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DUALIZING CARTESIAN AND COCARTESIAN FIBRATIONS

CLARK BARWICK, SAUL GLASMAN AND DENIS NARDIN

Abstract. In this technical note, we proffer a very explicit construction of the dual
cocartesian fibration of a cartesian fibration, and we show they are classified by the same
functor to the ∞-category of ∞-categories.

Anyone who has worked seriously with quasicategories has had to spend some quality
time with cartesian and cocartesian fibrations. (For a crash course in the basic definitions
and constructions, see Appendix A; for an in-depth study, see [HTT, §2.4.2].) The pur-
pose of (co)cartesian fibrations is to finesse the various homotopy coherence issues that
naturally arise when one wishes to speak of functors valued in the quasicategory Cat∞
of quasicategories. A cartesian fibration p : X S is “essentially the same thing” as a
functor X : Sop Cat∞, and a cocartesian fibration q : Y T is “essentially the same
thing” as a functor Y : T Cat∞. We say that the (co)cartesian fibration p or q is
classified by X or Y (A).

It has therefore been a continual source of irritation to many of us who work with
quasicategories that, given a cartesian fibration p : X S, it seems difficult to construct
an explicit cocartesian fibration p∨ : X∨ Sop that is classified by the same functor
Sop Cat∞. Many constructions require as input exactly one of these two, and if one
has become sidled with the wrong one, then one is left with two options:

(1) One may extrude the desired fibration through tortuous expressions such as “the
cocartesian fibration p∨ classified by the functor by which the cartesian fibration p
is classified.” We know of course that such a thing exists, but we have little hope of
using it if we don’t have access to a model that lets us precisely identify an n-simplex
of X∨ in terms of p.

(2) Alternately, one may use Lurie’s construction Dl of [Lurie, 2011, Cnstr. 3.4.6].1 This
is at least more precise: an n-simplex of his simplicial set Dl(pop) is an n-simplex σ of
Sop along with a functor ∆n ×Sop Xop Top such that each functor Xop

σ(k) Top
is representable. It is stated — but not shown — that Dl(pop) Sop is a cocartesian
fibration classified by the same functor [Lurie, 2011, Rk. 3.4.9]. Nevertheless, Dl(pop)
isn’t particularly explicit: representability is of course a difficult matter in general, so
it’s not easy to say in elementary terms what an object of Dl(pop) actually is. Worse,
this model is unhelpfully large relative to X. (In fact, as written, it only works when
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1We thank a referee for pointing us to this construction, of which we were previously unaware.
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p has small fibers.) When S = ∆0, for example, this construction replaces X with its
essential image under the Yoneda embedding, which, while equivalent, is obviously
much larger.

In this paper, we give a concrete construction of the dual cocartesian fibration p∨ of
a cartesian fibration p (which works in general), and we show they are classified by the
same functor to Cat∞. In particular, the objects of X∨ are precisely the objects of X,
and when S = ∆0, the dual X∨ is isomorphic to X. As evidence for the robustness of
this construction, we will construct a relative twisted arrow ∞-category for a cocartesian
fibration and its dual. One of us (S.G.) uses this in his construction of the Day convolution
for ∞-categories [Glasman, 2013]. Our description of the dual will be used heavily in the
forthcoming paper [BDGNS, 2014].

Amusingly, the construction of the dual itself is quite simple; however, proving that it
works as advertised (and for that matter, even proving that p∨ is a cocartesian fibration) is
a nontrivial matter. The main technical tool we use is the technology of effective Burnside
∞-categories and the unfurling construction of the first author [Barwick, 2014].

In the first section, we will give an informal but very concrete description of the dual,
and we will state the main theorem, Th. 1.4. In §2, we briefly recall the definition of the
twisted arrow category, which plays a significant role in the construction. In §3, we give a
precise definition of the dual of a cartesian fibration, and we prove that it is a cocartesian
fibration. In particular, we can say exactly what the n-simplices of X∨ are (3). In §4, we
prove Pr. 4.1, which asserts that the double dual is homotopic to the identity, and we use
this to prove the main theorem, Th. 1.4. Finally, in §5, we construct a relative version
of the twisted arrow ∞-category for a cocartesian fibration and its dual, which provides
another way to witness the equivalence between the functor classifying p and the functor
classifying p∨.

1. Overview
Before we describe the construction, let us pause to note that simply taking opposites will
not address the issue of the day: if p : X S is a cartesian fibration, then it is true that
pop : Xop Sop is a cocartesian fibration, but the functor Sop Cat∞ that classifies
pop is the composite of the functor X : Sop Cat∞ that classifies p with the involution

op : Cat∞ Cat∞

that carries a quasicategory to its opposite.
This discussion does, however, permit us to rephrase the problem in an enlightening

way: the morphism (p∨)op : (X∨)op S must be another cartesian fibration that is
classified by the composite of the functor that classifies p with the involution op. The
dual cocartesian fibration to (p∨)op should be equivalent to pop, so that we have a duality
formula

((p∨)op)∨ ' pop.
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In particular, it will be sensible to define the dual q∨ of a cocartesian fibration q : Y T
as ((qop)∨)op, so that p∨∨ ' p. We thus summarize:

The cartesian fibration and the cocartesian fibration are each classified by
p : X S p∨ : X∨ Sop X : Sop Cat∞;

(p∨)op : (X∨)op S pop : Xop Sop op ◦X : Sop Cat∞;
q∨ : Y ∨ T op q : Y T Y : T Cat∞;
qop : Y op T op (q∨)op : (Y ∨)op T op ◦Y : T Cat∞.

We can describe our construction very efficiently if we give ourselves the luxury of
temporarily skipping some details. For any quasicategory S and any cartesian fibration
p : X S, we will define X∨ as a quasicategory whose objects are those of X and whose
morphisms x y are diagrams

u

x y

f g (1)

of X in which f is a p-cartesian edge, and p(g) is a degenerate edge of S. Composition of
morphisms in X∨ will be given by forming a pullback:

w

u v

x y z

The n-simplices for n ≥ 3 are described completely in 3. One now has to explain
why this defines a quasicategory, but it does indeed (Df. 3.4), and it admits a natural
functor to Sop that carries an object x to p(x) and a morphism as in (1) to the edge
p(f) : p(x) p(u) = p(y) in Sop. This is our functor p∨ : X∨ Sop, and we have good
news.

1.1. Proposition. If p : X S is a cartesian fibration, then p∨ : X∨ Sop is a
cocartesian fibration, and a morphism as in (1) is p∨-cocartesian just in case g is an
equivalence.
This much will actually follow trivially from the fundamental unfurling lemmas of the
first author [Barwick, 2014, Lm. 11.4 and Lm. 11.5], but the duality statement we’re after
is more than just the construction of this cocartesian fibration.

If one inspects the fiber of p∨ over a vertex s ∈ Sop, one finds that it is the quasicategory
whose objects are objects of Xs := p−1(s), and whose morphisms x y are diagrams (1)
of Xs in which f is an equivalence. This is visibly equivalent to Xs itself. Furthermore,
we will prove that this equivalence is functorial:
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1.2. Proposition. The functor Sop Cat∞ that classifies a cartesian fibration p is
equivalent to the functor Sop Cat∞ that classifies its dual p∨.
Equivalently, we have the following.

1.3. Proposition. If X : Sop Cat∞ classifies p, then op◦X : Sop Cat∞ classifies
(p∨)op.

We will define the dual of a cocartesian fibration q : Y T over a quasicategory T
as suggested above:

q∨ := ((qop)∨)op.

In other words, Y ∨ will be the quasicategory whose objects are those of Y and whose
morphisms x y are diagrams

u

x y

f g

of Y in which q(f) is a degenerate edge of T , and g is q-cocartesian. Composition of
morphisms in Y ∨ will be given by forming a pushout:

w

u v

x y z

The three propositions above will immediately dualize.
In summary, the objects of X∨ and (X∨)op = (Xop)∨ are simply the objects of X,

and the objects of Y ∨ and (Y ∨)op = (Y op)∨ are simply the objects of Y . A morphism
η : x y in each of these ∞-categories is then as follows:
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In η is a diagram of in which f and g

X∨
u

x y

f g X is p-cartesian, lies over an identity;

(X∨)op
u

x y

f g X lies over an identity, is p-cartesian;

Y ∨
u

x y

f g Y lies over an identity, is q-cocartesian;

(Y ∨)op
u

x y

f g Y is q-cocartesian, lies over an identity.

The propositions above are all subsumed in the following statement of our main the-
orem, which employs some of the notation of A.

1.4. Theorem. The assignments p p∨ and q q∨ define homotopy inverse equiva-
lences of ∞-categories

(−)∨ : Catcart
∞/S

∼ Catcocart
∞/Sop : (−)∨

of cartesian fibrations over S and cocartesian fibrations over Sop. These equivalences are
compatible with the straightening/unstraightening equivalences s in the sense that the di-
agram of equivalences

Catcart
∞/S Catcocart

∞/Sop

Fun(Sop,Cat∞)

Fun(Sop,Cat∞)

Catcocart
∞/Sop Catcart

∞/S

(−)∨

s

op

s

opop ◦ −

(−)∨

s s

commutes up to a (canonical) homotopy.
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2. Twisted arrow ∞-categories
2.1. Definition. If X is an ∞-category (i.e., a quasicategory), then the twisted arrow
∞-category Õ(X) is the simplicial set given by the formula

Õ(X)n = Mor(∆n,op ?∆n, X) ∼= X2n+1.

The two inclusions

∆n,op ∆n,op ?∆n and ∆n ∆n,op ?∆n

give rise to a map of simplicial sets

Õ(X) Xop ×X.

The vertices of Õ(X) are edges of X; an edge of Õ(X) from u v to x y can be
viewed as a commutative diagram (up to chosen homotopy)

u x

v y

When X is the nerve of an ordinary category C, Õ(X) is isomorphic to the nerve of the
twisted arrow category of C in the sense of [DK, 1983]. When X is an ∞-category, our
terminology is justified by the following.

2.2. Proposition. [Lurie, [Lurie, 2011, Pr. 4.2.3]] If X is an ∞-category, then the func-
tor Õ(X) Xop ×X is a left fibration; in particular, Õ(X) is an ∞-category.

2.3. Example. To illustrate, for any object p ∈ ∆, the ∞-category Õ(∆p) is the nerve
of the category

00

01 10

. . . . . .. . . . . .

02 13 31 20

01 12 . . .. . . 21 10

00 11 22 22 11 00
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(Here we write n for p− n.)
In [Lurie, 2011, §4.2], Lurie goes a step further and gives a characterization the left

fibrations that (up to equivalence) are of the form Õ(X) Xop ×X. We’ll discuss (and
use!) this result in more detail in §5.

3. The definition of the dual
We now give a precise definition of the dual of a cartesian fibration and, conversely, the
dual of a cocartesian fibration. The definitions themselves will not depend on previous
work, but the proofs that the constructions have the desired properties follow trivially
from general facts about the unfurling construction of the first author [Barwick, 2014,
Lm. 11.4 and 11.5].

3.1. Notation. Throughout this section, suppose S and T two∞-categories, p : X S
a cartesian fibration, and q : Y T a cocartesian fibration.

As in Nt. A.4, denote by ιS ⊂ S the subcategory that contains all the objects and
whose morphisms are equivalences. Denote by ιSX ⊂ X the subcategory that contains
all the objects, whose morphisms are p-cartesian edges.

Similarly, denote by ιT ⊂ T the subcategory that contains all the objects, whose
morphisms are equivalences. Denote by ιTY ⊂ Y the subcategory that contains all the
objects and whose morphisms are q-cocartesian edges.

It is easy to see that

(S, ιS, S) and (X,X ×S ιS, ιSX)

are adequate triples of ∞-categories in the sense of [Barwick, 2014, Df. 5.2]. Dually,

(T op, ιT op, T op) and (Y op, Y op ×T op ιT op, (ιTY )op)

are adequate triples of ∞-categories.
Furthermore, the cartesian fibrations p : X S and q : Y op T op are adequate

inner fibrations over (S, ιS, S) and (T op, ιT op, T op) (respectively) in the sense of [Barwick,
2014, Df. 10.3].

3.2. Definition. For any ∞-category C and any two subcategories C† ⊂ C and C† ⊂ C
that each contain all the equivalences, we define Aeff (C,C†, C†) as the simplicial set whose
n-simplices are those functors

x : Õ(∆n)op C

such that for any integers 0 ≤ i ≤ k ≤ ` ≤ j ≤ n, the square

xij xkj

xi` xk`
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is a pullback in which the morphisms xij xkj and xi` xk` lie in C† and the morphisms
xij xi` and xkj xk` lie in C†.

When Aeff (C,C†, C†) is an∞-category (which is the case, for example, when (C,C†, C†)
is an adequate triple of ∞-categories in the sense of [Barwick, 2014, Df. 5.2]), we call it
the effective Burnside ∞-category of (C,C†, C†).

Note that the projections Õ(∆n)op ∆n and Õ(∆n)op (∆n)op induce inclusions

C† Aeff (C,C†, C†) and (C†)op Aeff (C,C†, C†).

Now it is easy to see that p and q induce morphisms of simplicial sets

p : Aeff (X,X ×S ιS, ιSX) Aeff (S, ιS, S)

and
q : Aeff (Y op, Y op ×T op ιT op, (ιTY )op)op Aeff (T op, ιT op, T op)op,

respectively. We wish to see that p is a cocartesian fibration and that q is a cartesian
fibration, but it’s not even clear that they are inner fibrations.

Luckily, the fundamental unfurling lemmas [Barwick, 2014, Lm. 11.4 and Lm. 11.5] of
the first author address exactly this point. The basic observation is that the unfurling

Υ(X/(S, ιS, S)) (respectively, Υ(Y op/(T op, ιT op, T op)) )

of the adequate inner fibration p (resp., qop) [Barwick, 2014, Df. 11.3] is then the effective
Burnside ∞-category

Aeff (X,X ×S ιS, ιSX) (resp., Aeff (Y op, Y op ×T op ιT op, (ιTY )op) ),

and the functor Υ(p) (resp., the functor Υ(qop)op) is the functor p (resp., the functor q)
described above. The fundamental lemmas [Barwick, 2014, Lm. 11.4 and Lm. 11.5] now
immediately imply the following.

3.3. Proposition. The simplicial set Aeff (S, ιS, S) is an ∞-category, and the functor p
is a cocartesian fibration. Furthermore, a morphism of Aeff (X,X ×S ιS, ιSX) of the form

u

x y

f g

is p-cocartesian just in case g is an equivalence.
Dually, the simplicial set Aeff (T, T, ιT ) is an ∞-category, and the functor q is a carte-

sian fibration. Furthermore, a morphism of Aeff (Y op, Y op×T op ιT op, (ιTY )op)op of the form

u

x y

f g

is q-cocartesian just in case f is an equivalence.
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3.4. Definition. The dual of p is the projection

p∨ : X∨ := Aeff (X,X ×S ιS, ιSX)×Aeff (S,ιS,S) S
op Sop,

which is a cocartesian fibration. Dually, the dual of q is the projection

q∨ : Y ∨ := Aeff (Y op, Y op ×T op ιT op, (ιTY )op)op ×Aeff (T op,ιT op,T op)op T T,

which is a cartesian fibration.
The formation of the dual and the formation of the opposite are by construction dual

operations with respect to each other; that is, one has by definition

(pop)∨ = (p∨)op and (qop)∨ = (q∨)op.

Observe that the inclusions

Sop Aeff (S, ιS, S) and T Aeff (T op, ιT op, T op)op

are each equivalences. Consequently, the projections

X∨ Aeff (X,X ×S ιS, ιSX) and Y ∨ Aeff (Y op, Y op ×T op ιT op, (ιTY )op)op

are equivalences as well.
Note also that the description of X∨ and Y ∨ given in the introduction coincides with

the one given here: an n-simplex of X∨, for instance, is a diagram

x00

x01 x10

. . . . . .. . . . . .

x02 x13 x31 x20

x01 x12
. . .. . . x21 x10

x00 x11 x22 x22 x11 x00

in which any j-simplex of the form x0j x1j · · · xjj covers a totally degenerate
simplex of S (i.e., a j-simplex in the image of S0 Sj), and all the morphisms xij xi`
are p-cartesian.

In particular, note that the fibers (X∨)s are equivalent to the fibers Xs, and the fibers
(Y ∨)t are equivalent to the fibers Yt.
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4. The double dual
4.1. Proposition. Suppose S and T two∞-categories, p : X S a cartesian fibration,
and q : Y T a cocartesian fibration. There are equivalences

p ' p∨∨ and q ' q∨∨

of cartesian fibrations X S and cocartesian fibrations Y T , respectively. These
equivalence are natural in that they give rise to natural isomorphisms

id ' (−)∨∨ : Catcart
∞/S Catcart

∞/S, id ' (−)∨∨ : Catcocart
∞/S Catcocart

∞/S

We postpone the proof (which is quite a chore) till the end of this section. In the meantime,
let us reap the rewards of our deferred labor: in the notation of A, we obtain the following.

4.2. Corollary. The formation of the dual defines an equivalence of ∞-categories

(−)∨ : Catcart
∞/S

∼ Catcocart
∞/Sop : (−)∨

Proof. The only thing left to observe that (−)∨ is a functor from the ordinary category
of cartesian (respectively, cocartesian) fibrations to the ordinary category of cocartesian
(resp., cartesian) fibrations, and this functor preserves weak equivalences (since they are
defined fiberwise), whence it descends to a functor of ∞-categories Catcart

∞/S Catcocart
∞/Sop

(resp., Catcocart
∞/Sop Catcart

∞/S).

Let sSetf be the 1-category of quasicategories, and let RelCat be the 1-category of
relative categories and relative functors [BK, 2012]. Let

U : RelCat sSetf

be the underlying∞-category functor, so that U(C) is a fibrant replacement of the marked
simplicial set N(C)\, whose marked edges are the weak equivalences, in the cartesian model
structure on sSet+ [HTT, §3.1.3].

The following basic lemma will help prove the naturality of some of our constructions:

4.3. Lemma. Let A,B ∈ RelCat, and let F,G : A B be relative functors, and let
λ : F G be a natural transformation. Then λ gives rise to a natural transformation

U(λ) : U(F ) ∼
U(G).

If λ is a natural weak equivalence, then U(λ) is an equivalence of functors.
Proof. A natural transformation between relative functors A B is the same data as
a relative functor

k : A× [1][ B,
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where [1][ is the relative category with two objects and a morphism between them which
is not a weak equivalence. But

N(A× [1][)\ ∼= N(A)\ × (∆1)[

as marked simplicial sets. Moreover, by [HTT, Proposition 3.1.4.2], the morphism

N(A)\ × (∆1)[ U(A)× (∆1)[

is a marked weak equivalence, and the target is fibrant since (∆1)[ is already fibrant. So
we get a map

U(k) : U(A× [1][) ' U(A)× (∆1)[ U(B)
which is exactly the data of a natural transformation from U(F ) to U(G).

In the case where λ is a natural equivalence, we use an almost identical argument.
A natural equivalence between relative functors A B is the same data as a relative
functor

l : A× [1]] B,

where [1]] is the relative category with two objects and a weak equivalence between them.
Now

N(A× [1]])\ ∼= N(A)\ × (∆1)]

as marked simplicial sets, and by [HTT, Proposition 3.1.4.2], we have that

N(A)\ × (∆1)] U(A)× U([1]])

is a marked weak equivalence. But U([1]]) is a contractible Kan complex, and so the
induced map

U(l) : U(A× [1]]) ' U(A)× U((∆1)]) U(B)
is a homotopy between U(F ) and U(G).

4.4. Notation. We recall the set-theoretic technicalities and notation used in [HTT,
§1.2.15, Rk. 3.0.0.5]. Let us choose two strongly inaccessible uncountable cardinals κ < λ.
Denote by Cat∞ (respectively, Top) the∞-category of κ-small∞-categories (resp., of κ-
small Kan complexes). Similarly, denote by Ĉat∞ (resp., T̂op) the∞-category of λ-small
∞-categories (resp., of λ-small Kan complexes).

Note that Cat∞ and Top are essentially λ-small and locally κ-small, whereas Ĉat∞
and T̂op are only locally λ-small.

4.5. Lemma. The formation of the dual is natural with respect to pullback in the base;
that is, it extends to a natural transformation of functors of∞-categories Catop

∞ Ĉat∞
from

F : S 7→ Catcart
∞/S

to
G : S 7→ Catcocart

∞/Sop .
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Proof. We describe a functor F : (sSetf )op RelCat as follows. Let F (S) be the
category of diagrams

Φ : sSetf/S ×∆1 sSetf

satisfying the following conditions:

• for each object (T S) ∈ sSetf/S, Φ(T S, 1) = T ;

• for each object (T S) ∈ sSetf/S, the morphism

Φ(T S, 0) Φ(T S, 1)

is a cartesian fibration;

• for each morphism (T U S) in sSetf/S, the square

Φ(T S, 0) Φ(U S, 0)

Φ(T S, 1) Φ(U S, 1)

is a (strict) pullback square.

The morphisms in sSetf are the natural transformations, and the weak equivalences are
those which are objectwise categorical equivalences. If f : S0 S1 is a morphism in
sSetf , then we define F (f) : F (S1) F (S0) by

(F (f)(Φ))(T S0, i) = Φ(T S0
f
S1, i).

Evaluation at {idS} × ∆1 gives an equivalence of relative categories from F (S) to the
relative category Cart/S of cartesian fibrations over S, but the assignment of Cart/S to
S only admits the structure of a pseudofunctor [GHN, 2015, Definition A.2] to the (2, 1)-
category of relative categories, while F is a functor on the nose. Replacing the coherences
necessary when discussing pseudofunctors with a certain amount of flab makes it easier
to discuss the naturality of dualization.

Thus constructed, F is a functor of relative categories: it takes categorical equivalences
to equivalences of relative categories: if f : S1 S0 is a map, the effect of F (f) on
underlying ∞-categories can be identified up to equivalence with the functor

(−)×S1 S0 : Catcart
∞/S1 Catcart

∞/S0 ,

and if f is a categorical equivalence, then this functor is an equivalence of ∞-categories.
Thus F descends to a functor

F : Cat∞ Ĉat∞.
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Now consider the functor G : (sSetf )op RelCat which takes S to the category of
diagrams

Ψ : sSetf/Sop ×∆1 sSetf

satisfying a set of conditions similar to those listed in the definition of F , except that the
morphism

Ψ(T Sop, 0) Ψ(T Sop, 1)
must be a cocartesian fibration. G is a point-set rectification of the functor

G : Cat∞ Ĉat∞

which takes S to the ∞-category coCart/Sop .
We now define a natural transformation δ : F G as follows: for each S ∈ sSetf ,

δS : F (S) G(S) is given by

δS(Φ)(T S, i) =

Φ(T S, 0)∨T i = 0
T op i = 1

where the subscript indicates that the dual is taken relative to T . The naturality of δ
is clear, but we must show that δS(Φ) satisfies the condition that for any commutative
triangle (T U Sop), the diagram

δS(Φ)(T Sop, 0) δS(Φ)(U Sop, 0)

δS(Φ)(T Sop, 1) δS(Φ)(U S, 1)

is a strict pullback square. Unwinding, what we really have to show is that given a strict
pullback square

X Y

T U

in which the vertical maps are cartesian fibrations, the square

X∨T Y ∨U

T op Uop

is a strict pullback square. In this situation, the square

(X,X ×T ιT, ιTX) (Y, Y ×U ιU, ιUY )

(T, ιT, T ) (U, ιU, U)
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is a pullback square of triples, and so induces a pullback square of effective Burnside
categories. Now in the commutative cube

X∨T Y ∨U

Aeff (X,X ×T ιT, ιTX) Aeff (Y, Y ×U ιU, ιUY )

T op Sop

Aeff (T, ιT, T ) Aeff (U, ιU, U),

the front and side faces are pullback squares by definition, and so the back face is a
pullback square. The conclusion follows by Lemma 4.3.

Let’s now prove the main theorem, Th. 1.4.
Proof of Th. 1.4. For any ∞-category S, consider the composite equivalence

Fun(Sop,Cat∞) ∼ Catcart
∞/S

∼ Catcocart
∞/Sop ∼ Fun(Sop,Cat∞),

where the first equivalence is given by unstraightening, the second is given by the forma-
tion of the dual, and the last is given by straightening. By Lemma 4.5 and [GHN, 2015,
Corollary A.31], all of these equivalences are natural in S. We thus obtain an autoequiv-
alence η of the functor Fun((−)op,Cat∞) : Catop

∞ Ĉat∞, and thus of the functor

Map((−)op,Cat∞) : Catop
∞ T̂op.

Now the left Kan extension of this functor along the inclusion Catop
∞ Ĉat

op
∞ is the

functor h : Ĉat
op
∞ T̂op represented by Cat∞. The autoequivalence η therefore also

extends to an autoequivalence η̂ of h.
The Yoneda lemma now implies that η̂ is induced by an autoequivalence of Ĉat∞

itself. By the Unicity Theorem of Toën [Toën, 2005], Lurie [Lurie, 2009, Th. 4.4.1], and
the first author and Chris Schommer-Pries [BSP, 2011], we deduce that η̂ is canonically
equivalent either to id or to op, and considering the case S = ∆0 shows that it’s the
former option.

This proves the commutativity of the triangle of equivalences

Catcart
∞/S Catcocart

∞/Sop

Fun(Sop,Cat∞),

(−)∨

s s

and the commutativity of the remainder of the diagram in Th. 1.4 follows from duality.
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We’ve delayed the inevitable long enough.
Proof of Pr. 4.1. We prove the first assertion; the second is dual.

To begin, let us unwind the definitions of the duals to describe X∨∨ explicitly. First,
for any ∞-category C, denote by Õ(2)(C) the simplicial set given by the formula

Õ(2)(C)k = Mor((∆k)op ?∆k ? (∆k)op ?∆k, C) ∼= C4k+3.

(This is a two-fold edgewise subdivision of C. It can equally well be described as a “twisted
3-simplex ∞-category of C.”) Now the n simplices of X∨∨ are those functors

x : Õ(2)(∆n)op X

such that any r-simplex of the form

x(ab1c1d1) x(ab2c2d2) · · · x(abrcrdr)

covers a totally degenerate r-simplex of S, and, for any integers

0 ≤ a′ ≤ a ≤ b ≤ b′ ≤ c′ ≤ c ≤ d ≤ d′ ≤ n

(which together represent an edge abcd a′b′c′d′ of Õ(2)(C)) we have

(4.1.1) the morphism x(a′bcd) x(abcd) is p-cartesian;

(4.1.2) the morphism x(ab′cd) x(abcd) is an equivalence;

(4.1.3) the morphism x(abcd′) x(abcd) is an equivalence.

In other words, an object of X∨∨ is an object of X, and a morphism of X∨∨ is a diagram

u v

x y z

φ g ψ f

in X such that φ, g, and ψ all cover degenerate edges of S, and

(4.1.1-bis) the morphism f is p-cartesian;

(4.1.2-bis) the morphism ψ is an equivalence;

(4.1.3-bis) the morphism φ is an equivalence.

We will now construct a cartesian fibration p′ : X ′ S, a trivial fibration α : X ′ ∼ X
over S and a fiberwise equivalence β : X ′ ∼ X∨∨ over S. These equivalences will all be
the identity on objects. We will identify X ′ with the subcategory of X∨∨ whose morphisms
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are as above with ψ and φ are degenerate; the inclusion will be the fiberwise equivalence
β. The equivalence α : X ′ ∼ X will then in effect be obtained by composing g and f .

To construct p′, we write, for any ∞-category C,

O(C) := Fun(∆1, C).

Note that the functor s : O(C) C given by evaluation at 0 is a cartesian fibration (Ex.
A.3). We now define X ′ as the simplicial set whose n-simplices are those commutative
squares

O(∆n) X

∆n S,

x

s p

σ

such that x carries s-cartesian edges to p-cartesian edges. We define p′ : X ′ S to be the
map that carries an n-simplex as above to σ ∈ Sn. We remark thatX ′ X∨∨ is manifestly
a fiberwise equivalence. In particular, this means that the assignment X 7→ X ′ preserves
weak equivalence between cartesian fibrations, and thus descends to an ∞-functor

(−)′ : Catcart
∞/S Catcart

∞/S.

We now construct the desired equivalences. The basic observation is that for any
integer k ≥ 0, we have functors

∆k ∆k ×∆1 ∆k ?∆k ∆k ? (∆k)op ?∆k ? (∆k)op :

on the left we have the projection onto the first factor; in the middle we have the
functor corresponding to the unique natural transformation between the two inclusions
∆k ∆k ?∆k; on the right we have the obvious inclusion. These functors induce, for
any n ≥ 0, functors

∆n O(∆n) Õ(2)(∆n)op.

These in turn induce a zigzag of functors

X
α
X ′

β
X∨∨

over S, which are each the identity on objects. On morphisms, α carries a morphism given
by x y z to the composite x z, and β carries a morphism given by x y z
to the morphism of X∨∨ given by the diagram

x y

x y z.

g f
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We observe that since the construction of α and β is natural in X, we get a diagram of
∞-functors

id α (−)′ β (−)∨∨ : Catcart
∞/S Catcart

∞/S

by Lemma 4.3. We now have the following, whose proof we postpone for a moment.

4.6. Lemma. The morphism X ′ X constructed above is a trivial Kan fibration. Thus
p′ is the composite of two cartesian fibrations, and therefore a cartesian fibration.

By Lemma 4.6, α is an equivalence of functors, and we know that β is an equivalence
of functors. Given the Lemma, we therefore obtain an equivalence of functors

id ' (−)∨∨ : Catcart
∞/S Catcart

∞/S.

Let’s now set about proving that X ′ X is indeed a trivial fibration. For this, we
will need to make systematic use of the cartesian model categories of marked simplicial
sets as presented in [HTT, §3.1].
Proof of Lm. 4.6. We make O(∆n) into a marked simplicial set O(∆n)\ by marking
those edges that map to degenerate edges under the target map t : O(∆n) ∆n. Fur-
thermore, for any simplicial subset K ⊂ O(∆n), let us write K\ for the marked simplicial
set (K,E) in which E ⊂ K1 is the set of edges that are marked as edges of O(∆n)\.

Now write
∂O(∆n) :=

n⋃
i=0
O(∆{0,...,̂i,...,n}) ⊂ O(∆n),

which is a proper simplicial subset of Fun(∆1, ∂∆n) when n > 2. Observe that ∂O(∆n)
has the property that there is a bijection

Map(∂O(∆n), X) ∼= Map(∂∆n, X ′).

Recasting the statement the Lemma in terms of lifting properties, we see that it will
follow from the claim that for any n ≥ 0 and any morphism O(∆n)\ S] of marked
simplicial sets, the natural inclusion

ιn : ∂O(∆n)\ ∪(∂∆n)[ (∆n)[ O(∆n)\

is a trivial cofibration in the cartesian model structure for marked simplicial sets over S,
where the ∂∆n in ∂O(∆n) is the boundary of the “long n-simplex” whose vertices are the
identity edges in ∆n.

In fact, we will prove slightly more. Let I denote the smallest class of monomorphisms
of marked simplicial sets that contains the marked anodyne morphisms and satisfies the
two-out-of-three axiom. We call these morphisms effectively anodyne maps of marked
simplicial sets. Clearly, for any morphism Y S], an effectively anodyne morphism
X Y is a trivial cofibration in the cartesian model structure on marked simplicial sets
over S.
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It’s clear that ι1 is marked anodyne, because it’s isomorphic to the inclusion

(∆{0,2})[ (∆2)[ ∪(∆{1,2})[ (∆{1,2})].

Our claim for n > 1 will in turn follow from the following sublemma.

4.7. Lemma. The inclusion (∆n)[ O(∆n)\ of the “long n-simplex” is effectively ano-
dyne.
Let’s assume the veracity of this lemma for now, and let’s complete the proof of Lm. 4.6.
It’s enough to show that the inclusion

(∆n)[ ∂O(∆n)\ ∪(∂∆n)[ (∆n)[

is effectively anodyne, for then ιn will be a effectively anodyne by the two-out-of three
property. We’ll deploy induction and assume that Lemma 4.6 has been proven for each
l < n. Now for each l, let

s̃klO(∆n)\ := colimI⊆n,|I|≤lO(∆I)\

so that
s̃kn−1O(∆n)\ = ∂O(∆n)\.

By Lemma 4.6 for ιl, we have that

s̃kl−1O(∆n)\ ∪(skl−1∆n)[ (∆n)[ s̃klO(∆n)\ ∪(skl∆n)[ (∆n)[

is a trivial cofibration, because it’s a composition of pushouts along maps isomorphic to
ιl. Since

s̃k0O(∆n)\ ∪(sk0∆n)[ (∆n)[ = (∆n)[,

iterating this up to l = n− 1 gives the result.
Proof of Lm. 4.7. Write S for the set of nondegenerate (2n)-simplices

x = [00 = i0j0 i1j1 · · · i2nj2n = nn]

of O(∆n). For x ∈ S as above, define

A(x) = 1
2

(
−n+

2n∑
r=0

(jr − ir)
)
.

Drawing O(∆n) as a staircase-like diagram and x as a path therein, it’s easily checked
that A(x) is the number of squares enclosed between x and the “stairs” given by the
simplex

x0 = [00 01 11 12 · · · (n− 1)n nn] .
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We’ll fill in the simplices of S by induction on A(x). For k ≥ 0, let

Sk = {x ∈ S |A(x) = k} and Tk = {x ∈ S |A(x) ≤ k}

and
Ok(∆n) :=

⋃
x∈Tk

x ⊂ O(∆n).

We make the convention that
O−1(∆n) := ∆n.

We must now show that for all k with 0 ≤ k ≤ 1
2n(n− 1), the inclusion

Ok−1(∆n)\ Ok(∆n)\

is marked anodyne, and for each k it will be a matter of determining x ∩ Ok−1(∆n) for
each x ∈ Sk and showing that the inclusion

x\ ∩ Ok−1(∆n)\ x\

is effectively anodyne.
The case k = 0 is exceptional, so let’s do it first. The set S0 has only one element, the

simplex
x0 = [00 01 11 12 · · · (n− 1)n nn] .

We claim that the inclusion of O−1(∆n)\ x\0 is effectively anodyne. Sticking all the
marked 2-simplices of the form

[ii i(i+ 1) (i+ 1)(i+ 1)]\

ontoO−1(∆n)\ is a marked anodyne operation, so let’s do that and call the result y. Clearly
the spine of x0 is inner anodyne in y, so the inclusion y x0 is a trivial cofibration. This
proves the claim.

Now we suppose k > 0, and suppose

x = [00 = i0j0 i1j1 · · · i2nj2n = nn] ∈ Sk.

We call a vertex v = (irjr) of x a flipvertex if it satisfies the following conditions:

• 0 < r < 2n;

• jr > ir;

• ir−1 = ir (and hence jr−1 = jr − 1);

• jr+1 = jr (and hence ir+1 = ir + 1).
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Observe that x must contain some flipvertices, and it is uniquely determined by them.
Note also that if y is an arbitrary simplex of O(∆n) containing all the flipvertices of x,
and if z ∈ S contains y as a subsimplex, then A(z) ≥ A(x), with equality if and only if
z = x.

We define the flip of x at v Φ(x, v) as the modification of x in which the sequence

· · · ir(jr − 1) irjr (ir + 1)jr · · ·

has been replaced by the sequence

· · · ir(jr − 1) (ir + 1)(jr − 1) (ir + 1)jr · · · .

Then Φ(x, v) ∈ Sk−1, so we have Φ(x, v) ⊂ Ok−1(∆n). We have therefore established that
x ∩ Ok−1(∆n) is the union of the faces

∂vx = x ∩ Φ(x, v)

as v ranges over flipvertices of x. Equivalently, if {v1, · · · , vm} is the set of flipvertices of
x, then x ∩ Ok−1(∆n) is the generalized horn

x ∩ Ok−1(∆n) ∼= Λ2n
{0,··· ,2n}\{v1,··· ,vm} ⊂ ∆2n ∼= x

in the sense of [Barwick, 2014, Nt. 12.6].
If m > 1, since flipvertices cannot be adjacent, it follows that the set

{0, · · · , 2n} \ {v1, · · · , vm}

satisfies the hypothesis of [Barwick, 2014, Lm. 12.13], and so the inclusion x ∩ Ok−1(∆n) x
is inner anodyne, whence x\ ∩ Ok−1(∆n)\ x\ is effectively anodyne.

On the other hand, if m = 1, then x ∩ Ok−1(∆n) is a face:

x ∩ Ok−1(∆n) = ∂vx ∼= ∆{0,...,̂i+j,...,2n} ⊂ ∆2n ∼= x,

where v = (ij) is the unique flipvertex of x. We must show that the inclusion

x\ ∩ Ok−1(∆n)\ x\

is effectively anodyne. We denote by y the union of ∂vx with the 2-simplex

[i(j − 1) ij (i+ 1)j].

The inclusion ∂vx
\ y\ is marked anodyne; we claim that the inclusion y x is inner

anodyne.
Indeed, something more general is true: suppose s is an inner vertex of ∆m and F is a

subset of [m] which has s as an inner vertex and is contiguous, meaning that if t1, t2 ∈ F
and t1 < u < t2 then u ∈ F . Then the inclusion ∂s∆m ∪∆F ∆m is inner anodyne.
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We prove this by induction on m − |F |. If |F | = m, then ∆F = ∆m and the claim is
vacuous. Otherwise, let F ′ be a contiguous subset of [n] containing F with |F ′| = |F |+ 1.
Then

∆F ′ ∩ (∆F ∪ ∂s∆m) = ∆F ∪ ∂s∆F ′ .

But ∆F ∪ ∂s∆F ′ is the generalized horn ΛF ′

F\{s}, and F \ {s} satisfies the hypothesis of
[Barwick, 2014, Lm. 12.13] as a subset of F ′ since s was already an inner vertex of F .
Thus ∂s∆n ∪∆F ∂s∆n ∪∆F ′ is inner anodyne, and by the induction hypothesis, we
are done.

5. The duality pairing
In this section we give construct a pairing that concretely exhibits the equivalence between
the functor Y : T Cat∞ that classifies a cocartesian fibration q : Y T and the
opposite of the functor that classifies the cocartesian fibration (q∨)op.

The way we’ll go about this is the following: we will construct a left fibration

M : Õ(Y/T ) (Y ∨)op ×T Y

such that for any object t ∈ T , the pulled back fibration

Õ(Y/T )t ((Y ∨)op)t × Yt ' Y op
t × Yt

is a perfect pairing; i.e., it satisfies the conditions of the following result of Lurie.

5.1. Proposition. [[Lurie, 2011, Cor. 4.2.14]] Suppose σ : X A and τ : X B
two functors that together define a left fibration λ : X A×B. Then λ is equivalent to
a fibration of the form Õ(C) Cop × C (and in particular A ' Bop) just in case the
following conditions are satisfied.

(5.1.1) For any object a ∈ A, there exists an initial object in the ∞-category Xa :=
σ−1({a}).

(5.1.2) For any object b ∈ B, there exists an initial object in the ∞-category Xb :=
τ−1({b}).

(5.1.3) An object x ∈ X is initial in Xσ(x) just in case it is initial in Xτ(x).

In our case, the functor that classifies M will be the fiberwise mapping space functor

MapY/T : (Y ∨)op ×T Y Top.

This functor carries an object (x, y) ∈ (Y ∨)op ×T Y to the space MapY(t)(x, y), where
t = q(x) = q(y). If φ : s t is a morphism of S, then a morphism

(f, g) : (u, v) (x, y)
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of (Y ∨)op ×T Y covering φ is given, in effect, by morphisms f : x Y(φ)(u) and g :
Y(φ)(v) y of Y(s). The functor MapY/T will then carry (f, g) to the morphism

MapY(s)(u, v)
Y(φ)

MapY(t)(Y(φ)(u),Y(φ)(v)) g ◦ − ◦ f MapY(t)(x, y).

Before we proceed headlong into the details of the construction, let us first give an
informal but very concrete description of both Õ(Y/T ) and M . The objects of Õ(Y/T )
will be morphisms f : u v of Y such that q(f) is an identity morphism in T . Now a
morphism f g from an arrow f : u v to an arrow g : x y is a commutative
diagram

u x
w

v y

ψ

g

φ

f

ξ

in which φ is q-cocartesian, q(ψ) is an identity morphism. Composition is performed by
forming suitable pushouts on the source side and simple composition on the target side.
We will establish below that there is indeed an ∞-category that admits this description.

The functor M will carry an object f ∈ Õ(Y/T ) as above to the pair of objects
(u, v) ∈ (Y ∨)op×Y , and it will carry a morphism f g as above to the pair of morphisms w

u x

φ ψ , v
ξ
y

 ∈ (Y ∨)op × Y.

We call M the duality pairing for q. We will prove below that it is left fibration, whence
it follows readily from this description that the functor that classifies it is indeed be the
fiberwise mapping space functor

MapY/T : (Y ∨)op ×T Y Top

defined above.

5.2. Proposition. Both an ∞-category Õ(Y/T ) and a left fibration M as described
above exist.

We postpone the precise construction of Õ(Y/T ) and M till the end of this section
(Constr. 5.4). Our concrete description suffices to deduce the main result of this section.

5.3. Theorem. For any object t ∈ T , the left fibration

Õ(Y/T )t ((Y ∨)op)t × Yt

pulled back from the duality pairing M is a perfect pairing; i.e., it satisfies the conditions
of Pr. 5.1.
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Proof. Suppose x ∈ ((Y ∨)op)t and y ∈ Yt. Then it is easy to see that the identity map
idx is the initial object of the fiber Õ(Y/T )x: for any morphism g : x y such that q(g)
is a degenerate edge, the essentially unique morphism idx g of Õ(Y/T )x is given by
the diagram

x x
x

x y

g
g

g

Dually, the identity map idy is the initial object of the fiber Õ(Y/T )y: the essentially
unique morphism idy g of Õ(Y/T )y is given by the diagram

y x
y

y y

g

g

The result now follows immediately.
In light of Pr. 5.1, we deduce an identification

((Y ∨)op)t ' Y op
t

that is functorial in t, as desired.

5.4. Construction. We now set about giving a precise construction of the∞-category
Õ(Y/T ) and the left fibration M described in 5. We use very heavily the technology of
effective Burnside ∞-categories from [Barwick, 2014].

We begin by identifying two subcategories of the arrow ∞-category O(Y ), each of
which contains all the objects. Suppose f : u v and g : x y morphisms of Y . A
morphism η : f g of O(Y ) given by a square

u v

x y

f

s(η) t(η)

g

lies in O(Y )† just in case q(s(η)) is an equivalence of T and t(η) is an equivalence of Y ;
the morphism η lies in O(Y )† just in case s(η) is q-cocartesian.
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Now form the effective Burnside ∞-categories
̂̃O′(Y ) := Aeff (O(Y )op, (O(Y )†)op, (O(Y )†)op),
Ô(T ) := Aeff (O(T )op, ιO(T )op,O(T )op),

(̂Y ∨)op := Aeff (Y op, Y op ×T op ιT op, (ιTY )op),
Ŷ := Aeff (Y op, ιY op, Y op),
T̂ := Aeff (T op, ιT op, T op).

The objects of ̂̃O′(Y ) are thus morphisms f : u v of Y , and a morphism f g from
an arrow f : u v to an arrow g : x y is a commutative diagram

u u′ x

v y′ y

φ

f

ξ

ψ

g

η

in which: φ is q-cocartesian, q(ψ) is an equivalence, and η is an equivalence.
The source and target functors O(Y )op Y op along with the cocartesian fibration q

together induce a diagram of functors
̂̃O′(Y ) Ô(T )

(̂Y ∨)op × Ŷ T̂ × T̂

Observe that the omnibus theorem of the first author [Barwick, 2014, Th. 12.2] implies
that all of the functors that appear in this quadrilateral are inner fibrations.

Furthermore, since the formation of the effective Burnside ∞-category respects fiber
products, one may employ [Barwick, 2014, Th. 12.2] to show not only that the natural
map

M̂ ′ : ̂̃O′(Y )
(

(̂Y ∨)op × Ŷ
)
×
T̂×T̂
Ô(T )

is an inner fibration, but also that every morphism of ̂̃O′(Y ) is M̂ ′-cocartesian. It is clear
that M̂ ′ admits the right lifting property with respect to the inclusion ∆{0} ∆1, one
deduces that M̂ ′ is a left fibration.

As we see, the ∞-category ̂̃O′(Y ) is much too large, but we now proceed to cut both
it and the left fibration M̂ ′ down to size via pullbacks:
(5.4.1) The first pullback in effect requires all equivalences in the description of the mor-

phisms of ̂̃O′(Y ) above to be identities. We pull back M̂ ′ along the inclusion

((Y ∨)op × Y ) ×
T×T
O(T )

(
(̂Y ∨)op × Ŷ

)
×
T̂×T̂
Ô(T )
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(which is of course an equivalence) to obtain a left fibration

M ′ : Õ′(Y ) ((Y ∨)op × Y ) ×
T×T
O(T ).

(5.4.2) Second, we pull back the composite

Õ′(Y ) M ′ ((Y ∨)op × Y ) ×
T×T
O(T ) O(T )

along the inclusion T O(T ) of the degenerate arrows to obtain the desired left
fibration

M : Õ(Y/T ) (Y ∨)op ×T Y

It is now plain to see that Õ(Y/T ) is the∞-category described in 5, and M is the left
fibration described there.

A. Cartesian and cocartesian fibrations
A.1. Definition. Suppose p : X S an inner fibration of simplicial sets. Recall [HTT,
Rk. 2.4.1.4] that an edge f : ∆1 X is p-cartesian just in case, for each integer n ≥ 2,
any extension

∆{n−1,n} X,

Λn
n

f

F

and any solid arrow commutative diagram

Λn
n X

∆n S,

F

p

F

the dotted arrow F exists, rendering the diagram commutative.
We say that p is a cartesian fibration [HTT, Df. 2.4.2.1] if, for any edge η : s t of S

and for every vertex x ∈ X0 such that p(x) = s, there exists a p-cartesian edge f : x y
such that η = p(f).

Cocartesian edges and cocartesian fibrations are defined dually, so that an edge of X
is p-cocartesian just in case the corresponding edge of Xop is pop-cartesian, and p is a
cocartesian fibration just in case pop is a cartesian fibration.

A.2. Example. A functor p : D C between ordinary categories is a Grothendieck
fibration if and only if the induced functor N(p) : ND NC on nerves is a cartesian
fibration [HTT, Rk 2.4.2.2].
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A.3. Example. For any ∞-category C, write O(C) := Fun(∆1, C). By [HTT, Cor.
2.4.7.12], evaluation at 0 defines a cartesian fibration s : O(C) C, and evaluation at 1
defines a cocartesian fibration t : O(C) C.

One can ask whether the functor s : O(C) C is also a cocartesian fibration. One
may observe [HTT, Lm. 6.1.1.1] that an edge ∆1 O(C) is s-cocartesian just in case
the corresponding diagram

(Λ2
0)B ∼= ∆1 ×∆1 C

is a pushout square.
Suppose S a simplicial set. Then the collection of cartesian fibrations to S with small

fibers is naturally organized into an ∞-category Catcart
∞/S. To define it, let Catcart

∞ be the
following subcategory of O(Cat∞): an object X U of O(Cat∞) lies in Catcart

∞ if and
only if it is a cartesian fibration, and a morphism p q in O(Cat∞) between cocartesian
fibrations represented as a square

X Y

U V

f

p q

lies in Catcart
∞ if and only if f carries p-cartesian edges to q-cartesian edges. We now define

Catcocart
∞/S as the fiber over S of the target functor

t : Catcart
∞ ⊂ O(Cat∞) Cat∞.

Equivalently [HTT, Pr. 3.1.3.7], one may describe Catcart
∞/S as the simplicial nerve of the

(fibrant) simplicial category of marked simplicial sets [HTT, Df. 3.1.0.1] over S that are
fibrant for the cartesian model structure — i.e., of the form X\ S for X S a
cartesian fibration [HTT, Df. 3.1.1.8].

The straightening/unstraightening Quillen equivalence of [HTT, Th. 3.2.0.1] now yields
an equivalence of ∞-categories

Catcart
∞/S ' Fun(Sop,Cat∞).

So we obtain a dictionary between cartesian fibrations p : X S with small fibers and
functors X : Sop Cat∞. For any vertex s ∈ S0, the value X(s) is equivalent to the fiber
Xs, and for any edge η : s t, the functor X(t) X(s) assigns to any object y ∈ Xt

an object x ∈ Xs with the property that there is a cocartesian edge x y that covers η.
We say that X classifies p [HTT, Df. 3.3.2.2].

Dually, the collection of cocartesian fibrations to S with small fibers is naturally orga-
nized into an∞-category Catcocart

∞/S , and the straightening/unstraightening Quillen equiv-
alence yields an equivalence of ∞-categories

Catcocart
∞/S ' Fun(S,Cat∞).
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A.4. Notation. A cartesian (respectively, cocartesian) fibration with the property that
each fiber is a Kan complex — or equivalently, with the property that the functor that
classifies it factors through the full subcategory Top ⊂ Cat∞ of Kan complexes — is
called a right (resp., left) fibration. These are more efficiently described as maps that
satisfy the right lifting property with respect to horn inclusions Λn

k ∆n such that
1 ≤ k ≤ n (resp., 0 ≤ k ≤ n− 1) [HTT, Pr. 2.4.2.4].

For any cartesian (resp., cocartesian) fibration p : X S, one may consider the
smallest simplicial subset ιSX ⊂ X that contains the p-cartesian (resp., p-cocartesian)
edges. The restriction ιS(p) : ιSX S of p to ιSX is a right (resp., left) fibration. The
functor Sop Top (resp., S Top) that classifies ιSp is then the functor given by
the composition ι ◦ X, where X is the functor that classifies p, and ι is the functor
Cat∞ Top that extracts the maximal Kan complex contained in an ∞-category.
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