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KAN’S COMBINATORIAL SPECTRA AND THEIR SHEAVES
REVISITED

RUIAN CHEN, IGOR KRIZ AND ALEŠ PULTR

Abstract. We define a right Cartan-Eilenberg structure on the category of Kan’s
combinatorial spectra, and the category of sheaves of such spectra, assuming some con-
ditions. In both structures, we use the geometric concept of homotopy equivalence as the
strong equivalence. In the case of sheaves, we use local equivalence as the weak equiv-
alence. This paper is the first step in a larger-scale program of investigating sheaves of
spectra from a geometric viewpoint.

1. Introduction

1.1. The stable homotopy category and sheaves. The stable homotopy category
(also known as the stable category, or derived category of spectra) is a foundational setting
for generalized homology and cohomology, and as such, is perhaps the most important
concept of modern algebraic topology. Yet, the category does not have a canonical con-
struction, unlike, say, the category of chain complexes, which plays an analogous role
for ordinary (co)homology. In contrast, different approaches to the stable category exist,
each of which has some advantages and some disadvantages. An extensive foundational
and calculational treatment of the stable category was given by Adams [1]. But Adams’
treatment does not give an underlying “strict category”, which is often needed in construc-
tions, just as actual chain complexes, and not just the objects of their derived category,
are needed in homological algebra. A strict category of spectra, very closely analogous
to the category of topological spaces, is provided by May spectra [21], which, notably,
also works equivariantly for compact Lie groups. The May category has a number of
more recent improvements, many of which are related to constructing a point set level
commutative associative smash product [9, 16, 23].

A completely different construction of the stable homotopy category can be given using
a concept of a combinatorial spectrum discovered much earlier by Kan [20], which can be
described as a “naive stabilization” of a simplicial set. While very appealing aesthetically,
this approach has not had nearly as much follow-up as constructions based on topological
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spaces. A part of the reason is that even defining a smash product of a Kan spectrum with
a based simplicial set (which is necessary in treating generalized homology of spaces) is
difficult, due to the fact that the smash product of based simplicial sets does not commute
with suspension of combinatorial spectra.

Yet, combinatorial spectra have some advantages. Notably, K.S. Brown [5] developed
a fully functional theory of sheaves of combinatorial spectra which is a generalization of
abelian sheaves, and can be used to define generalized sheaf cohomology. Brown’s category
of sheaves of combinatorial spectra was also used by Piacenza [25] to treat locally constant
sheaves of spectra, which is an approach to parametrized spectra. A rigorous definition of
the derived category of parametrized spectra was a notoriously hard problem. Treatments
based on May spectra were more recently given in [17] and [24], and those also work
for compact Lie groups. The construction [25] can be used to construct the derived
category of parametrized spectra as a full subcategory of the derived category of sheaves
of combinatorial spectra. On the other hand, a fully functional category of sheaves of May
spectra, beyond locally constant, has so far not been constructed. Perhaps the difficulty
with the smash product of combinatorial spectra is heuristically related to the ease with
which they are sheafified: for example, left derived functors are less natural in abelian
sheaves also, since abelian sheaves do not have enough projectives.

In [6], Brown and Gersten applied the results of [5] to algebraic K-theory, which was
later used by Thomason [29]. Most of the discussion of sheaf theory concepts for spectra
since that time used Thomason’s approach (see e.g. the survey paper [11] for examples).
Thomason noticed that given certain hypotheses on the site, one can mostly get by with
presheaves, by using cosimplicial Godement resolutions, which can be constructed on the
level of presheaves (since they only use stalks). For Godement resolutions, one only needs
a category with directed colimits and products. Applying these techniques, Thomason
[29] used the category of presheaves of “Ω-spectra” of Bousfield and Friedlander [3] (which
do not have arbitrary limits) to define his version of generalized sheaf cohomology. The
category [3] is not canonical, many variants give the same result. In general, however, any
presheaf approach to sheaf theory is somewhat “Ersatz”: for example, it does not have
full functoriality with respect to functors which cannot be computed on presheaves, such
as the direct image. Such examples, using the original Brown theory [5, 6], occurred in
the work of Gillet on the Riemann-Roch theorem in K-theory [12, 13].

An important point is that the sheaves of combinatorial spectra defined by K.S.Brown
[5] remain the only category of sheaves of spectra with a rigorously defined stable homo-
topy category to date, which is why we consider this setting in the present paper. It is not
possible to even discuss sheaves of the Bousfield-Friedlander Ω-spectra [3] used by Thoma-
son [29] because the category of Bousfield-Friedlander Ω-spectra does not have limits: A
Bousfield-Friedlander Ω-spectrum is a sequence of based simplicial sets Zn together with
weak equivalences Zn → ΩZn+1. It is easily seen that a limit (even an intersection) does
not preserve the equivalences.
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A claim of a construction of a homotopy theory of sheaves of May spectra has been
made by Block and Lazarev [2], and in fact, [2] claim that their construction works also
in other categories based on May spectra, for example the symmetric monoidal category
of S-modules [9]. These categories, of course, have limits, so one can discuss sheaves, but
the construction of sheafification (i.e. left adjoint to the forgetful functor from sheaves to
presheaves) is difficult, in fact using the non-elementary framework of Freyd and Kelly
[10]. It is not clear how this sheafification interacts with homotopy. It was claimed in [2]
without proof that it behaves well on a class of CW-sheaves, and to our knowledge, no
proof has since appeared in the literature.

1.2. Cartan-Eilenberg structures. In the present paper, we revisit Kan’s combi-
natorial spectra, and their sheaves, in view of the new axiomatic approach to homotopy
theory given in [14], (see also [27]), the main concept of which is that of a Cartan-Eilenberg
structure. The established approach to the foundations of homotopy theory uses the con-
cept of a Quillen model structure [26]. A Quillen model structure gives a computable
construction of the derived category, and access to left and right derived functors for cer-
tain functors known as derivable functors ([15], Section 8.4). Describing a Quillen model
structure on a category has become the standard method of constructing a derived cate-
gory in homotopy theory. Yet, constructing Quillen structures can be often technical and
non-canonical: Different model structures may exist, which may, for example, describe the
same derived category, but may differ in derivable functors, so different model structures
may actually be needed to making different functors derived.

The paper [14] formalized a framework which preceded Quillen model structures. This
framework was first used in 1949 by J.H.C.Whitehead [30, 31] to develop the derived
category of spaces, and was also used to construct the stable homotopy category from
May spectra [21], although in both cases, model structures exist also. In 1956, Cartan and
Eilenberg [7] used Whitehead’s approach, and its dual, to construct Ext groups in abelian
categories with enough projectives, resp. enough injectives. In [14], this construction was
formalized in a general context. For a category C and a class of morphisms in D ⊆ C ,
by the derived category (if one exists) we shall mean the universal category (on the same
class of objects) in which the morphisms in D become isomorphisms.

1.3. Definition. [14] Suppose C is a category together with two classes of morphisms
S ⊆ E called strong and weak homotopy equivalences. For simplicity, we shall assume
that both S and E contain all isomorphisms, and satisfy the 2/3 axiom (i.e. in a com-
muting triangle of morphisms, if two out of three morphisms are in the class, so is the
third). Suppose further that the derived category of C with respect to strong homotopies
exists. (We call it the strong homotopy category.)

Suppose now there is a class B ⊆ Obj(C ) such that for any y ∈ B, any weak equiv-
alence f : x1 → x2 induces a bijection on sets of morphisms into y (resp. from y) in
the strong homotopy category. (In that case, we say that B is local (resp, co-local) with
respect to weak equivalences in the strong homotopy category.) Suppose further that for
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every x ∈ Obj(C ), there exists a weak equivalence x → x′ (resp. x′ → x) with x′ ∈ B.
Then we call the category C together with the data just specified a right (resp. left)
Cartan-Eilenberg category.

The authors of [14] prove that for any right or left Cartan-Eilenberg category, a derived
category with respect to weak homotopy equivalences (called the weak homotopy category)
exists, and is equivalent to the full subcategory of the strong homotopy category on B.
In addition, a structure of a left or right Cartan-Eilenberg category is often technically
easier to prove than a Quillen model structure.

Often, the Cartan-Eilenberg formalism can be applied in a situation where there is
an underlying “point set category”, and the morphisms of C are equivalence classes with
respect to a congruence relation of “naive” homotopy. Also, in a left resp. right Cartan-
Eilenberg structure, derived functors can be computed from those functors which send
strong homotopy equivalences to isomorphisms. Thus, Cartan-Eilenberg structures can
be used as a foundation of homotopy theory, without using Quillen model structures.

One thing to notice is that while a Quillen model structure is absolute, a Cartan-
Eilenberg structure is relative in the sense that it needs the strong homotopy category to
be defined first before defining the weak one by means of localization or co-localization.
Left or right Cartan-Eilenberg structures can be “composed” in the sense that the weak
homotopy equivalences of one structure can be the strong homotopy equivalences of an-
other one, thus defining a “composite” Cartan-Eilenberg structure. Similar localization
and co-localization procedures are also possible within Quillen model structure, given
some additional conditions [15]. Also, there is of course always a “trivial” left (and right)
Cartan-Eilenberg structure, where strong and weak homotopy equivalences are the same.

We see from this discussion that Cartan-Eilenberg structures on a category with given
weak homotopy equivalences can have quite a different significance based on how the
strong homotopy equivalences are chosen. Generally speaking, the smaller the class of
strong homotopy equivalences is, the more powerful the machinery is (since it makes,
for example, more functors derivable). It is remarked in [27], Example 2.11, any Quillen
model structure gives rise to both a left and right Cartan-Eilenberg structure. The left
Cartan-Eilenberg structure, for example, is the full subcategory of fibrant objects where
the weak homotopy equivalences are equivalences. The strong homotopy equivalences can
be chosen as left homotopy equivalences, but stronger (=smaller) choices may be possible.
For example, in the case of spaces with the weak Quillen model structure, all objects are
fibrant, and left homotopy equivalences are just weak equivalences, so this choice gives
nothing new, but we can also choose homotopy equivalences in the “naive” sense as strong
homotopy equivalences, which is how the Quillen model structure is constructed. Dually,
the Quillen category of simplicial sets, where every object is cofibrant, is right Cartan-
Eilenberg ([14]) where the strong homotopy equivalences are, again, the “naive” homotopy
equivalences which are used in defining the Quillen structure. Generally, our intuition is
that right Cartan-Eilenberg categories are more suitable for sheafification, just as one can
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develop a good derived category of sheaves on an abelian category with enough injectives.

In the case of spectra, which are a middle ground between spaces and abelian cate-
gories, May spectra (and also the S-modules of [9]) are left Cartan-Eilenberg with respect
to homotopy equivalences (while the symmetric spectra of [16] are neither left nor right
Cartan-Eilenberg). The left Cartan-Eilenberg property turns out to be very valuable in
imitating algebraic structures on spectra [18], but it is not immediately suitable for a
fully functorial sheaf theory. A right Cartan-Eilenberg structure is needed. In [27], such
a structure was found on presheaves of Thomason spectra where the strong homotopy
equivalences there are section-wise weak equivalences of presheaves.

This begs the following question: Is there a right Cartan-Eilenberg theory of spec-
tra (Eckmann-Hilton dual to May spectra), and a right Cartan-Eilenberg theory of their
sheaves, where strong equivalences are naive homotopy equivalences (defined by actual
homotopies)?

In this paper, we answer these questions in the affirmative. However, it appears
hopeless to use any variation of the construction [3] for this purpose. This is, roughly
speaking, because in a stable Quillen model structure, an arbitrary prespectrum cannot
be cofibrant – one needs its structure maps to be cofibrations. On the other hand, Kan’s
combinatorial spectra do work. We prove that Kan’s combinatorial spectra are right
Cartan-Eilenberg with respect to homotopy equivalence (Corollary 2.16). We also prove
that over a sufficiently nice site, the category of sheaves of combinatorial spectra is right
Cartan-Eilenberg with respect to homotopy equivalences (Theorem 4.11). In fact, this
does not seem to be in the literature even for sheaves of simplicial sets, so we also prove
that first (Theorem 4.6).

1.4. Comparison with previous work. This paper draws heavily on the papers
[5, 14, 27], the first of which first considered sheaves of Kan spectra and their cohomology,
and the second two of which axiomatized Cartan-Eilenberg structures, and gave many ex-
amples. As remarked above, the significance of a Cartan-Eilenberg structure depends on
its class of strong homotopy equivalences. In this paper, we construct Cartan-Eilenberg
structures whose strong homotopy equivalences are “naive” homotopy equivalences com-
ing from a notion of homotopy involving an interval-like object. Preserving such geometric
homotopy is a condition which can be readily verified on many functors, thus giving rise
to a large class of derivable functors. Additionally, it is the most natural choice, as a basic
desideratum of homotopy theory is for naive homotopy-preserving functors to be deriv-
able. As far as we know, our right Cartan-Eilenberg structure on Kan’s combinatorial
spectra where strong homotopy equivalences are the naive homotopy equivalences is new,
and no such structure was previously known.

We then use our right Cartan-Eilenberg structure on Kan’s combinatorial spectra to
obtain a right Cartan-Eilenberg structure on their sheaves where, again, strong homo-
topy equivalences are homotopy equivalences with respect to a naive notion of homotopy,
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coming from an interval-like construction. Again, preserving such homotopy is a read-
ily verifiable condition for many functors of interest. Our construction is new and no
such construction was previously known. Additionally, Kan spectra are the only cur-
rently known rigorous setting of homotopy theory of sheaves (rather than presheaves) of
spectra, which makes our result an important part of the foundations. In [27], a right
Cartan-Eilenberg structure is given on categories of sheaves where strong homotopy equiv-
alences are section-wise equivalences. This result of [27] is used in the proof of our main
result, which, however, is substantially stronger. While naive homotopy equivalences are
always section-wise equivalences, the converse is certainly false: for example, over a point,
our Cartan-Eilenberg structure contains the result on Kan combinatorial spectra, while
local equivalences (used in the Cartan-Eilenberg structure of [27]) and equivalences on
sections coincide.

The present paper is organized as follows: In Section 2, we review Kan’s construction
of combinatorial spectra [20], and develop some additional technical concepts. We also
prove that they are right Cartan-Eilenberg with respect to homotopy equivalence. In
Section 3, we make some observations on cosimplicial realization which we need later.
In Section 4, we discuss “nice” sites and prove the right Cartan-Eilenberg property with
respect to homotopy equivalence for sheaves of simplicial sets and combinatorial spectra.

2. Combinatorial spectra

Combinatorial spectra were introduced by D. Kan in [20]. Recall the simplicial category
∆ whose object set is N0 = {0, 1, 2, . . . } and ∆(m,n) is the set of maps

ρ : m = {0, . . . ,m} → n = {0, . . . , n} (1)

preserving ≤. There is a self-functor

Φ : ∆→ ∆

where Φ(m) = m + 1 and for ρ as in (1), Φ(ρ) coincides with ρ on m, and

(Φ(ρ))(m+ 1) = n+ 1.

The category ∆st is the (strict) colimit in the category of small categories of the diagram

∆ Φ // ∆ Φ // . . . (2)

Therefore, one can identify the category ∆st with the category whose object set is Z, and
morphisms are generated by “faces” di : m→m + 1 and “degeneracies” si : m→m− 1
which satisfy the usual simplicial relations.

Denote by Φ∞−n the inclusion of the n’th term ∆ of (2) into the colimit ∆st. Note that
one can have n ∈ Z. Also note that we can identify ∆st(k, `) with the set of ≤-preserving
maps f : N0 → N0 which are of the form

f = Φ∞−n(α) (3)
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for some α ∈ ∆(k + n, `+ n) where (3) is defined as the extension of α given by

Φ∞−n(α)(s) = `− k + s for s > k + n

(i.e., put in another way, which satisfy f(s + 1) = f(s) + 1 for s large enough). From
this point of view, faces (resp. degeneracies) in the wider sense are morphisms in ∆st

which are injective (resp. onto) as maps N0 → N0. These are, of course, precisely those
morphisms which are compositions of the maps di (resp. si), i ≥ 0.

One denotes by Set• the category of based sets, whose objects are based sets (sets with
a distinguished base point ∗), and morphisms are mappings preserving ∗. Consider the
category ∆Op-Set• of based simplicial sets, which is the category of functors ∆Op → Set•
and natural transformations. Then there is a functor

Ωk : ∆Op-Set• → ∆Op-Set•

where for a simplicial set T : ∆Op → Set•,

(Ωk(T ))(n) = {x ∈ T (n+ k) | dn+1(x) = · · · = dn+k(x) = ∗}

and for x ∈ (Ωk(T ))(n), the operators si, di, j ≤ n act on x the same way as in T . We
write Ω instead of Ω1. We have

Ωk+` = ΩkΩ`.

The functor Ωk has a left adjoint denoted by Σk.
We can describe the functor Σ explicitly as follows, separating the roles of faces and

degeneracies (a similar description also holds for Σk): Let ∆0 be the subcategory of ∆
consisting of the same objects and the morphisms (1) such that

|ρ−1(n)| ≤ 1. (4)

(Note that the category ∆0 contains the image of Φ, and morphisms in the image of Φ
are precisely those which satisfy the inequality in (4).) Then we have a functor

Σ0 : ∆Op-Set• → ∆Op
0 -Set•

where Σ0Z(n) = Z(n − 1) for n ≥ 1 and Σ0(Z)(0) = ∗, and on Σ0Z, morphisms of the
form Φ(ρ) act the same way as ρ on Z, and other morphisms act by ∗. If we denote the
inclusion functor ι : ∆Op

0 → ∆Op and its left Kan extension by ι], then

Σ = ι]Σ0.

D.Kan [20] proves the following

2.1. Proposition. The functor Σk commutes with the simplicial realization functor |?|
up to canonical natural isomorphism, where Σk on based spaces denotes the canonical
suspension ? ∧ Sk.
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Proof. It suffices to consider k = 1. Consider the case of the standard n-simplex ∆n+

where ∆n is the representable simplicial set, ∆n(k) = ∆(k, n). Then Σ(∆n+) has a non-
degenerate element x ∈ Σ(∆n+)(n + 1) which satisfies dn+1(x) = dn0 (x) = ∗. Clearly, the
geometric realization of this is canonically identified with Σ|∆n+|, and the identification
is compatible with faces and degeneracies, and thus applies to every simplicial set.

2.2. Corollary. We have a natural inclusion

|Ω(X)| ⊆ Ω|X| (5)

on based simplicial sets X.

Proof. We have a map given by simplicial realization of the counit of adjunction:

Σ|Ω(X)| = |ΣΩ(X)| → |X|.

The map (5) is its adjoint. One easily verifies that it is an inclusion.

2.3. Proposition. For a based simplicial set Z, the unit of adjunction

η : Z → ΩΣZ (6)

is an isomorphism.

Proof. Every element of a simplicial set is uniquely expressible as an iterated degeneracy
(meaning a composition of degeneracies) of a non-degenerate element (i.e. one which is
not in the image of a degeneracy). Now we have a bijection b from the non-degenerate
elements of Z(n) to the non-degenerate elements of ΣZ(n+ 1) for n ≥ 0 (since this is by
definition true for Σ0, and ι] is an inclusion on each ?(n), and all of the elements in its
image are degenerate.

On the other hand, we also have a bijection between the non-degenerate elements of
ΩT (n) to the non-degenerate elements of T (n + 1) which satisfy dn+1(x) = ∗ for any
based simplicial set T . This is because if, for x ∈ T (n + 1), dn+1(x) = ∗, then x = ρ(y)
for y non-degenerate where ρ is an iterated degeneracy satisfying (4) (with n replaced by
n+ 1). Thus, if x ∈ ΩT (n) is non-degenerate if and only if x ∈ T (n+ 1) is.

Now if we denote for any simplicial set Z by Znd the sequence of sets of non-degenerate
elements, we see that for x ∈ Znd(n), b(x) ∈ (ΣZ)nd(n+ 1) satisfies dn+1(b) = ∗. Thus, η
preserves non-degenerate elements, and we have a commutative diagram

Znd(n)
∼= //

ηnd ''NN
NNN

NNN
NNN

(ΣZ)nd(n+ 1)

(ΩΣZ)nd(n).

⊆

66mmmmmmmmmmmmm

Thus, ηnd is a bijection, which implies the statement of the Proposition.
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Similarly, one can consider the category ∆Op
st -Set• of functors ∆Op

st → Set• and natural
transformations, called the category of stable simplicial sets. One has functors

Ω∞+k : ∆Op
st -Set• → ∆Op-Set•

where for
(Ω∞+k(T ))(n) = {x ∈ T (n+ k) | dm(x) = ∗ for m > n}.

Clearly, we have
Ω`Ω∞+k = Ω∞+k+`,

and the functor Ω∞+k has a left adjoint Σ∞+k.
The category S of combinatorial spectra is the full subcategory of ∆Op

st -Set• on all
stable simplicial sets T with the property that for all x ∈ T (n) there exists a k such that
dm(x) = ∗ for m > k. This is a coreflexive subcategory of ∆Op

st -Set• (by passing to the
subset of all elements satisfying the condition). Therefore, the category S has all limits
and colimits.

2.4. Proposition. The category S is canonically equivalent to the category whose ob-
jects are sequences of simplicial sets (Zn)n∈N0 (N0 can also be equivalently replaced with
Z) together with isomorphisms of simplicial sets

ρn : Zn
∼= // ΩZn+1 (7)

and morphisms are sequences of morphisms of simplicial sets commuting with the structure
maps.

Proof. For a combinatorial spectrum Z, put

Zn = Ω∞−nZ.

For a sequence Zn with structure maps (7), define

Z(n) = colim
k

Zk(n+ k).

By definition, these functors are inverse to each other up to canonical natural isomor-
phisms.

In view of Corollary 2.2, Proposition 2.4 gives the sequence (|Zn|) a functorial structure
of an inclusion prespectrum. Denote by L (Z) the associated May spectrum. A morphism
f : X → Y of combinatorial spectra is called a (weak) equivalence if L (f) is an equivalence
of May spectra.

Also, Proposition 2.4 suggests to also consider the concept of a combinatorial prespec-
trum Z which is a sequence of morphisms of based simplicial sets

ρn : Zn → ΩZn+1, n ∈ Z (8)
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(or, by adjunction equivalently, ΣZn → Zn+1), without any additional assumptions on
ρn. A morphism of combinatorial prespectra f : Z → T is a sequence of morphisms
fn : Zn → Tn such that we have commutative diagrams

Zn

ρn

��

fn // Tn

ρn

��
ΩZn+1

Ωfn+1// ΩTn+1.

Denote the category of combinatorial prespectra by P. We then have a “forgetful” functor

Ps : S →P,

which has a left adjoint
Sp : P → S .

In the notation of Proposition 2.4, for a prespectrum Z, we have

(Sp(Z))n = colim ΩkZn+k.

Similarly as in the context of May spectra, a variant of the construction of P is obtained
by replacing the indexing set Z with N0 in (8). The resulting category will be denoted by
P0 and the analogues of the functors Ps, Sp by Ps0, Sp0. There is a canonical forgetful
functor P →P0. It is not an equivalence of categories.

For a combinatorial spectrum X, an element x ∈ X(n), x 6= ∗, is called non-degenerate
if x is not in the image of a degeneracy.

2.5. Lemma. Let Z be a combinatorial spectrum and let x ∈ Z(n), x 6= ∗. Then there
exists a unique degeneracy in the wider sense s ∈ ∆st(n,m) and a unique element y ∈
Z(m) such that x = s(y) and y is non-degenerate.

Proof. Suppose ds(x) = ∗ for s > N . By the proof of Proposition 2.4, we may consider
x as an element of Zn−N(N) which is an ordinary (based) simplicial set, where an anal-
ogous statement is well known, existence and uniqueness. N is of course not uniquely
determined, but if also x = s′(y′) for a degeneracy s′ and a non-degenerate element y′, we
can use the larger of the N ’s for y and y′ to see that y = y′, s = s′.

The sphere spectrum S is the free combinatorial spectrum on one element α ∈ S(0)
with the relation that di(α) = ∗ for i ≥ 0. We have

S(n) = {αn, ∗} for n ≥ 0

where αn is the iterated degeneracy of α, and

S(n) = {∗} for n < 0.
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It is immediate from the definition that

S = Σ∞S0.

In the notation of Proposition 2.4, the based simplicial sets Sn are the free based simplicial
sets on one element αn ∈ Sn(n) such that di(αn) = ∗ for all i ≥ 0. In particular, we have

ΩSn ∼= Sn−1.

Recall that the standard n-simplex is the based simplicial set

∆n = ∆(?, n)

(the representable functor). As usual, we denote by ∆◦n the simplicial set obtained from
∆n by deleting the non-degenerate element α ∈ ∆n(n) and all its degeneracies, and by
Vn,k the simplicial set obtained by deleting, additionally, dk(α) and all its degeneracies.

A relative combinatorial cell spectrum is a morphism f : X → Y of combinatorial
spectra such that there exist combinatorial spectra Y(m), m ≥ −1 where Y(−1) = X,
indexing sets Im, indexing morphisms nm : Im → N0, `m : Im → Z and pushout diagrams
of combinatorial spectra ∨

i∈Im

Σ∞+`m(i)∆◦nm(i)+

fm //

⊆

��

Y(m−1)

��∨
i∈Im

Σ∞+`m(i)∆nm(i)+
// Y(m)

(9)

such that
Y = lim

→
Y(m).

Here
∨

denotes the coproduct.
An anodyne extension is defined in the same way as a relative combinatorial cell

spectrum where in (10), ∆◦nm(i) is replaced by Vnm(i),km(i). Explicitly, an anodyne extension
is a morphism f : X → Y of combinatorial spectra such that there exist combinatorial
spectra Y(m), m ≥ −1 where Y(−1) = X, indexing sets Im, indexing morphisms nm : Im →
N0, `m : Im → Z and pushout diagrams of combinatorial spectra∨

i∈Im

Σ∞+`m(i)Vnm(i),km(i)+
fm //

⊆

��

Y(m−1)

��∨
i∈Im

Σ∞+`m(i)∆nm(i)+
// Y(m)

(10)
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such that
Y = lim

→
Y(m).

Clearly, anodyne extensions are weak equivalences.

2.6. Proposition. Every injective morphism of combinatorial spectra is a relative combi-
natorial cell spectrum. In particular, every combinatorial spectrum is a cell combinatorial
spectrum.

Proof. The only non-degenerate element of Σ∞+`∆n+ which is not in Σ∞+`∆◦n+ is in
dimension n+ `, corresponding to the non-degenerate element of ∆n which is not in ∆◦n.
For a non-degenerate element x ∈ Y (n) r X(n), let the degree of x be the minimum k
such that di(x) = ∗ for i > k. Then we can let Y(k)(n) be the set of all elements x of the
form s(y) where s is a degeneracy in the wider sense, and y is non-degenerate of degree
≤ k. By Lemma 2.5, Y(k) is a subspectrum of Y , and moreover, Y(k+1)(n) is obtained from
Y(k) by attaching a cell Σ∞−n(∆k+) for every non-degenerate element of Y (n) of degree
k.

It is important to note that if we can attach a cell of the form Σ∞−`∆n+ to a combina-
torial spectrum, we can obtain an isomorphic combinatorial spectrum by attaching a cell
of the form Σ∞−`−k∆(n+k)+ instead for any k ≥ 0. Also, a combinatorial cell spectrum
(and hence every combinatorial spectrum) is naturally a directed colimit of inclusions
of its finite cell subspectra, which are, by adjunction, shift desuspensions of simplicial
sets. Therefore, in particular, every combinatorial spectrum is a directed direct limit of
inclusions of shift desuspensions.

For based simplicial sets K,T , we have a simplicial set

F (K,T ) = ∆Op-Set•(K ∧ (∆n)+, T )

where (?)+ means attaching a disjoint base point. The left adjoint to this functor is K∧?.

2.7. Lemma. [20] There is a canonical natural morphism of based simplicial sets

(ΣK) ∧ T → Σ(K ∧ T ) (11)

which is a weak equivalence (i.e. becomes a homotopy equivalence after applying simplicial
realization).

Proof. Consider again the case when both K = ∆m+, T = ∆n+. The non-degenerate
elements in dimension m+ n of the simplicial set

∆m+ ∧∆n+ = (∆m ×∆n)+ (12)

correspond to shuffles of m ordered elements and n other ordered elements, i.e. their
number is (

m+ n

m

)
.
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After suspension, there will be the same number of nondegenerate elements in dimension
m+ n+ 1. In

(Σ∆m+) ∧∆n+, (13)

on the other hand, the non-degenerate elements in dimension m + n + 1 correspond to
shuffles of m + 1 ordered elements and n ordered elements (the same as if we replaced
Σ∆m+ by (∆m+1)+, i.e. their number is(

m+ n+ 1

n

)
.

The morphism from (13) to the suspension of (12) is obtained by applying the last degen-
eracy (sm+1) to all non-degenerate elements of dimension m+ n+ 1 corresponding to the
shuffles of the m+ 1 and n ordered elements where the last of the m+ 1 elements is not
in the end. One verifies that this recipe is natural in the simplicial category. Addition-
ally, by definition, after simplicial realization, the map (11) becomes a quasi-fibration [8]
with contractible fibers, so it is a weak equivalence between CW-complexes, and hence a
homotopy equivalence.

It is well known that if a functor F1 : C → D has a right adjoint G1 and a functor
F2 : C → D has a right adjoint G2, and we have a natural transformation F1 → F2, then
we have a natural map of sets

D(F2X, Y )→ D(F1X, Y ),

which is, by adjunction,
C(X,G2Y )→ C(X,G1Y )

which, by the Yoneda lemma, gives a canonical natural transformation

G2 → G1.

Applying this principle to the situation of Lemma 2.7, the right adjoint to F1 = (Σ?)∧ T
is G1 = ΩF (T, ?), and the right adjoint to F2 = Σ(?∧ T ) is G2 = F (T,Ω(?)), so we get a
canonical natural transformation

F (T,ΩY )→ ΩF (T, Y ) (14)

which, moreover, is injective, since it is right adjoint to a surjective map.

This means that if Z is a combinatorial prespectrum and T is a based simplicial set,
then we get canonical morphisms

F (T, Zn)→ ΩF (T, Zn+1), (15)

and since Ω commutes with colimits of sequences, a combinatorial prespectrum, denoted
by Fp(T, Z). We may of course go on to define a spectrum F (T, Z) by

F (T, Z) = Sp(Fp(T, Z)),
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i.e. by setting
F (T, Z)n = colim

k
ΩkF (T, Zn+k). (16)

This seems particularly natural for a combinatorial spectrum Z, where one sees that the
morphisms (15) are inclusions.

It is important to note, however, that the functor Fp(T, ?) : P →P has a left adjoint
T ·?, while the functor F (T, ?) does not. For a prespectrum Z and a based simplicial set
T , the based simplicial set (T · Z)n is the colimit of the diagram of based simplicial sets

...

��
Σ(T ∧ ΣZn−2)

��

// Σ2(T ∧ Zn−2)

T ∧ ΣZn−1

��

// Σ(T ∧ Zn−1)

T ∧ Zn

(17)

An analogue of these constructions also exists when replacing P with P0. It is interesting
to note that in that case, the diagram (17) is finite for each n, containing only the terms
involving Zn−k for k ≤ n.

In Diagram (17), the horizontal morphisms are weak equivalences of simplicial sets, but
unless we know something about the vertical arrows, unfortunately this does not appear
to imply anything about the colimit of (17). On the other hand, if Z is a combinatorial
spectrum, the vertical arrows of (17) are injective, so the inclusion of T ∧ Zn into the
colimit is a weak equivalence. Inspecting non-degenerate elements in (17), we obtain the
following

2.8. Lemma. If Z is a combinatorial spectrum, then ? ? Z = Sp(?) · Ps(Z) (where “?·?”
was defined under (16) above) preserves weak equivalences as well as injective morphisms
in the “?” coordinate.

2.9. Remark. For a combinatorial spectrum Z and a based simplicial set K, it is possible
to describe K ? Z explicitly in terms of the cell decomposition of Z given in the proof of
Proposition 2.6. We define K ? Y(k) by induction on k so that for every non-degenerate
cell

e : Σ∞−n∆`+ → Y(k) (18)

of degree ` ≤ k, we have a morphism

K ? e : Σ∞−nK ∧∆`+ → K ? Y(k) (19)
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such that for an iterated face d : ∆m → ∆`, if we denote by e′ the non-degenerate cell of
Y(k) of degree p ≤ m, we have a commutative diagram

Σ∞−nΣm−pK ∧∆p+
K?e′ // Y(k)

Σ∞−nK ∧ Σm−p∆p+

OO

Σ∞−nK ∧∆m+

OO

Σ∞−nK∧d
// Σ∞−nK ∧∆`+

K?e

OO

(20)

where the left column is projection followed by an iteration of the morphism (11) of
Lemma 2.7. We may start with k = −1, Y(−1) = ∗. We have K ? Y(−1) = ∗. Assuming
K ? Y(k) has been defined, and e is a cell (18) of Y(k+1) of degree ` = k + 1, we have an
attaching map

Σ∞−nK ∧∆◦`+ → K ? Y(k) (21)

given by using the map (19) with e replaced by the faces of e, which is consistent because
of Diagram (20). Thus, we may push out (21) with the inclusion

Σ∞−nK ∧∆◦`+ → Σ∞−nK ∧∆`+.

Note that this description can also be taken as a definition of K ?Z. Functoriality follows
by applying iterations of the morphisms (11), since morphisms of combinatorial spectra
do not increase the degree of cells. Immediately from this construction, there follows

2.10. Lemma. We have a natural (in all coordinates) isomorphism of spectra

(T1 ∧ T2) ? Z ∼= T1 ? (T2 ? Z) (22)

Note that S0 = ∗+ (i.e. the simplicial set of two points with one of them as base point)
is a left unit for the operation ?·? (see the paragraph under (16) above), hence also for ?.
Now denoting I = ∆1, a homotopy h : f ' g two morphisms of combinatorial spectra

f, g : X → Y (23)

is a morphism
h : I+ ? X → Y (24)

such that hd0 = f , hd1 = g. The equivalence relation of homotopy ' on S (X, Y )
is defined as the smallest equivalence relation containing the relation of existence of a
homotopy h : f ' g. By functoriality of ?, this is a congruence relation on the category
of combinatorial spectra, and the corresponding quotient category is denoted by hS , and
called the (strong) homotopy category of combinatorial spectra. An isomorphism in hS
is called a homotopy equivalence.
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2.11. Lemma. The inclusions

di : X = S0 ? X → I+ ? X

are injective morphisms, and weak equivalences. A homotopy equivalence of combinatorial
spectra is a weak equivalence.

Proof. The second statement clearly follows from the first. The first statement follows
from the fact that di : S0 → I+ are injective morphisms and weak equivalences.

A morphism f : X → Y of combinatorial spectra is called a Kan fibration if in the
following commutative diagram, for any choice of horizontal arrows, the diagonal arrow
exists:

Σ∞+`(Vn,k)+
//

⊂
��

X

f

��
Σ∞+`∆n+

//

99

Y.

(25)

One has a similar lifting whenever the left vertical arrow is replaced by any anodyne
extension. A combinatorial spectrum X is called Kan fibrant if the terminal morphism
X → ∗ is a Kan fibration. This is, by adjunction, equivalent to Xn being a Kan fibrant
simplicial set for every n ∈ Z.

The right adjoint to L is the functor Sing which takes a May spectrum T = (Tn) to
a combinatorial spectrum Z where Zn = Sing(Tn). (Note that Ω commutes with Sing,
since their left adjoints Σ and |?| commute.) We shall write

Z = Sing(T ). (26)

2.12. Lemma. (1) A combinatorial spectrum of the form (26) for a May spectrum T is
Kan fibrant.

(2) For any combinatorial spectrum Z, the unit of adjunction

η : Z → Sing(L (Z)) (27)

is a weak equivalence.

Proof. For (1), it suffices to show that the based simplicial set Ω∞−nSing(T ) = Sing(Tn)
are Kan fibrant, which is well known.

For (2), since weak equivalences are defined by applying L , it suffices to show that
the canonical morphism

L SingL (Z)→ L (Z)

is a weak equivalence. More generally, we claim that the counit of adjunction

ε : L Sing(T )→ T
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is a weak equivalence for any May spectrum T . But L Sing(T ) is the spectrification of
the inclusion prespectra whose terms are |Sing(Tn)|, so the statement follows from the
fact that the counit of adjunction

|Sing(Tn)| → Tn

is a weak equivalence.

2.13. Proposition. For any injective morphism of combinatorial spectra f : X → Y
which is a weak equivalence, there exists a (necessarily injective) morphism of combina-
torial spectra g : Y → Z such that g ◦ f is an anodyne extension.

Proof. By Proposition 2.6, Y may be expressed as Yα for some ordinal α where we let
Y0 = X, for a limit ordinal β, we put

Yβ =
⋃
γ<β

Yγ,

and for every β < α, Xβ+1 is obtained from Xβ by attaching a cell of the form Σ∞−`∆n+

by Σ∞−`∆◦n+. We will construct, by induction, inclusions of spectra

Yβ ⊆ Xβ (28)

such that the inclusion X ⊆ Xβ is an anodyne extension. We just take unions at limit
ordinals, and X0 = X, so it suffices to show how to construct Xβ+1 from Xβ.

To this end, first, note that we can assume that Xβ is Kan fibrant by the “small object
argument” (attaching all possible Σ∞−`∆n+’s via different Σ∞−`Vn,k+’s in ω steps). Now
consider the attaching map

f : Σ∞−`∆◦n+ → X,

and its adjoint
φ : ∆◦n+ → X`.

Since (Xβ)` is a Kan fibrant simplicial set, and

X` ⊆ Y`

is a weak equivalence, φ extends to a morphism of based simplicial sets

∆n+ → (Xβ)`,

and hence f extends to a morphism of Kan spectra

Σ∞−`∆n+ → Xβ.

In other words, “the cell we are trying to attach was already in Xβ”. Thus, instead of the
cell, we can attach

Σ∞−`(∆n × I)+

via
Σ∞−`(∆◦n × I ∪∆n × {0})+,

which is an anodyne extension.
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2.14. Theorem. Kan fibrant combinatorial spectra are local with respect to weak equiva-
lences in hS . In other words, if we write [X, Y ] = hS (X, Y ), then for a weak equivalence
e : X → Y and a Kan fibrant spectrum Z,

[e, Z] : [Y, Z]→ [X,Z] (29)

is a bijection.

2.15. Remark. It is already known, and it also follows from this theorem and Lemma 2.12
that the weak homotopy category of combinatorial spectra is the stable category, and that
[X,Z] calculates morphisms in the weak homotopy category for Z Kan fibrant. Therefore,
in particular, (29) is actually an isomorphism of abelian groups.

Proof of Theorem. To prove that (29) is onto, first note that without loss of generality,
we may assume that e is injective. To this end, consider the mapping cylinder

Me = I+ ? X ∪{1}+?X Y. (30)

Then by Lemma 2.8,
X = {0}+ ? X →Me. (31)

is an inclusion, while the projection

Me→ {1}+ ? X ∪{1}+?X Y = Y

is a homotopy equivalence by Lemma 2.10.
In effect, consider a cell decomposition of (30) considered as a relative combinatorial

cell spectrum with respect to the subspectrum Y . Then for a cell a of (30), we claim that
the lowest j such that for all i > j, di(a) = ∗ is the same for a considered as a cell in
I+ ? X. This is because whenever dia ∈ Y , there exists an i′ > i with di′a /∈ Y , such that
in I+ ? X, dia and di′a have the same projection to X. (This statement depends on the
fact that I+ ? X is attached to Y at the 1 coordinate.)

Therefore, by the description of I+?? given below Lemma 2.8, I+?? commutes with
the pushout (30), and therefore we can apply Lemma 2.10.

Thus, e may be replaced with the injective morphism (31).
Now when e is injective, it is contained in an anodyne extension by Proposition 2.13,

to which e can be extended by the assumption that Z is Kan fibrant.
To prove that (29) is injective, again, without loss of generality, we may assume that

e is injective. Now form the homotopy pushout

Pe = Y ∪{1}+?X I+ ? X ∪{1′}+?X Y.

Here I is the simplicial set obtained by attaching two copies of I by 0; the two other
vertices are denoted by 1, 1′. We have an inclusion

φ : Pe ⊆ I+ ? Y,
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which is moreover an equivalence since e was an equivalence. Now two morphisms f, g :
Y → Z which are homotopic when composed with e are the same thing as a morphism
ψ : Pe→ Z. Since φ is contained in an anodyne extension by Proposition 2.13, ψ extends
to I+ ?Y , which means that f and g are homotopic, which is what we wanted to prove.

2.16. Corollary. The category of combinatorial spectra is right Cartan-Eilenberg in the
sense of [14] with respect to homotopy equivalences, weak equivalences and Kan fibrant
combinatorial spectra.

3. Cosimplicial realization

Consider the category ∆-C of cosimplicial objects in C where C is either the category
∆Op-Set• of based simplicial sets or the category S of combinatorial spectra. We shall
construct geometric realization functors

|?| : ∆-C → C . (32)

First, let us consider the case of C = ∆Op-Set•. For the terms of a cosimplicial based
simplicial set X, we will use the notation Xm

n where m is the cosimplicial and n is the
simplicial coordinate. We define |X| as the equalizer in the category of the diagram∏

m∈N0

F (∆m+, X
m
? ) →→

∏
φ∈∆in(k,m)

F (∆m+, X
k
? ) (33)

where ∆in denotes the subcategory of ∆ consisting of injective morphisms only, and the
two arrows (33) correspond to applying the morphism in ∆in(k,m) either to ∆m+ or to
Xk

? .
Notice that we are “ignoring the degeneracies” in (33). Clearly, this realization of

cosimplicial based simplicial sets is a functor. By a weak equivalence of cosimplicial based
simplicial sets f : X → Y we mean a morphism such that for every m, fm? : Xm

? → Y M
?

is a weak equivalence. A cosimplicial based simplicial set X is term-wise Kan fibrant if
each Xm

? is Kan fibrant.

3.1. Lemma. The functor |?| preserves weak equivalences on levelwise Kan fibrant based
simplicial sets.

Proof. This follows from the fact that the canonical morphism X → F (∆m,+, X) is a
weak equivalence when X is Kan fibrant, that F (?, X) turns Kan cofibrations into Kan
fibrations, that pullbacks of simplicial sets along fibrations preserve weak equivalences, as
do directed (inverse) limits of fibrations.



1382 RUIAN CHEN, IGOR KRIZ AND ALEŠ PULTR

3.2. Comment. In [3], both co-faces and co-degeneracies are used in defining the cosim-
plicial realization of simplicial sets. While that construction seems more natural, it only
preserves weak equivalences on cosimplicial simplicial sets which are fibrant in a stronger
sense. Basically, one must require that the morphism from a given cosimplicial stage to
the pullback of all co-degeneracies from the lower stages is a fibration. We do not know
if this has been checked rigorously for the case of Godement resolutions.

The difficulty is (Eckmann-Hilton) dual to a similar difficulty with the totalization
(=geometric realization) of simplicial spaces. There, it is important that both faces and
degeneracies be used in the realization, since only then does one have Milnor’s theorem
on preserving products (at least as long as we are in the compactly generated category),
which, in turn, is needed when discussing algebraic structures (for example, when using
the iterated bar construction to construct Eilenberg-MacLane spaces).

In the case of simplicial spaces, one may use Lillig’s theorem [22] to conclude that
individual degeneracies being cofibrations is enough to control the homotopy type of the
totalization. As far as we know, a dual of Lillig’s theorem for cosimplicial simplicial sets
is not known. Nor is this, however, as urgent a problem as in the case of simplicial spaces:
while in the present paper the emphasis is not on further algebraic structures, cosimplicial
realization, even without co-degeneracies, preserves limits (in particular, products) by the
commutation of limits.

We now apply the definition (33) to the case where X is a cosimplicial combinatorial
spectrum, thus giving a definition of (32) to C = S . First, observe that a morphism of
combinatorial spectra f : Z → T is a Kan fibration if and only if each fn : Zn → Tn is a
Kan fibration. Also note that Ω preserves Kan fibrations. Finally, directed colimits also
preserve Kan fibrations of simplicial sets (and hence combinatorial spectra).

4. Sheaves

We begin with sheaves of sets. We follow [28] as a reference here. A site is a category C
together with a class of sets of morphisms with the same target (called coverings) which
satisfy the usual axioms (an isomorphism is a covering, coverings are transitive, and
stable under pullback), see [28], Section 6. A presheaf valued in a category A is a functor
F : C Op → A . The images of objects (resp. morphisms) under F are called sections
(resp. restrictions). A sheaf is a presheaf F such that for every covering {Xi → X}, the
diagram

F (X)→
∏
i

F (Xi) →→
∏
i,j

F (Xi ×X Xj)

where the maps are restrictions is an equalizer. A site is said to have subcanonical topology
it all representable presheaves are sheaves. The representable (pre)sheaf associated with
an object x of a site will be denoted by x.
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Morphisms of presheaves are natural transformations, and sheaves are a full subcat-
egory. The categories of A -valued presheaves and sheaves on a site C will be denoted
by pShA (C ) resp. ShA (C ). If the subscript is omitted, we understand A = Set. The
category of sheaves of sets on a site C is called its topos. If A is a category of universal
algebras, then the category of A -valued sheaves is equivalent to the category of the same
type of universal algebras in the topos. In this case, the forgetful functor from sheaves
valued in A to presheaves valued in A has a left adjoint called sheafification ([28], Section
10).

A morphism of topoi f : Sh(C )→ Sh(D) consists of a functor

f−1 : Sh(D)→ Sh(C )

which has a right adjoint f∗, and is left exact, i.e preserves finite limits. A point is a
morphism of a topos into the topos of sets (i.e. the category of sheaves on ∗). The set
f−1F for a sheaf F where f is a point is called a stalk. Points in this sense can be also
characterized in terms of the site C directly ([28], Lemma 31.7). We say that a site has
enough points if a morphism of sheaves is an isomorphism whenever it is an isomorphism
on stalks. In this paper, we will work with sites C satisfying the following assumption:

The site C is small (i.e. is a set) and has enough
points.

(A1)

We call a morphism of sheaves injective resp. surjective (or onto) if it is injective resp.
surjective on stalks. Being injective is equivalent to being injective on sections. By [28],
Lemma 28.5, we may make without loss of generality (i.e. by replacing the topos with an
isomorphic topos) the following assumption:

The site C has subcanonical topology, and sub-
sheaves of representable sheaves are representable.

(A2)

Since points are characterized in terms of the topos, in particular, we may attain Assump-
tion (A1) without violating Assumption (A2).

Finally, Lemma 28.5 of [28] says that we can replace, equivalently from the point of
view of the structures we study, a (small) site with a given set of sheaves S by a (small) site
satisfying Assumption (A2) where every element of S becomes representable. Choosing
S to be the set of all quotients (i.e. images of surjective morphisms) of representable
sheaves, we may assume C additionally satisfies the following assumption:

For every sheaf G on C , every point p and every
element t ∈ p−1(G ), there exists an object u of C
and an injective morphism u → G such that p is
in u and t lifts to G (u).

(A3)

4.1. Lemma. Consider a site C satisfying Assumptions (A1) and (A2). Suppose we have
injective morphisms of sheaves

α : x→ G , β : F → G (34)
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for some x ∈ ObjC . Then there exists a monomorphism ι : y → x in C and a pushout
diagram

y
ι //

φ
��

x

α
��

F
β
//F ′

(35)

such that the induced morphism
β′ : F ′ → G

is injective.

Proof. We define the diagram (35) as the pullback of α and β. The pullback sheaf is
representable by Assumption (A2). The top row is representable, and ι is a monomorphism
by the Yoneda lemma. Finally, the reason β′ is also injective is that it is true after applying
f−1 (which is an exact functor) for any point f , which is enough by Assumption (A1).

To discuss homotopy theory, we begin with sheaves of simplicial sets (simplicial sheaves).
Simplicial sets are a universal algebra, so the category is determined by the topos. By a
local equivalence of simplicial sheaves (i.e. objects of ∆Op-Sh(C )), we mean a morphism
which is a weak equivalence on stalks.

For a monomorphism ι : y → x in C , denote by ∆ι
n the pushout in the category of

simplicial sheaves

∆◦n × y
∆◦n×ι //

⊆×Id
��

∆◦n × x

��
∆n × y // ∆ι

n.

(36)

Here the product of a (simplicial) set with a sheaf of sets is done section-wise. (It also
commutes with taking stalks.)

An injective morphism of sheaves f : F → G is called a relative cell sheaf if there
exists an ordinal α and sheaves Gγ for ordinals γ < α, where G0 = F , Gα = G , for a limit
ordinal β, Gβ is the colimit of Gγ, γ < β, such that for any ordinal β < α, we have a
monomorphism ιβ : yβ → xβ in C and a pushout of sheaves of the form

∆
ιβ
nβ

//

��

Gβ

��
∆nβ × xβ // Gβ+1.

(37)

An anodyne extension of sheaves is defined the same way, except ∆
ιβ
nβ is replaced by
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E
ιβ
nβ ,kβ

, which is defined by the pushout diagram

Vn,k × y
Vn,k×ι//

⊆×Id
��

Vn,k × x

��
∆n × y // Eι

n,k.

Explicitly, an injective morphism of sheaves f : F → G is called an anodyne extension if
there exists an ordinal α and sheaves Gγ for ordinals γ < α, where G0 = F , Gα = G , for
a limit ordinal β, Gβ is the colimit of Gγ, γ < β, such that for any ordinal β < α, we have
a monomorphism ιβ : yβ → xβ in C and a pushout of sheaves of the form

E
ιβ
nβ ,kβ

//

��

Gβ

��
∆nβ × xβ // Gβ+1.

(38)

4.2. Lemma. Every injective morphism of simplicial sheaves over a site C which satisfies
Assumptions (A1), (A2) and (A3) is a relative cell sheaf.

Proof. Consider an injective morphism of sheaves of simplicial sets F → G . Put G0 =
F . We will construct, inductively, sheaves Gβ as in the definition of a relative cell sheaf.
For β a limit ordinal, just take the colimit of Gγ over γ < β. For any ordinal β, we will
have an injective morphism Gβ → G . If it is onto, we are done. Otherwise, by Assumption
(A1), there exists a point p and an element t ∈ p−1(G ) which is not in Gβ, but whose
faces are. By Assumption (A3), there exists an object u containing p and an injective
morphism α : u→ G such that t lifts to G (u) via α.

Now we are in the situation of Lemma 4.1, with F replaced by the appropriate term
of Gβ. Let Gβ+1 be attaching one non-degenerate simplex in the appropriate dimension
by the pushout (35).

The process is guaranteed to end by the smallness of C .

4.3. Lemma. An anodyne extension of sheaves over a site C which satisfies Assumptions
(A1) and (A2) is a local equivalence.

Proof. Use the definition, performing the construction on the presheaf level first, and
then sheafifying.

4.4. Lemma. For an injective local equivalence of sheaves f : F → G over a site C
which satisfies Assumptions (A1), (A2) and (A3), there exists a morphism of sheaves
g : G →H such that gf is an anodyne extension.
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Proof. We shall imitate the proof of Lemma 4.2, expressing f as a relative cell sheaf.
Using the notation in the definition, we will construct, by induction, morphisms

gβ : Gβ →Hβ, (39)

Gβ ⊆ G , (40)

such that gβf is an anodyne extension. For β a limit ordinal, we can just take the directed
direct limit, so let us assume (39) was constructed for a given β. Again, if (40) is onto,
we are done. Otherwise, by Assumption (A1), there exists a point p and an element
t ∈ p−1(G ) which is not in Gβ but whose faces are. By Assumption (A3), there exists an
object u containing p and an injective morphism α : u→ G such that t lifts to t̃ ∈ G (u) via
α and whose faces are in Gβ. Furthermore, since f is a local equivalence, we may assume,
upon replacing u with another object xβ ⊆ u, that t̃ lifts to the geometric realization
of Hβ(xβ) up to homotopy. Now considering the subobject yβ as in Lemma 4.1, we can
assume without loss of generality that the restriction

Hβ(xβ)→Hβ(yβ) (41)

is a Kan fibration. To this end, attach, in ω steps, each time all non-isomorphic pushouts
of the form

E
ιβ
n,k

⊂
��

// ?

∆n × xβ
Despite the fact that this is not exactly the same process as the canonical factorization
into an anodyne extension and Kan fibration of simplicial sets (since sheafification is
performed each time), the small object nevertheless applies, so taking the colimit over the
ω steps replaces Gβ with a sheaf where (41) is a Kan fibration.

Now consider the pushout defining Gβ+1 in (38). By our assumption, the composition

∆
ιβ
nβ → Gβ → G

extends to
∆nβ × xβ → G ,

and moreover by our assumptions,

∆
ιβ
nβ → Gβ →Hβ

extends to
∆nβ × xβ →Hβ (42)

by adjunction and the assumption that (41) is a Kan fibration. (Caution: We do not
know that F (x) → Hβ(x) is a weak equivalence! However, it does not matter, since
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by assumption, the homotopy lifting problem can be solved in |F (x)|, and in a Kan
fibration, a homotopy lifting problem which has a solution upon geometric realization has
a solution.)

But since we have (42), we may extend the pushout (38) to a pushout of the form

Q
ιβ
nβ

//

��

Hβ

��
∆nβ × I × xβ //Hβ+1

(43)

where Qι
n for a monomorphism ι : y → x in C is defined as a pushout

Gn × y //

��

Gn × x

��
∆n × I × y // Qι

n

where
Gn = ∆◦n × I ∪∆n × {0}.

But (43) is an anodyne extension. Again, the process must eventually terminate for set-
theoretical reasons.

A strong homotopy of simplicial sheaves on C is a morphism of the form

h : F × I → G .

Multiplication by I is performed section-wise, and we sheafify the result. h is also called
a strong homotopy between the restriction of h to F × {0} and F × {1}. We may
now consider the smallest equivalence relation on morphisms of simplicial sheaves which
contains strong homotopy. This is obviously a congruence, and the quotient category is
called the strong homotopy category of simplicial sheaves.

4.5. Lemma. A strong homotopy equivalence of sheaves of simplicial sets is an equivalence
on sections, and hence a local equivalence.

Proof. For a strong homotopy of simplicial sheaves

I ×F → G

and every u ∈ Obj(C ), we obtain, by definition, a simplicial homotopy on sections

I ×F (u)→ G (u).

Therefore, a strong homotopy equivalence of sheaves gives a simplicial homotopy equiva-
lence after applying sections, hence a local equivalence.
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4.6. Theorem. Under the Assumptions (A1), (A2) and (A3), and assuming also that
C has finite cohomological dimension, the category ∆Op-Sh(C ) of simplicial sheaves on
C is right Cartan-Eilenberg with respect to strong homotopy equivalence, local equivalence
and cosimplicial Godement resolutions.

Proof. First note the following:

Cosimplicial Godement resolutions have the prop-
erty that restrictions under monomorphisms in C
are Kan fibrations.

(44)

Thus, it suffices to show that for a local equivalence e : F → G and a cosimplicial
Godement resolution X , we have a bijection

[e,X ] : [G ,X ]→ [F ,X ] (45)

where [?, ?] denotes the set of strong homotopy classes.
This is done in the standard way: To prove that (45) is onto, we first replace G by

the mapping cylinder of e. Then Lemma 4.4 applies (with K = G × I). Therefore,
the mapping cylinder embeds to an anodyne extension, for which the mapping extension
problem into X can be solved by (44).

To prove that (45) is injective, first replace e by its mapping cylinder (which is isomor-
phic to G in the strong homotopy category) to make e injective. Then build a pushout
P of two copies of e. Then the embedding

P ⊆ G ×I (46)

is a local equivalence (where I is the simplicial set obtained from attaching two copies
of I at a point) and hence it is contained in an anodyne extension. Therefore, we may
conclude that for a cosimplicial Godement resolution X , a morphism P → X extends
to G ×I , which shows that (45) is injective.

The fact that under our assumptions, the canonical morphism of a sheaf to the cosim-
plicial realization of its cosimplicial Godement resolution is a local equivalence follows
from [27], Theorem 4.14.

The case of sheaves of based simplicial sets and combinatorial spectra is now treated
analogously, with I×? replaced by I+∧?, resp. I+??. Let us discuss the case of com-
binatorial spectra in more detail. A sheaf of combinatorial spectra is a functor from a
site C into the category of combinatorial spectra which satisfies the sheaf limit condition
in the category of combinatorial spectra. Since combinatorial spectra are a coreflexive
subcategory of ∆Op

st -Set• (which is a category of universal algebras), sheafification of a
presheaf of combinatorial spectra can be constructed by sheafifying the corresponding
presheaf valued in ∆Op

st -Set•. Since the condition of being a combinatorial spectrum can-
not be called a universal algebra condition, we do not know if the category of sheaves
of combinatorial spectra is independent of the choice of sites defining the same topos.
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Nevertheless, we shall assume that our site C satisfies Assumptions (A1), (A2) and (A3).
By a local equivalence of sheaves of combinatorial spectra, we mean a morphism which is
a weak equivalence on stalks.

An injective morphism of sheaves of combinatorial spectra f : F → G is called a
relative cell sheaf if we have sheaves Gγ for ordinals γ < α, G0 = F , Gα = G , for a limit
ordinal β, Gβ is the colimit of Gγ, γ < β, and for any ordinal β < α, we have an injective
morphism ιβ : yβ → xβ in C and a pushout of sheaves of the form

Σ∞−`β∆
ιβ
nβ+

//

��

Gβ

��
Σ∞−`β(∆nβ × xβ)+

// Gβ+1.

(47)

Here Σ∞−` of a sheaf of based simplicial set is constructed by taking shift suspension
spectra section-wise and then sheafifying. This is again left adjoint to taking Ω∞−` section-
wise.

An anodyne extension of sheaves is defined the same way, except ∆
ιβ
nβ is replaced by

E
ιβ
nβ ,kβ

.
Analogously to Lemma 4.2, we have

4.7. Lemma. Every injective morphism of sheaves of combinatorial spectra over a site C
which satisfies Assumptions (A1), (A2) and (A3) is a relative cell sheaf.

Proof. A verbatim repeat of the proof of Lemma 4.2, with simplicial sets replaced by
combinatorial spectra.

Analogously to Lemma 4.3, we have

4.8. Lemma. An anodyne extension of sheaves of combinatorial spectra over a site C
which satisfies Assumptions (A1) and (A2) is a local equivalence.

Proof. Again, the proof is the same as for Lemma 4.3.

Analogously to Lemma 4.4, we have

4.9. Lemma. For an injective weak equivalence of sheaves of combinatorial spectra f :
F → G over a site C which satisfies Assumptions (A1), (A2) and (A3), there exists a
morphism of sheaves g : G →H such that gf is an anodyne extension.

Proof. This time, the proof of Lemma 4.4 requires some modification, to account for shift
desuspensions. To clarify, we write it out. The beginning is the same: By Lemma 4.7, f is
a relative cell sheaf. Using the notation in the definition, we will construct, by induction,
morphisms

gβ : Gβ →Hβ (48)
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such that gβf is an anodyne extension. For β a limit ordinal, we can just take the directed
direct limit, so let us assume (48) has been constructed for a given β. Again, we may
assume using the fact that f is a local equivalence that the embedding ιβ : yβ ⊆ xβ is
chosen is such a way that the boundary of the new cell can be extended to the geometric
realization of Hβ up to homotopy. We now claim that we can assume without loss of
generality that the restriction

Hβ(xβ)→Hβ(yβ) (49)

is a Kan fibration of combinatorial spectra (i.e. a level-wise Kan fibration). To this end,
attach, in ω steps, each time all non-isomorphic pushouts of the form

Σ∞−`E
ιβ+

n,k

⊂
��

// ?

Σ∞−`(∆n × xβ)+

Despite the fact that this is not exactly the same process as the canonical factorization
into an anodyne extension and Kan fibration of combinatorial spectra (since sheafification
is performed at each time), the small object nevertheless applies, so taking the colimit
over the ω steps replaces Gβ with a sheaf where (41) is a Kan fibration of combinatorial
spectra.

Now consider the pushout defining Gβ+1 in (47). By our assumption, the composition

Σ∞−`β∆
ιβ
nβ+ → Gβ → G

extends to
Σ∞−`β(∆nβ × xβ)+,

which by our assumption on ιβ means

Σ∞−`β∆
ιβ
nβ+ → Gβ →Hβ

extends to
Σ∞−`β(∆nβ × xβ)+ →Hβ (50)

by adjunction and the assumption that (49) is a Kan fibration of combinatorial spectra.
(Caution: We do not know that F (x)→Hβ(x) is a weak equivalence! However, it does
not matter, since by assumption, the homotopy lifting problem can be solved in |F (x)|,
and in a Kan fibration of combinatorial spectra, just as of simplicial sets, a homotopy
lifting problem which has a solution upon geometric realization has a solution.)

But since we have (50), we may extend the pushout (47) to a pushout of the form

Σ∞−`βQ
ιβ
nβ+

//

��

Hβ

��
∆nβ × I × xβ //Hβ+1

(51)

where Qι
n is as in the proof of Lemma 4.4.
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A strong homotopy of sheaves of combinatorial spectra on C now is a morphism of the
form

h : I+ ?F → G .

Again, I+?? is performed section-wise, and we sheafify the result. h is also called a strong
homotopy between the restriction of h to {0}+ ?F and {1}+ ?F . We may now consider
the smallest equivalence relation on morphisms of simplicial sheaves which contains strong
homotopy. This is obviously a congruence, and the quotient category is called the strong
homotopy category of sheaves of combinatorial spectra.

4.10. Lemma. A strong homotopy equivalence of sheaves of combinatorial spectra is an
equivalence on sections, and hence a local equivalence.

Proof. Analogous to the proof of Lemma 4.5.

Finally, the analogue of Theorem 4.6 is

4.11. Theorem. Under the Assumptions (A1), (A2) and (A3), and assuming also that
C has finite cohomological dimension, the category ShS (C ) of sheaves of combinatorial
spectra on C is right Cartan-Eilenberg with respect to strong homotopy equivalence, local
equivalence and cosimplicial Godement resolutions.

Proof. Again, we follow the proof of Theorem 4.6, but it requires modification due to
peculiarities of the smash product, so we write it out. Again, the beginning is the same.
First note the following:

Cosimplicial Godement resolutions have the prop-
erty that restrictions under monomorphisms in C
are Kan fibrations of combinatorial spectra.

(52)

Thus, it suffices to show that for a local equivalence of combinatorial spectra e : F → G
and a cosimplicial Godement resolution X , we have a bijection

[e,X ] : [G ,X ]→ [F ,X ] (53)

where [?, ?] denotes the set of strong homotopy classes.
This is done in the standard way: To prove that (53) is onto, we first replace G by

the mapping cylinder of e. The Lemma 4.4 applies (with K = I+ ? G ). Therefore,
the mapping cylinder embeds to an anodyne extension, for which the mapping extension
problem into X can be solved by (52).

To prove that (53) is injective, first replace e by its mapping cylinder (which is isomor-
phic to G in the strong homotopy category) to make e injective. Then build a pushout
P of two copies of e. We note that we do not know that the embedding

I+ ?P ⊆ G (54)
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is a local equivalence (where I is again the simplicial set obtained from attaching two
copies of I at a point). Thus, we know (54) is contained in an anodyne extension of
P. Therefore, we may still conclude that for a cosimplicial Godement resolution X , a
morphism P →X extends to I+ ? G , which shows that (53) is injective.

The fact that under our assumptions, the canonical morphism of a sheaf to the cosim-
plicial realization of its cosimplicial Godement resolution is a local equivalence again
follows from [27], Theorem 4.14.

5. Comparison with Thomason

Thomason [29] considers a concept of fibrant simplicial Ω-spectra (which he attributes to
Bousfield and Friedlander [3]) which are sequences

Zn, n ∈ N0

(alternatively, n ∈ Z) of based simplicial sets, together with structure morphisms

S1 ∧ Zn → Zn+1, (55)

such that the simplicial sets Zn are Kan fibrant, and the adjoints of the structure maps
(55) are weak equivalences:

Zn
∼ // F (S1, Zn+1).

Morphisms (Zn) → (Tn), as usual, are sequences of morphisms of based simplicial sets
which commute with the structure morphisms (55).

Thomason [29] observes that his category of fibrant simplicial spectra has products and
directed colimits, which means that on sites with enough points, local equivalences may be
defined as morphisms which induce weak equivalences on stalks. Global equivalence are
defined as morphisms which induce equivalences on sections. Additionally, on sites which
have finite cohomological dimension, where one can use cosimplicial Godement resolutions,
one can treat generalized sheaf cohomology completely on the level of presheaves. The
reason is that stalks, again, can be calculated on the level of presheaves and on the
other hand, the products of skyscraper sheaves which occur in cosimplicial Godement
resolutions are sheaves in any subcanonical topology. It was proved in [27] that under
these assumptions, the category of Thomason presheaves of fibrant simplicial spectra is
right Cartan-Eilenberg with respect to equivalences on sections, local equivalences and
Godement resolutions.

An actual general theory of sheaves of Thomason’s fibrant simplicial spectra, on the
other hand, does not seem meaningful, as more types of colimits are necessary, for example,
to have sheafification.

By Proposition 2.1, we have a canonical natural transformation

S1 ∧X = Σ(S0) ∧X → Σ(S0 ∧X) = ΣX. (56)
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This means that Kan fibrant combinatorial spectra are canonically a full subcategory of
Thomason fibrant simplicial spectra, and local equivalences coincide with equivalences on
sections. By Lemma 2.12 (2), every combinatorial spectrum can be functorially replaced
by a Kan fibrant one, so doing this section-wise gives a functor from sheaves of combina-
torial spectra to presheaves of Kan simplicial spectra which preserves local equivalences,
as well as equivalences on sections.

There is also a functor the other way. In fact, the construction applies to any sequence
of based simplicial sets with connecting morphisms (55) without any additional assump-
tions. We may then apply functorial fibrant replacement. The construction is performed
in two steps. First, replace Zn with a sequence of based simplicial sets Z ′n and connecting
maps (55) with Zn replaced by Z ′n which are injective. We define inductively

Z ′0 = Z0,

and assuming we already have a morphism

Z ′n → Zn,

we let Z ′n+1 be the mapping cylinder of the composition

S1 ∧ Z ′n → S1 ∧ Zn → Zn+1.

Thus, assume without loss of generality Z ′ = Z. In the second step, we make this into a
combinatorial prespectrum as follows: Let

Z ′′0 = Z0.

Assuming we have already a morphism of based simplicial sets

Zn → Z ′′n,

we let Z ′′n+1 be the pushout of the canonical diagram

S1 ∧ Zn //

��

Zn+1

ΣZ ′′n.

By functoriality, this construction automatically passes to presheaves. We may then
spectrify, sheafify and fibrant replace as we wish. All those functors are left adjoint and
commute by commutation of adjoints.

The advantage of using combinatorial spectra, where we have a fully functional theory
of sheaves, is that we now also have functors (and their right derived functors, provided
they preserve strong homotopy) which cannot be constructed on presheaves alone. Func-
tors of the form f∗, f! for a general morphism of sites f are an example. (For the functor f∗,
this was also observed in [27], Corollary 4.20, since f∗ preserves section-wise equivalences.)
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Niefield, Union College: niefiels@union.edu
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
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