), y ∈ Lrβ+1, and z ∈ Lγ, where α > n > 0. We distinguish
three different cases, noticing previously that the following equalities hold

R(β) ∩R(γ) = R(β+) ∩R(γσn),

R(α) ∩R(β) ∩R(γ) = R(ασn) ∩R(β+) ∩R(γσn) = R(α+) ∩R(β+) ∩R(γσn).

Case R(β) ∩R(γ) = ∅. Let m = minR(α). Taking into account that, for any i ≤ m,
β+δi = (βδi)+, σnδi = δiσn−1, and α+δi = (αδi)+, we have

Φβ,γ
α (∂y, z)

(33)
=

∑
i∈R(α,β,γ)

(−1)m−i Φβδi,γδi
αδm

(∂y, z)

(ind. hypoth.) =
∑

i∈R(α,β,γ)

(−1)m−i
(

Φ
(βδi)+,γδiσn−1

αδmσn−1
(y, z) + ∂ Φ

(βδi)+,γδiσn−1

(αδm)+
(y, z)

)
=

∑
i∈R(α,β,γ)

(−1)m−iΦ
β+δi,γσnδi
ασnδm

(y, z) + ∂
∑

i∈R(α,β,γ)

(−1)m−iΦ
β+δi,γσnδi
α+δm

(y, z)

(33)
= Φβ+,γσn

ασn (y, z) + ∂ Φβ+,γσn
α+

(y, z),

where, for the last equality we have used that m = minR(α) = minR(ασn) = minR(α+),
and that R(α, β, γ) = R(ασn, β+, γσn) = R(α+, β+, γσn).

Case R(β) ∩R(γ) 6= ∅ but R(α) ∩R(β) ∩R(γ) = ∅. In this case, by (31) and (32), we

have Φβ,γ
α (∂y, z) = 0, Φβ+,γσn

ασn (y, z) = 0, and Φβ+,γσn
α+

(y, z) = 0, so the equality in (45)
trivially holds.



A DOLD-KAN THEOREM FOR SIMPLICIAL LIE ALGEBRAS 1199

Case R(β) ∩R(γ) 6= ∅ and R(α) ∩R(β) ∩R(γ) 6= ∅. Let k = minR(α) ∩ R(β) ∩ R(γ).
Then,

Φβ,γ
α (∂y, z)

(32)
= Φβδk,γδk

αδk
(∂y, z)

(induct. hypoth.) = Φ
(βδk)+,γδkσn−1

αδkσn−1
(y, z) + ∂Φ

(βδk)+,γδkσn−1

(αδk)+
(y, z)

= Φ
β+δk,γσnδk
ασnδk

(y, z) + ∂ Φ
β+δk,γσnδk
α+δk

(y, z)

(32)
= Φβ+,γσn

ασn (y, z) + ∂ Φβ+,γσn
α+

(y, z).

Proof of (46): First, we consider the case when α = n. Then, the equation holds
if n < β < γ, due to condition (44). If β = n = γ, we have Φn,n

n (∂y, ∂z) = [∂y, ∂z]
and ∂Φn+1,n+1

n+1 (y, z) = ∂[y, z], by (29). Since, by (33), Φn+1,n+1
σn (y, z) = 0, the equality

in (46) follows form the fact that ∂ : Ln+1 → Ln is a homomorphism of Lie algebras. If
β = n < γ, then

Φn,γ
n (∂y, ∂z)

(43)
= Φn+1,γσn

σn (y, ∂z) + ∂ Φn+1,γσn
n+1 (y, ∂z)

(33)
= ∂ Φn+1,γσn

n+1 (y, ∂z)

(36)
= − ∂ Φγσn,n+1

n+1 (∂z, y)
(43)
= −∂

(
Φ(γσn)+,σn+1
σn+1

(z, y) + ∂ Φ
(γσn)+,σn+1

n+2 (z, y)
)

(∂2=0)
= − ∂ Φ(γσn)+,σn+1

σn+1
(z, y)

(33)
= −∂ Φ

γ+,n+1
n+1 (z, y)

(36)
= ∂ Φ

n+1,γ+
n+1 (y, z).

As Φn+1,γ+
σn (z, y) = 0 by (33), the equation (46) also holds in this case.

Therefore we have to prove only the case when α > n, whose proof is quite similar to
the one given above for (45). We proceed by induction on n. The case n = 0 is trivial.
Then, let α, β, γ ∈ S(n), y ∈ Lrβ+1, and z ∈ Lrγ + 1, where α > n > 0. We distinguish
three different cases, noticing previously that the following equalities hold

R(β) ∩R(γ) = R(β+) ∩R(γ+),

R(α) ∩R(β) ∩R(γ) = R(ασn) ∩R(β+) ∩R(γ+) = R(α+) ∩R(β+) ∩R(γ+).

Case R(β) ∩R(γ) = ∅. Let m = minR(α). Then, m = minR(ασn) = minR(α+) and
R(α, β, γ) = R(ασn, β+, γ+) = R(α+, β+, γ+), so we have

Φβ,γ
α (∂y, ∂z)

(33)
=

∑
i∈R(α,β,γ)

(−1)m−i Φβδi,γδi
αδm

(∂y, ∂z)

(ind. hypoth.) =
∑

i∈R(α,β,γ)

(−1)m−i
(

Φ
(βδi)+,(γδi)+
αδmσn−1

(y, z) + ∂ Φ
(βδi)+,(γδi)+
(αδm)+

(y, z)
)

=
∑

i∈R(α,β,γ)

(−1)m−iΦ
β+δi,γ+δi
ασnδm

(y, z) + ∂
∑

i∈R(α,β,γ)

(−1)m−iΦ
β+δi,γ+δi
α+δm

(y, z)

(33)
= Φβ+,γ+

ασn (y, z) + ∂ Φβ+,γ+
α+

(y, z).

Case R(β) ∩R(γ) 6= ∅ but R(α) ∩R(β) ∩R(γ) = ∅. In this case, by (31) and (32), we

have Φβ,γ
α (∂y, ∂z) = 0, Φβ+,γ+

ασn (y, z) = 0, and Φβ+,γ+
α+

(y, z) = 0, so the equality in (46)
trivially holds.
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Case R(β) ∩R(γ) 6= ∅ and R(α) ∩R(β) ∩R(γ) 6= ∅. Let k = minR(α) ∩ R(β) ∩ R(γ).
Then,

Φβ,γ
α (∂y, ∂z)

(32)
= Φβδk,γδk

αδk
(∂y, ∂z)

(ind. hypoth.) = Φ
(βδk)+,(γδk)+
αδkσn−1

(y, z) + ∂ Φ
(βδk)+,(γδk)+
(αδk)+

(y, z)

= Φ
β+δk,γ+δk
ασnδk

(y, z) + ∂ Φ
β+δk,γ+δk
α+δk

(y, z)
(32)
= Φβ+,γ+

ασn (y, z) + ∂ Φβ+,γ+
α+

(y, z).

7.2. Proof of Lemma 5.3. Suppose first that m = 0. For any x ∈ Lβ and y ∈ Lγ, we
have

d0[β∗x, γ∗y] = d0

∑
ξ∈S(n)

ξ∗Φβ,γ
ξ (x, y) =

∑
ξ ∈ S(n)
0 ∈ R(ξ)

(ξδ0)∗Φβ,γ
ξ (x, y).

But d0[β∗x, γ∗y] = [d0β
∗x, d0γ

∗y] = 0, since 0 /∈ R(β) or 0 /∈ R(γ). Hence Φβ,α
ξ (x, y) = 0

for any ξ ∈ S(n) with 0 ∈ R(ξ) and, particularly, Φβ,γ
α (x, y) = 0.

Let us suppose now that m ≥ 1. Then, for any x ∈ Lβ and y ∈ Lγ, we have

[dmβ
∗x, dmγ

∗y] = dm[β∗x, γ∗y] = dm
∑
ξ∈S(n)

ξ∗Φβ,γ
ξ (x, y) =

∑
ξ∈S(n)

dmξ
∗Φβ,γ

ξ (x, y)

=
∑

ξ ∈ S(n)
m ∈ R(ξ)
m-1 /∈ R(ξ)

(ξδm)∗Φβ,γ
ξ (x, y) +

∑
ξ ∈ S(n)
m /∈ R(ξ)
m-1 ∈ R(ξ)

(ξδm)∗Φβ,γ
ξ (x, y) +

∑
ξ ∈ S(n)
m ∈ R(ξ)
m-1 ∈ R(ξ)

(ξδm)∗Φβ,γ
ξ (x, y)

(6)
=

∑
µ ∈ S(n-1)
m-1 /∈ R(µ)

µ∗Φβ,γ
µσm(x, y) +

∑
µ ∈ S(n-1)
m-1 /∈ R(µ)

µ∗Φβ,γ
µσm-1

(x, y) +
∑

µ ∈ S(n-1)
m-1 ∈ R(µ)

µ∗Φβ,γ
µσm-1

(x, y)

=
∑

µ ∈ S(n-1)
m-1 /∈ R(µ)

µ∗
(
Φβ,γ
µσm(x, y) + Φβ,γ

µσm-1
(x, y)

)
+

∑
µ ∈ S(n-1)
m-1 ∈ R(µ)

µ∗Φβ,γ
µσm-1

(x, y).

Now, in the case when m ∈ R(α, β, γ), we have that m ∈ R(β) and m − 1 ∈ R(γ) or
m− 1 ∈ R(β) and m ∈ R(γ), and therefore

[dmβ
∗x, dmγ

∗y] = [(βδm)∗x, (γδm)∗y] =
∑

µ∈S(n−1)

µ∗Φβδm,γδm
µ (x, y).

If we take µ = αδm, we have that m − 1 /∈ R(µ) and α = µσm. Then, by comparison in
the above expressions of [dmβ

∗x, dmγ
∗y], we get the claimed equality

Φβδm,γδm
αδm

(x, y) = Φβ,γ
α (x, y) + Φβ,γ

αδmσm-1
(x, y).

Finally, in the case m /∈ R(α, β, γ), we have m /∈ R(β) and m−1 /∈ R(β) or m /∈ R(γ)
and m− 1 /∈ R(γ). In both cases, [dmβ

∗x, dmγ
∗y] = 0. Then, by comparison as above for

µ = αδm, we conclude the required equality 0 = Φβ,γ
α (x, y) + Φβ,γ

αδmσm-1
(x, y).
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7.3. Proof of Lemma 5.6. It suffices to prove that the maps Φβ,γ
α satisfy the equations

(29)-(33). It is clear that equations (29) and (30) hold owing to equalities in (14) and
(16). To prove (31) and (32), suppose β, γ ∈ S(n) and j ∈ R(β) ∩ R(γ). Then, by (6),
β = βδjσj, γ = γδjσj and, for any x ∈ Lβ and y ∈ Lγ, we have

[β∗x, γ∗y] = [σ∗j (βδj)
∗x, σ∗j (γδj)

∗y] = σ∗j [(βδj)
∗x, (γδj)

∗y] = σ∗j
∑

µ∈S(n−1)

µ∗Φβδj ,γδj
µ (x, y)

=
∑

µ∈S(n−1)

(µσj)
∗Φβδj ,γδj

µ (x, y)
(6)
=

∑
α ∈ S(n)
j ∈ R(α)

α∗Φ
βδj ,γδj
αδj

(x, y).

Since [β∗x, γ∗y] =
∑

α∈S(n) α
∗Φβ,γ

ξ (x, y), by comparison, we conclude that

Φβ,γ
α (x, y) =

{
Φ
βδj ,γδj
αδj

(x, y) if j ∈ R(α),

0 if j /∈ R(α),

and thus (31) and (32) follows.
We next prove (33). By (53), this is clear if m = 0. So we can proceed inductively on

m ≥ 1. Observe that minR(αδmσm−1) = m− 1 and that αδmσm−1δm−1 = αδm. Then, if
we are in the case when m ∈ R(α, β, γ), since R(α, β, γ) = R(αδmσm−1, β, γ) ∪ {m}, the
equality (53) and the hypothesis of induction give

Φβ,γ
α (x, y) = Φβδm,γδm

αδm
(x, y)− Φβ,γ

αδmσm-1
(x, y)

= Φβδm,γδm
αδm

(x, y)−
∑

i∈R(αδmσm−1,β,γ)

(−1)m−i−1 Φβδi,γδi
αδm

(x, y)

= Φβδm,γδm
αδm

(x, y) +
∑

i∈R(αδmσm−1,β,γ)

(−1)m−i Φβδi,γδi
αδm

(x, y)

=
∑

i∈R(α,β,γ)

(−1)m−i Φβδi,γδi
αδm

(x, y).

And, otherwise, if m /∈ R(α, β, γ), since R(α, β, γ) = R(αδmσm−1, β, γ), the equality (53)
and the hypothesis of induction give

Φβ,γ
α (x, y) = − Φβ,γ

αδmσm-1
(x, y) = −

∑
i∈R(αδmσm−1,β,γ)

(−1)m−i−1 Φβδi,γδi
αδm

(x, y)

=
∑

i∈R(αδmσm−1,β,γ)

(−1)m−i Φβδi,γδi
αδm

(x, y) =
∑

i∈R(α,β,γ)

(−1)m−i Φβδi,γδi
αδm

(x, y).

7.4. Proof of Proposition 6.4. Let us analyze a hypercrossed complex of Lie algebras
(L,Φ) satisfying the conditions in the proposition. Let Φext =

{
Φβ,γ
α : Lβ × Lγ → Lα

}
be

its extended set of structure bilinear maps, as in Definition 4.2.
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(A) for n ≥ 2, the Lie algebra Ln is abelian. In effect, for any yn, y
′
n ∈ Ln, we have

Φσn−1,σn−2
n (∂yn, ∂y

′
n)

(44)
= Φσn−1,σn−2

σn (yn, y
′
n) + ∂Φ

σn−1,σn−2

n+1 (yn, y
′
n).

Since, by hypothesis, Φσn−1,σn−2
n (∂yn, ∂y

′
n) = 0 = Φ

σn−1,σn−2

n+1 (yn, y
′
n), we get

0 = Φσn−1,σn−2
σn (yn, y

′
n)

(33)
= Φn,n

n (yn, y
′
n) = [yn, y

′
n].

(B) for any n ≥ 2 and γ ∈ S(n) with n < γ < ωn, Φn,γ
n = 0 : Ln × Lγ → Ln. In effect, let

us first assume that n− 1 ∈ R(γ) and proceed by induction on

k = k(γ) = min{i | i, i+ 1, . . . , n− 1 ∈ R(γ)}.

Note that k > 0, as γ 6= ωn = σ0 · · ·σn−2σn−1. Suppose k = 1 or that k > 1 but
k − 2 /∈ R(γ). Then, for any yn ∈ Ln and yγ ∈ Lγ,

Φσk−1,γ
n (∂yn, yγ)

(43)
= Φσk−1,γσn

σn (yn, yγ) + ∂Φ
σk−1,γσn
n+1 (yn, yγ).

Since, by hypothesis, Φ
σk−1,γ
n (∂yn, yγ) = 0 = ∂Φ

σk−1,γσn
n+1 (yn, yγ), we have

0 = Φσk−1,γσn
σn (yn, yγ)

(33)
= (−1)n−k Φn,γσnδk

n (yn, yγ) = (−1)n−k Φn,γ
n (yn, yγ).

Now, suppose k > 1 and k − 2 ∈ R(γ). As above, we have

0 = Φσk−1,γσn
σn (yn, yγ)

(33)
= (−1)n−k Φn,γσnδk

n (yn, yγ) + (−1)n−k+1 Φn,γσnδk−1
n (yn, yγ)

= (−1)n−k Φn,γ
n (yn, yγ) + (−1)n−k+1 Φn,γδk−1σn−1

n (yn, yγ).

Since R(γδk−1σn−1) = {k − 1} ∪R(γ) \ {k − 2}, it follows that k(γδk−1σn−1) < k = k(γ).

Hence, by hypothesis of induction, Φ
n,γδk−1σn−1
n (yn, yγ) = 0, and therefore Φn,γ

n (yn, yγ) = 0.
Suppose now that n− 1 /∈ R(γ). Then,

Φσn−1,γ
n (∂yn, yγ)

(43)
= Φσn−1,γσn

σn (yn, yγ) + ∂Φ
σn−1,γσn
n+1 (yn, yγ).

Since, by hypothesis, Φσn−1,γ
n (∂yn, yγ) = 0 = ∂Φ

σn−1,γσn
n+1 (yn, yγ), in the case that n − 2 /∈

R(γ) we have

0 = Φσn−1,γσn
σn (yn, yγ)

(33)
= Φn,γ

n (yn, yγ),

whereas, in the case when n− 2 ∈ R(γ),

0 = Φσn−1,γσn
σn (yn, yγ)

(33)
= Φn,γ

n (yn, yγ)− Φn,γδn−1σn−1
n (yn, yγ),

and we also conclude that Φn,γ
n (yn, yγ) = 0, since n − 1 ∈ R(γδn−1σn−1) and therefore

Φn,γδn−1σn−1
n (yn, yγ) = 0 by the already discussed case above.
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(C) for any α, β, γ ∈ S(n) with rβ ≥ 2 and γ < ωn, Φβ,γ
α = 0 : Lβ × Lγ → Lα. To prove

this, by (36), we can assume that β ≤ γ. Note that the hypothesis rβ ≥ 2 imply n ≥ 2.
For any such n, Φn,n

n = 0 due to (29) and (A); Φn,γ
n = 0, for γ > n, owing to (B); and also

Φβ,γ
n = 0, for β > n, by (31). Thus, the claim holds for α = n. Now, for arbitrary α > n we

proceed by induction on n. If n = 2, there is only one element β ∈ S(2) = {2, σ1, σ0, σ0σ1}
with range ≥ 2, namely β = 2. Then, the assert holds since, by (33), Φn,γ

α = 0 for any
n and γ. Now, the claim for any n ≥ 2 easily follows by induction on n and taking into
account the formulas (32) and (33).

It follows from (B) that the Lie actions Φn,ωn
n : Ln × L0 → Ln, n ≥ 1, are the unique

non constantly zero structure bilinear maps in Φ. Let us denote them as in (60).
We observe now that, for this hypercrossed complex (L,Φ), the axioms (37)-(42) are

trivially verified, so that they do not impose any requirement on the family of actions
(60). This is evident as regards the conditions (37) and (38). To check the remaining,
note that, by (31), (30) and our hypotheses, we have Φβ,γ

n = 0 for any β, γ ∈ S(n) \ {n}.
Then, looking at the equalities(39) and (40), we see that the terms on the left are both
0, since Φβ,γ

n = 0, while the summations on the right reduce to the two summands for
ξ = n , which are both 0, again because Φβ,γ

n = 0. Looking now at equality (41), the
first summand on the left is 0, since Ln is abelian (the existence of β, γ ∈ S(n) with
n < β < γ imply that n ≥ 2) and all the other summands on the left are also 0, since the
involved Φn,ξ

n are constantly zero by (B), and, similarly, all the summands at the right
are 0, since Φn,β

n = 0. Regarding finally with the equality in (42), all the summands in
the first summation on the left are 0, since all the involved Φξ,γ

n are constantly 0, and all
in the second one are also 0, since the involved Φβ,ξ

n are 0. Similarly, all the summands
in the second summation on the right are 0, since the involved Φξ,β

n are constantly zero,
while the first summation on the right reduces to the summand for ξ = n (since for ξ > n,
Φξ,δ
n = 0), which is also 0 since Φβ,γ

n = 0.
Dealing now the condition (43), we first observe that in the case when n ≤ β < γ < ωn

this is trivially verified, and therefore it neither imposes any requirements on the actions
(60). In effect, by (B) if β = n or by hypothesis if β > n, the term on the left of the
equality is 0, while, by (C), both summands on the right are 0 (note that β 6= ωn, so
rβ ≥ 1 and rβ+1 ≥ 2). The same thing happens in the case when n ≤ γ < β < ωn.
Therefore the verification of condition (43) reduces to verify the equations below, where
we have taken into account (33).

Φn,ωn
n (∂yn+1, y0) = ∂Φ

n+1,ωn+1

n+1 (yn+1, y0), (84)

Φωn,n
n (∂y1, y

′
n) = Φ

ωn+ ,σn
σn (y1, y

′
n), (85)

Φn,n
n (∂yn+1, yn) = ∂Φn+1,σn

n+1 (yn+1, yn). (86)

For n = 0, by (29) and (60), the first equation (84) is equivalent to [∂y1, y0] = ∂(y1 ·y0),
while for n ≥ 1, by (60), it is equivalent to ∂yn+1 ·y0 = ∂(yn+1 ·y0). Similarly, for n = 0, the
second equation (85) is equivalent to [∂y1, y

′
0] = ∂(y1 · y′0), while for n = 1 it is equivalent
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to y′1 · ∂y1 = [y′1, y1], since

Φσ0,1
1 (∂y1, y

′
1)

(30)
= −Φ1,σ0

1 (y′1, ∂y1)
(60)
= −(y′1 · ∂y1),

Φσ0,σ1
σ1

(y1, y
′
1)

(33)
= Φ1,1

1 (y1, y
′
1)

(29)
= [y1, y

′
1],

and, for n ≥ 2 to y′n · ∂y1 = 0, since

Φωn,n
n (∂y1, y

′
n)

(30)
= −Φn,ωn

n (y′n, ∂y1)
(60)
= −(y′n · ∂y1),

Φωn+,σn
σn (y1, y

′
n)

(30)
= −Φσn,ωn+

σn (y′n, y1)
(33)
= −Φ

n,ωn−1+
n (y′n, y1)

(B)
= 0.

As regards equation (86), for n = 0 this becomes equivalent to [∂y1, y0] = ∂y1 · y0. Since,
by (B), Φn+1,σn

n+1 (yn+1, y0) = 0, for n ≥ 1 this equation is equivalent to [∂yn+1, yn] = 0,
which always holds if n ≥ 2, because of the abelianity of Ln, and also for n = 1 as
consequence of (84) and (85), since

[∂y2, y1] = ∂y2 · ∂y1 = ∂(y2 · ∂y1) = ∂(0) = 0.

Finally, we observe that equation (44) does not impose any additional requirement:
The term on the left and the second summand on the right of the equality are both 0 by
hypothesis, and the first summand on the right is also 0 by (C).

All in all, an hypercrossed complex of Lie algebra (L,Φ) such that Φβ,γ
n = 0 for any

β, γ ∈ S(n) with R(β)∩R(γ) = ∅ and n < β < γ is the same as a complex of Lie algebras
L where every Ln is abelian for n ≥ 2, by (A), together a Lie action (60) of L0 on Ln, for
each n ≥ 1, such that the equations in (59) hold; that is, a crossed complex.

7.5. Proof of Proposition 6.15. Let (L,Φ) be any given 2-hypercrossed complex of
Lie algebras, Φext = {Φβ,γ

α } be its extended set of structure maps, and let us adopt the
notation in (69) for the bilinear maps Φ1,σ0

1 , Φ2,σ0σ1
2 and Φσ1,σ0

2 , respectively.
Let us now analyze the meaning of the axioms (37)-(44), to be a 2-hypercrossed

complex, for an enriched complex (L,Φ) with Lk = 0 if k ≥ 3, as above, and whose
non-trivial structure bilinear maps are given by (69) and (70).

Starting with (44), the only requirement here is the equation

• Φσ1,σ0
2 (∂y2, ∂y

′
2) = Φσ1,σ0

σ2
(y2, y

′
2). As, by (69), Φσ1,σ0

2 (∂y2, ∂y
′
2) = {∂y2, ∂y

′
2}, while

Φσ1,σ0
σ2

(y2, y
′
2)

(33)
= −Φ2,2

2 (y2, y
′
2)

(29)
= −[y2, y

′
2] = [y′2, y2],

we see that the verification of condition (44) is equivalent to condition (64) in the definition
of 2-crossed module: {∂y2, ∂y

′
2} = [y′2, y2].

With regard to condition (43), this is expanded in the following eight equations:

• Φ0,0
0 (∂y1, y0) = Φ1,σ0

σ0
(y1, y0) + ∂Φ1,σ0

1 (y1, y0). As, by (29), Φ0,0
0 (∂y1, y0) = [∂y1, y0]; by

(33), Φ1,σ0
σ0

(y1, y0) = 0; and, by (69), Φ1,σ0
1 (y1, y0) = y1 · y0, this equation is equivalent to

condition (61), that is, ∂(y1 · y0) = [∂y1, y0].
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• Φ1,σ0
1 (∂y2, y0) = Φ2,σ0σ1

σ1
(y2, y0) + ∂Φ2,σ0σ1

2 (y2, y0). By (33), we have Φ2,σ0σ1
σ1

(y2, y0) = 0.

Hence, by (69), this equation can be written as (62), that is, ∂(y2 · y0) = ∂y2 · y0.

• Φσ0,1
1 (∂y′1, y1) = Φσ0,σ1

σ1
(y′1, y1) + ∂Φσ0,σ1

2 (y′1, y1). By (30) and (69), we have Φσ0,1
1 (∂y′1, y1)

= −y1 · ∂y′1. By (33) and (29), Φσ0,σ1
σ1

(y′1, y1) = [y′1, y1]. By (30) and (69), Φσ0,σ1
2 (y′1, y1) =

−{y1, y
′
1}. Therefore, the equation can be written as (63), that is, ∂{y1, y

′
1} = y1 · ∂y′1 −

[y1, y
′
1].

• Φσ1,σ0
2 (∂y2, y1) = Φσ1,σ0σ2

σ2
(y2, y1). As, by (69), Φσ1,σ0

2 (∂y2, y1) = {∂y2, y1}, while

Φσ1,σ0σ2
σ2

(y2, y1)
(33)
= Φ2,σ0

2 (y2, y1)− Φ2,σ1
2 (y2, y1)

(70)
= y2 · ∂y1 − {y1, ∂y2},

the equation is equivalent to (65), that is, {∂y2, y1}+ {y1, ∂y2} = y2 · ∂y1.

• Φσ0,σ1
2 (∂y2, y1) = Φσ0,σ1σ2

σ2
(y2, y1). This equation does not impose any new requirement

since, by (30), (69) and (70), Φσ0,σ1
2 (∂y2, y1) = −{y1, ∂y2} = Φσ0,σ1σ2

σ2
(y2, y1).

• Φσ1,2
2 (∂y2, y

′
2) = Φσ1,σ2

σ2
(y2, y

′
2). This becomes equivalent to (64) since, owing to (30) and

(70), Φσ1,2
2 (∂y2, y

′
2) = −{∂y2, ∂y

′
2} while, due to (33) and (29), Φσ1,σ2

σ2
(y2, y

′
2) = [y2, y

′
2].

• Φσ0,2
2 (∂y2, y

′
2) = Φσ0,σ2

σ2
(y2, y

′
2). This equation does not impose any new requirement

since, by (33), Φσ0,σ2
σ2

(y2, y
′
2) = 0, and, by (30) and (70), Φσ0,2

2 (∂y2, y
′
2) = −y′2 · ∂2y2 = 0.

• Φσ0σ1,2
2 (∂y1, y2) = Φσ0σ1,σ2

σ2
(y1, y2). As above, this equation always holds, since, by (30),

(69), (33), and (70), Φσ0σ1,2
2 (∂y1, y2) = −y2 · ∂y1 = Φσ0σ1,σ2

σ2
(y1, y2).

Working now the condition (42), its only requirement here is the equation

• Φσ1,σ0
2

(
Φσ1,σ0σ1
σ1

(y1, y0), y′1
)

+ Φσ1,σ0
2

(
y1,Φ

σ0,σ0σ1
σ0

(y′1, y0)
)

= Φ2,σ0σ1
2

(
Φσ1,σ0

2 (y1, y
′
1), y0

)
+ Φσ1,σ0σ1

2

(
Φσ1,σ0
σ1

(y1, y
′
1), y0

)
.

As, by (69), (32) and (31), we have

Φσ1,σ0
2

(
Φσ1,σ0σ1
σ1

(y1, y0), y′1
)

= {Φ1,σ0
1 (y1, y0), y′1} = {y1 · y0, y

′
1},

Φσ1,σ0
2

(
y1,Φ

σ0,σ0σ1
σ0

(y′1, y0)
)

= {y1,Φ
1,σ0
1 (y′1, y0)} = {y1, y

′
1 · y0},

Φ2,σ0σ1
2

(
Φσ1,σ0

2 (y1, y
′
1), y0

)
= {y1, y

′
1} · y0, Φσ1,σ0σ1

2

(
Φσ1,σ0
σ1

(y1, y
′
1), y0

)
= 0,

we see that (42) is equivalent to (66), that is: {y1 · y0, y
′
1}+ {y1, y

′
1 · y0} = {y1, y

′
1} · y0.

We now pay attention to conditions (39) and (40). These, in our case, consist of the
following two equations

• Φσ1,σ0
2 (y1, [y

′
1, y
′′
1 ]) = Φ2,σ0

2 (Φσ1,σ0
2 (y1, y

′
1), y′′)− Φ2,σ0

2 (Φσ1,σ0
2 (y1, y

′′
1), y′)

+Φσ1,σ0
2 (Φσ1,σ0

σ1
(y1, y

′
1), y′′1)− Φσ1,σ0

2 (Φσ1,σ0
σ1

(y1, y
′′
1), y′1),

• Φσ1,σ0
2 ([y1, y

′
1], y′′1) = Φ2,σ1

2 (Φσ1,σ0
2 (y1, y

′′
1), y′1)− Φ2,σ1

2 (Φσ1,σ0
2 (y′1, y

′′
1), y1),
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which, by (69) and (70), agree with conditions (67) and (68) for a 2-crossed module.
Next, we go over conditions (37) and (38). These say us that the bilinear maps Φ1,σ0

1

and Φ2,σ0σ1
2 in (69), and Φ2,σ0

2 and Φ2,σ1
2 in (70), are right Lie actions. That the first two

are Lie actions of L0 on L1 and L2, respectively, is part of the axiomatic for a 2-crossed
complex of Lie algebras. The other two are actually Lie algebra actions as consequence
of the axioms, so they do not impose new requirements. In effect, this is quite obvious
with regards the map Φ2,σ0

2 , and for Φ2,σ1
2 we have

{y1, ∂[y2, y
′
2]} (65)

= [y2, y
′
2] · ∂y1 − {[∂y2, ∂y

′
2], y1}

(68)
= [y2, y

′
2] · ∂y1 − {∂y′2, ∂{∂y2, y1}}+ {∂y2, ∂{∂y′2, y1}}

(64)
= [y2, y

′
2] · ∂y1 − [{∂y2, y1}, y′2] + [{∂y′2, y1}, y2]

(65)
= [y2, y

′
2] · ∂y1 − [y2∂y1 − {y1, ∂y2}, y′2] + [y′2∂y1 − {y1, ∂y

′
2}, y2]

= [y2, y
′
2] · ∂y1 − [y2 · ∂y1, y

′
2] + [y′2 · ∂y1, y2] + [{y1, ∂y2}, y′2]− [{y1, ∂y

′
2}, y2]

= [y2, {y1, ∂y
′
2}]− [y′2, {y1, ∂y2}].

At this point, it only remains to check condition (41), but actually this holds without
any new requirement. In effect, it expands on the following three equations

• [y2,Φ
σ1,σ0
2 (y1, y

′
1)] + Φ2,σ1

2 (y2,Φ
σ1,σ0
σ1

(y1, y
′
1))

= Φ2,σ0
2 (Φ2,σ1

2 (y2, y1), y′1)− Φ2,σ1
2 (Φ2,σ0

2 (y2, y
′
1), y1),

• [y2,Φ
σ1,σ0σ1
2 (y1, y0)] + Φ2,σ1

2 (y2,Φ
σ1,σ0σ1
σ1

(y1, y0))

= Φ2,σ0σ1
2 (Φ2,σ1

2 (y2, y1), y0)− Φ2,σ1
2 (Φ2,σ0σ1

2 (y2, y0), y1),

• [y2,Φ
σ0,σ0σ1
2 (y1, y0)] + Φ2,σ1

2 (y2,Φ
σ0,σ0σ1
σ1

(y1, y0)) + Φ2,σ0
2 (y2,Φ

σ0,σ0σ1
σ0

(y1, y0))

= Φ2,σ0σ1
2 (Φ2,σ0

2 (y2, y1), y0)− Φ2,σ0
2 (Φ2,σ0σ1

2 (y2, y0), y1),
and we have

[y2,Φ
σ1,σ0
2 (y1, y

′
1)] + Φ2,σ1

2 (y2,Φ
σ1,σ0
σ1

(y1, y
′
1)) = [y2, {y1, y

′
1}] + {[y1, y

′
1], ∂y2}

(64)
= {∂{y1, y

′
1}, ∂y2}+ {[y1, y

′
1], ∂y2}

(63)
= {y1 · ∂y′1, ∂y2}

(66)
= {y1, ∂y2} · ∂y′1 − {y1, ∂y2 · ∂y′1}

(62)
= {y1, ∂y2} · ∂y′1 − {y1, ∂(y2 · ∂y′1)}

= Φ2,σ0
2 (Φ2,σ1

2 (y2, y1), y′1)− Φ2,σ1
2 (Φ2,σ0

2 (y2, y
′
1), y1),

[y2,Φ
σ1,σ0σ1
2 (y1, y0)] + Φ2,σ1

2 (y2,Φ
σ1,σ0σ1
σ1

(y1, y0))
(31)
= Φ2,σ1

2 (y2,Φ
σ1,σ0σ1
σ1

(y1, y0))

(32)
= Φ2,σ1

2 (y2,Φ
1,σ0
1 (y1, y0)) = {y1 · y0, ∂y2}

(66)
= {y1, ∂y2} · y0 − {y1, ∂y2 · y0}

(62)
= {y1, ∂y2} · y0 − {y1, ∂(y2 · y0)}

= Φ2,σ0σ1
2 (Φ2,σ1

2 (y2, y1), y0)− Φ2,σ1
2 (Φ2,σ0σ1

2 (y2, y0), y1),
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[y2,Φ
σ0,σ0σ1
2 (y1, y0)]+Φ2,σ1

2 (y2,Φ
σ0,σ0σ1
σ1

(y1, y0)) + Φ2,σ0
2 (y2,Φ

σ0,σ0σ1
σ0

(y1, y0))

(32)
= Φ2,σ0

2 (y2,Φ
1,σ0
1 (y1, y0)) = y2 · ∂(y1 · y0)

(61)
= y2 · [∂y1, y0]

= (y2 · ∂y1) · y0 − (y2 · y0) · ∂y1

= Φ2,σ0σ1
2 (Φ2,σ0

2 (y2, y1), y0)− Φ2,σ0
2 (Φ2,σ0σ1

2 (y2, y0), y1).

7.6. Proof of Proposition 6.21. Let (L,Φ) be any given enriched complex of Lie alge-
bras with Lk = 0 for all k /∈ {p, p+1}, and let Φext =

{
Φβ,γ
α : Lβ × Lγ → Lα, α, β, γ ∈ S(n)

}
be its extended set of structure bilinear maps. We write L = Lp+1 and M = Lp, and
adopt the notation in (83) for the bilinear map Φ

σp,σp−1

p+1 .
First, suppose that (L,Φ) is a hypercrossed complex. Then the map {−,−} determines

all the possibly non-trivial structure bilinear maps in Φ, that is, the maps Φp+1,σi
p+1 : L ×

M → L, for 0 ≤ i ≤ p and Φ
σi,σj
p+1 : M ×M → L, for 0 ≤ j < i ≤ p, by the equations

Φp+1,σi
p+1 (y, x) = 0, for 0 ≤ i < p, (87)

Φ
p+1,σp
p+1 (y, x) = {x, ∂y} (88)

Φ
σj+1,σj
p+1 (x, x′) = (−1)p−j+1{x, x′}, (89)

Φ
σi,σj
p+1 (x, x′) = 0, for i > j + 1. (90)

In effect, for (87) and (88) we have

Φp+1,σi
p+1 (y, x)

(30)
= −Φσi,p+1

p+1 (x, y)
(33)
= −Φσiσp,σp+1

σp+1
(x, y)

(43)
= −Φ

σiσp,p+1
p+1 (∂x, y)

(∂x=0)
= 0,

Φ
p+1,σp
p+1 (y, x)

(33)
= −Φσp−1,σpσp+1

σp+1
(y, x)

(43)
= −Φ

σp−1σp
p+1 (∂y, x)

(30)
= Φ

σp,σp−1

p+1 (x, ∂y)
(83)
= {x, ∂y},

for (90), we distinguish the cases i = p and i < p, and we have

Φ
σp,σj
p+1 (x, x′)

(33),(30)
= Φσjσp−1,σpσp+1

σp+1
(x′, x)

(43)
= Φ

σjσp−1,σp
p+1 (∂x′, x)

(∂x′=0)
= 0,

Φ
σi,σj
p+1 (x, x′)

(33)
= (−1)p−iΦσiσi+1,σjσi−1

σp+1
(x, x′)

(44)
= (−1)p−iΦ

σiσi+1,σjσi−1

p+1 (∂x, ∂x′) = 0,

while (89) for j = p− 1 is (83) and, for j < p− 1, we have

Φp+1
σj+1,σj(x, x′) + (−1)p−j{x, x′} (83)

= Φ
σj+1,σj
p+1 (x, x′) + (−1)p−jΦ

σp,σp−1

p+1 (x, x′)

(33)
= Φσj+1σp+1,σjσp

σp+1
(x, x′)

(30)
= −Φσjσp,σj+1σp+1

σp+1
(x′, x)

(43)
= Φ

σjσp,σj+1

p+1 (∂x′, x)
(∂x′=0)

= 0.

We now analyze the axioms to be a hypercrossed complex for the given enriched
complex (L,Φ) as above, whose non-trivial structure bilinear maps in Φ are given by (88)
and (89).

We start with (44) and (43). The only non trivially verified requirements here concern
the following seven equations:
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• 0 = Φ
σj+1,σj
σp (x, x′) + ∂ Φ

σj+1,σj
p+1 (x, x′). As Φ

σj+1,σj
p+1 (x, x′) = (−1)p−j+1{x, x′}, while

Φσj+1,σj
σp (x, x′)

(33)
= (−1)p−j+1Φp,p

p (x, x′)
(29)
= (−1)p−j+1[x, x′],

we see that this equation is equivalent to (79), that is: ∂{x, x′} = [x′, x].

• Φ
σj+1,σj
p+1 (∂y, ∂y′) = Φ

σj+1,σj
σp+1 (y, y′). Since Φ

σj+1,σj
p+1 (∂y, ∂y′) = (−1)p−j−1{∂y, ∂y′}, and

Φσj+1,σj
σp+1

(y, y′)
(33)
= (−1)p−jΦp+1,p+1

p+1 (y, y′)
(29)
= (−1)p−j[y, y′],

it follows that this equation is equivalent to (80): {∂y, ∂y′} = [y′, y].

• 0 = Φ
σk−1σj+1,σkσj
σp+1 (x, x′). Since

Φσk−1σj+1,σkσj
σp+1

(x, x′)
(33)
= (−1)p−jΦ

σk−1,σk
p+1 (x, x′) + (−1)p−k−1Φ

σj ,σj−1

p+1 (x, x′)

(30)
= (−1)p−j+1Φ

σk,σk−1

p+1 (x′, x) + (−1)p−k−1Φ
σj ,σj−1

p+1 (x, x′)

(89)
= (−1)p−j+1(−1)p−k{x′, x}+ (−1)p−k−1(−1)p−j{x, x′}
= (−1)j+k+1({x′, x}+ {x, x′}),

this equation becomes equivalent to (81): {x, x′}+ {x′, x} = 0.

• 0 = Φ
σk+1σj+1,σkσj
σp+1 (x, x′). Actually, this equation is always verified:

Φσk+1σj+1,σkσj
σp+1

(x, x′)
(33)
= (−1)p−jΦ

σk+1,σk
p+1 (x, x′) + (−1)p−kΦ

σj ,σj−1

p+1 (x, x′)

(89)
= (−1)p−j(−1)p−k+1{x, x′}+ (−1)p−k(−1)p−j{x, x′}
= (−1)j+k+1{x, x′}+ (−1)j+k{x, x′} = 0.

• Φp,p
p (∂y, x) = Φ

p+1,σp
σp (y, x) + ∂ Φ

p+1,σp
p+1 (y, x). This is actually consequence of (79), since

Φp+1,σp
σp (y, x) + ∂ Φ

p+1,σp
p+1 (y, x)

(33)
= ∂ Φ

p+1,σp
p+1 (y, x)

(88)
= ∂{x, ∂y} (79)

= [∂y, x]
(29)
= Φp,p

p (∂y, x).

• 0 = Φ
σp−1,σp
σp (x, x′) + ∂ Φ

σp−1,σp
p+1 (x, x′). This is equivalent to (79), since

Φσp−1,σp
σp (x, x′) + ∂ Φ

σp−1,σp
p+1 (x, x′)

(33),(30)
= Φp,p

p (x, x′)− ∂ Φ
σp,σp−1

p+1 (x′, x)

(29),(89)
= [x, x′]− ∂{x′, x}.

• Φ
σp,p+1
p+1 (∂y, y′) = Φ

σp,σp+1
σp+1 (y, y′). This becomes equivalent to (80), since

Φ
σp,p+1
p+1 (∂y, y′)− Φσp,σp+1

σp+1
(y, y′)

(30),(33)
= −Φ

p+1,σp
p+1 (y′, ∂y)− ∂ Φp+1,p+1

p+1 (y, y′)

(88),(29)
= −{∂y, ∂y′} − [y, y′].
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Now we focus on axioms (40) and (39). These, in our case, consist of the following
three equations, the second of them for any j < p and the third one for any j < p− 1,

• Φ
σp,σp−1

p+1 ([x, x′], x′′) = Φ
p+1,σp
p+1 (Φ

σp,σp−1

p+1 (x, x′′), x′)− Φ
p+1,σp
p+1 (Φ

σp,σp−1

p+1 (x′, x′′), x′),

• Φ
σj+1,σj
p+1 ([x, x′], x′′) = Φ

σj+2,σj+1

p+1 (Φ
σj+1,σj
σj+2 (x, x′′), x′)− Φ

σj+2,σj+1

p+1 (Φ
σj+1,σj
σj+2 (x′, x′′), x),

• Φ
σj+1,σj
p+1 (x, [x′, x′′]) = Φ

σj+1,σj
p+1 (Φ

σj+1,σj
σj+1 (x, x′), x′′)− Φ

σj+1,σj
p+1 (Φ

σj+1,σj
σj+1 (x, x′′), x′).

But all these equations become now equivalent to condition (82) for stable delooping
crossed module. In effect,

Φ
p+1,σp
p+1 (Φ

σp,σp−1

p+1 (x, x′′), x′)− Φ
p+1,σp
p+1 (Φ

σp,σp−1

p+1 (x′, x′′), x)− Φ
σp,σp−1

p+1 ([x, x′], x′′)

(89),(88)
= {x′, ∂{x, x′′}} − {x, ∂{x′, x′′}} − {[x, x′], x′′}

(79)
= {x′, [x′′, x]} − {x, [x′′, x′]} − {[x, x′], x′′}

(81)
= {x′, [x′′, x]}+ {x, [x′, x′′]}+ {x′′, [x, x′]},

Φ
σj+2,σj+1

p+1 (Φσj+1,σj
σj+2

(x, x′′), x′)− Φ
σj+2,σj+1

p+1 (Φσj+1,σj
σj+2

(x′, x′′), x)− Φ
σj+1,σj
p+1 ([x, x′], x′′)

(89),(33)
= (−1)p−j{−Φp,p

p (x, x′′), x′} − (−1)p−j{−Φp,p
p (x′, x′′), x}

− (−1)p−j+1{[x, x′], x′′}
(29)
= (−1)p−j

(
{[x′′, x], x′}+ {[x′, x′′], x}+ {[x, x′], x′′}

)
(81)
= (−1)p−j+1

(
{x′, [x′′, x]}+ {x, [x′, x′′]}+ {x′′, [x, x′]}

)
,

Φ
σj+1,σj
p+1 (Φσj+1,σj

σj+1
(x, x′), x′′)− Φ

σj+1,σj
p+1 (Φσj+1,σj

σj+1
(x, x′′), x′)− Φ

σj+1,σj
p+1 (x, [x′, x′′])

(89),(33)
= (−1)p−j+1{Φp,p

p (x, x′), x′′} − (−1)p−j+1{Φp,p
p (x, x′′), x′}

− (−1)p−j+1{x, [x′, x′′]}
(29)
= (−1)p−j

(
− {[x, x′], x′′}+ {[x, x′′], x′}+ {x, [x′, x′′]}

)
(81)
= (−1)p−j

(
{x′′, [x, x′]}+ {x′, [x′′, x]}+ {x, [x′, x′′]}

)
.

We now pay attention to condition (42). This reduces here to the equation

• Φ
σi,σi−1

p+1 (x,Φ
σk+1,σk
σi−1 (x′, x′′)) = Φ

σi+1,σi
p+1 (x,Φ

σk+1,σk
σi+1 (x′, x′′), x), where k + 1 < i ≤ p, which

is always satisfied thanks to (81):

Φ
σi,σi−1

p+1 (x,Φσk+1,σk
σi−1

(x′, x′′))− Φ
σi+1,σi
p+1 (x,Φσk+1,σk

σi+1
(x′, x′′), x)

(89),(33)
= (−1)p−i{x, (−1)i−kΦp,p

p (x′, x′′)} − (−1)p−i+1{(−1)i−kΦp,p
p (x′, x′′), x}

(29)
= (−1)p−i{x, (−1)i−k[x′, x′′]} − (−1)p−i+1{(−1)i−k[x′, x′′], x}

(29)
= (−1)p−k

(
{x, [x′, x′′]}+ {[x′, x′′], x}

) (81)
= 0.
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Going now over condition (41), which neither imposes any new requirement. Indeed,
this reduces to the equation

• [y,Φ
σj+1,σj
p+1 (x, x′)] + Φ

p+1,σp
p+1 (y,Φ

σj+1,σj
σp (x, x′)) = 0, and we have

[y,Φ
σj+1,σj
p+1 (x, x′)] + Φ

p+1,σp
p+1 (y,Φσj+1,σj

σp (x, x′))

(89),(33)
= [y, (−1)p−j+1{x, x′}] + Φ

p+1,σp
p+1 (y, (−1)p−j+1Φp,p

p (x, x′))

(88),(29)
= (−1)p−j+1

(
[y, {x, x′}] + {[x, x′], ∂y}

)
(79)
= (−1)p−j+1

(
[y, {x, x′}] + {∂{x′, x}, ∂y}

)
(81),(80)

= (−1)p−j+1
(
− [y, {x′, x}] + [y, {x′, x}]

)
= 0.

Finally, it only remains to check conditions (37) and (38) which, as the last above, do
not impose any additional requirement. In effect, these reduce here to the equations

• Φ
p+1,σp
p+1 ([y, y′], x) = [y,Φ

p+1,σp
p+1 (y′, x)]− [y′,Φ

p+1,σp
p+1 (y, x)],

• Φ
p+1,σp
p+1 (y, [x, x′]) = Φ

p+1,σp
p+1 [Φ

p+1,σp
p+1 (y, x), x′]− Φ

p+1,σp
p+1 [Φ

p+1,σp
p+1 (y, x′), x].

But we have

Φ
p+1,σp
p+1 (y, [x, x′])− Φ

p+1,σp
p+1 [Φ

p+1,σp
p+1 (y, x), x′] + Φ

p+1,σp
p+1 [Φ

p+1,σp
p+1 (y, x′), x]

(88)
= {[x, x′], ∂y} − {x′, ∂{x, ∂y}}+ {x, ∂{x′, ∂y}}

(79)
= {[x, x′], ∂y} − {x′, [∂y, x]}+ {x, [∂y, x′]}

(81)
= {∂y, [x′, x]}+ {x′, [x, ∂y]}+ {x, [∂y, x′]} (81)

= 0,

Φ
p+1,σp
p+1 (y, [x, x′])− Φ

p+1,σp
p+1 [Φ

p+1,σp
p+1 (y, x), x′] + Φ

p+1,σp
p+1 [Φ

p+1,σp
p+1 (y, x′), x]

(88)
= {x, [∂y, ∂y′]} − [y, {x, ∂y′}] + [y′, {x, ∂y}]

(80)
= {x, [∂y, ∂y′]} − {∂{x, ∂y′}, ∂y}+ {∂{x, ∂y}, ∂y′}

(79)
= {x, [∂y, ∂y′]} − {[∂y′, x], ∂y}+ {[∂y, x], ∂y′}

(81)
= {x, [∂y, ∂y′]}+ {∂y, [∂y′, x]}+ {∂y′, [x, ∂y]} (81)

= 0.
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