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LOCALIZATION OF V-CATEGORIES

BJØRN IAN DUNDAS

Abstract. Let V be a symmetric monoidal closed category with a suitably compatible
simplicial model category structure. We show how to extend Dwyer and Kan’s notion of
simplicial localization to V -categories. This may for instance be applied to the case where

our categories are enriched in suitable models for spectra.

If M is a monoid, we may “group complete”, or “localize”, it by adding formal in-
verses. IfM is a simplicial monoid, we may still do this in every degree, but this is a very
crude completion, destroying much valuable homotopy information in M . Therefore,
when homotopy theorists talk about group completion, they mean some “total derived
functor” of the näıve group completion, for instance loops on the classifying space.

Dwyer and Kan [DK] explained how such homotopy acceptable localizations ought to
be interpreted when “there are many objects”; i.e. what happens if you want to invert
some of the maps in a category? Näıvely, you may simply invert them: in particular
if W is a small category, you can consider W [W−1] where you have left the objects
undisturbed, but formally inverted all the morphisms. If you want to make a homotopy
invariant version of this, you have to derive this construction. We will come back to
a concrete description of such a construction in section 0 which also covers the special
case of ordinary categories.

In the case the category is enriched, things become a bit more delicate. As an example
which may serve as a motivation and which captures the essential point, one might
consider a ring A. In particular, if A is commutative there is a nice notion of localization,
but even then there are some restrictions. One considers a subset M ⊂ A, closed under
multiplication, but most certainly, M will not be closed under addition (because then
0 ∈ M , and only very rarely do we want to invert zero), and so M is blind to the
“enrichment” of A in abelian groups. What we do is to consider the ring homomorphism
Z[M ] → A, and form the tensor product Z[M [M−1]] ⊗Z[M ] A, which is exactly A
localized at M . There is nothing hindering us from pursuing a similar approach for non
commutative rings: if M ⊆ A is a submonoid under multiplication, then we may define
the localization of A at M to be the pushout of Z[M [M−1]] ← Z[M ] → A. However,

Received by the Editors 2000 November 27, and in revised form 2001 March 20.
Transmitted by Ieke Moerdijk. Published on 2001 May 9.

2000 Mathematics Subject Classification: 18D20; 18G55.
c©Bjørn Ian Dundas 2001. Permission to copy for private use granted.

284



Theory and Applications of Categories, Vol. 8, No. 10 285

if we are concerned about homotopy properties, we should modify this in the standard
fashion.

The analog of this for categories enriched in spectra is this. A category C enriched
in spectra may be localized with respect to a “subcategory” W which is only enriched
in spaces. As a first approximation, the localization for commutative rings is very
illustrating, when one remembers that tensor product is really pushout. One considers
the map Σ[W] → C, where Σ[W] is closely analogous to the monoid ring above, and
performs the pushout

Σ[W[W−1]]
∐

Σ[W]

C

The aim is to give a modification of this construction with good homotopy properties.
The construction presented below achieves this by associating to a category enriched
in spectra with a choice of weak equivalences (C,w) another such pair L(C, w) whose
properties among other things are: (see section 0 for details)

(1) The “weak equivalences” in L(C, w) are isomorphisms (see 0.3)
(2) L is a homotopy functor (see 0.4)
(3) There is a chain of natural transformations (C, w) ← B(C, w) → L(C, w) where

(C, w) ← B(C, w) is a weak equivalence (see 0.3)
(4) If (C, w) is “groupoid-like” (see 0.5) then B(C, w) → L(C, w) is a weak equiva-

lence (see 0.6)

There also are more technical results, such as closure properties, and an analysis of
what happens if the weak equivalences already are isomorphisms.

The reason for writing this paper is that if one wants to apply functors to enriched
categories with weak equivalences, one usually can not expect these functors to behave
well with respect to natural transformations consisting of weak equivalences. This
problem is resolved if we localize before applying our functors, and the results in this
paper show that in many situations this gives a good theory. In particular, the author
was interested in questions about algebraic K-theory of such categories, and localization
turned out to be the natural answer to a technical problem relating to trace maps see
[D].

Although the intended applications are to categories enriched in spectra, the con-
struction and its general properties are fairly context independent, and are applicable
in other situations. For this reason, and because of the many competing versions of
closed categories of spectra, we work with “V -categories”, where V is any sufficiently
nice symmetric monoidal closed category with a compatible model structure. This will
also prove to be useful when one wants to compare with more algebraic situations.

Plan. In section 0 we give the main construction postponing some technical points.
This section also contains the main results about the localization functor. If you are
unfamiliar with enriched categories, you may choose to take a peek at the beginning
of section 1 before starting to read section 0. The constructions of section 0 logically
depend on some results referred away to later sections, but we have chosen this ordering
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so as to present the main results immediately. This hopefully will serve as a motivation
for the more tiresome work in the later sections. Since most readers are not machines,
it is hoped that they can deal with this without a system failure.

In section 1 we discuss the categorical problems about enriched categories that pop
up in the constructions, in particular colimits deserve some special care. In section 2 we
discuss how much of the enrichment that survives to the category of enriched categories.
The third section finally deals with homotopy issues. We do not claim any particular
originality, and we have become aware that similar structures have been obtained by
Shipley and Schwede, [SS].

Although it is true that VO-categories are monoids in the monoidal category of VO-
graphs, we will not use this, and the difficulties pointed out by Shipley and Schwede
relating to fact that the category of VO-graphs is not symmetric is not relevant to this
paper.

In addition to the usual homotopical structure, we need for our constructions in
section 0 homotopy invariance of pushouts under certain flatness conditions on the
underlying graphs. This is provided in section 3 using the description of the pushout
given in section 1.

For certain applications, we must allow our functors to actually do things on objects
too, and section 3 ends with few critical points related to this.

The last section makes more precise some notions pertaining to the category of pairs
which was used in the localization functor.
Notation. This paper is written simplicially, meaning that the category of “spaces” S
is the category of simplicial sets. If C is a V -category and c and d are two objects in C,
then we let C(c, d) ∈ obV denote the corresponding morphism object.
Acknowledgment. The first draft of this paper was written while visiting Stanford
University. I am grateful to Gunnar Carlson for the inviting me. I also want to thank
Stefan Schwede for interesting discussions, and the referee for pointing out a missing
assumption.

0. The general procedure

We start off with the general construction, postponing the technical noise which is bound
to follow with statements on this level of generality.

Let (V,�, I) be a closed category (which is short for closed symmetric monoidal
category, see [McL] or [B]). Then we may talk about V -categories or “categories enriched
in V ” (which instead of morphism sets have “morphism objects” in V , see next section
for some more details).

Assume furthermore that V has a structure of a closed simplicial model category
[Q] and that the two structures are suitably compatible and have certain reasonable
properties (see section 3 where the terminology used in this section is explained, and
where the “compatibility” and “reasonable properties” are made explicit). Such a V
will be called a monoidal simplicial model category. The data are:

(1) a monoidal model category (V,�, I) with I cofibrant
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(2) a monoidal Quillen adjunction

(V,�, I)
Σ

�
R

(S,×, ∗)

where S is the category of simplicial sets.
0.0 Examples. Examples of monoidal simplicial model categories include:

(1) simplicial sets,
(2) symmetric spectra [HSS],
(3) Γ-spaces and simplicial functors [L1], [L2] and [S]
(4) simplicial k-modules (for k a simplicial ring).
That

V
Σ

�
R

S

is a monoidal Quillen adjunction implies that the left adjoint Σ preserves weak equiv-
alences and cofibrations, and that both functors are lax monoidal. This last point is
only to ensure that they define functors between V -categories and S-categories by ap-
plying Σ and R to the morphism spaces. In particular, if W is a S-category ΣW is the
V -category with the same objects as W, but with morphism object Σ(W(c, c′)) ∈ obV
for c, c′ ∈ obW.

Presumably this close connection to simplicial sets could be relaxed, and, indeed,
part of what was interesting about Dwyer and Kan’s construction was that it provided a
simplicial structure. However, trying to avoid simplicial sets in the current construction
seemed not to be worth the while. In most cases the input comes naturally with such
a structure, and if not, one should be able to provide one.

The constructions we are going to present have the pleasant property that they leave
the objects in our categories untouched.

0.1. Definition. Let O be a set. A VO-category is a V -category C with obC = O, and
a VO-functor C F→ D between two VO-categories is a V -functor which is the identity
on objects. A VO-functor C F→ D is a weak equivalence (resp. fibration) if C(c, c′) →
D(c, c′) are weak equivalences (resp. fibrations) in V for all c, c′ ∈ O. We call a VO-
functor a cofibration if it has the left lifting property with respect to all VO-functors
that are both weak equivalences and cofibrations.

In many examples the following is true (for definitions and the precise statement, see
theorem 3.3. and the discussion preceding it). We list it as a pre-theorem since it guides
the mind in the right direction, although the actual constructions use less structure.

0.2. Pre-theorem. If V has a monoidal fibrant replacement functor, then the category
of VO-categories is a cofibrantly generated simplicial model category.

However, apart from the existence of pushouts, the only consequence of this we
actually need is that we can choose a functorial factorization such that any map f is
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factored as p◦ i where i is a cofibration and p is both a weak equivalence and a fibration.
Both these statements can be had with much less effort and fewer assumptions.

Let us list the properties we actually use:

0.3. Facts. Let V be a monoidal simplicial model category. Then
(1) the functor Σ:S → V preserves weak equivalences and cofibrations. The unit I

of the monoidal structure on V is cofibrant.
(2) Corollary 1.2: The category of VO-categories is small-cocomplete.
(3) Lemma 3.4: The category of VO-categories has functorial factorizations into

cofibrations followed by maps that are both fibrations and weak equivalences.
(4) Lemma 3.5: the gluing lemma (under certain flatness hypotheses pushouts VO-

categories of preserve weak equivalences).
(5) Lemma 3.6: under certain assumptions on the domain, a cofibration of VO-

categories induces cofibrations on morphism objects.

0.4. The localization. Begin construction. The localization depends on the
choice of weak equivalences, and so is really a functor of pairs (C, w) where C is a VO-
category, C an SO-category and w: ΣW → C is a VO-functor See section 4 for more
details on these pairs.

For any small O-category W you may formally invert all morphisms and get a
groupoid W[W−1] which is universal with respect to all functors from W into groupoids.
If W is a SO-category we let W[W−1] be what you get by inverting all morphisms in
every degree.

To construct the localization L(C, w) of the pair (C, w), we first let

QW

qW∼�W
be the functorial cofibrant replacement of W within the category of SO-categories
(which exists by lemma 3.4. since S satisfies all properties we require of V ).

Then, let

ΣQWBww� BwC
∼� C

be the functorial factorization (3.4) in VO-categories of the composite ΣQW ΣqW−→ ΣW w→
C. This defines the pair B(C, w) = (BwC, Bww) and a natural map of pairs B(C, w) →
(C, w) which is a weak equivalence of pairs (i.e. both BwC

∼� C and QW ∼� W are weak
equivalences, see section 4).

Then the localization
L(C, w) = (LwC, Lww)

of (C, w) is defined by the pushout

ΣQW Bww ��

��

BwC

��
Σ(QW[QW−1])

Lww �� LwC
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in V -categories with set of objects O. End construction.
The construction is homotopy invariant:

0.5. Proposition. If (C, w) → (C′, w′) is a weak equivalence, then L(C, w) → L(C′, w′)
is a weak equivalence.

Proof. The relevant diagram looks as follows:

ΣW

����
��

��
��

�

��

ΣQW

�����������
�� ��

��

ΣQW[QW−1]

��������������

��

C

��

BwC��

��

�� LwC

��

ΣW ′

����
��

��
��

�
ΣQW ′

�����������
�� �� ΣQW ′[(QW ′)−1]

�������������

C′ Bw′C′�� �� Lw′C′

The four horizontal maps pointing leftward are all weak equivalences (Σ preserves weak
equivalences). The fact that the two leftmost vertical maps are weak equivalences imply
that the two vertical maps in the middle are weak equivalences.

Since QW → QW ′ is a weak equivalence of cofibrant SO-categories, we get by
[DK, 9.4] that QW[QW−1] → QW ′[(QW ′)−1] is a weak equivalence and injective on
morphism spaces. Hence, ΣQW[QW−1] → ΣQW ′[(QW ′)−1] is a weak equivalence and
a cofibration on all morphism objects (Σ preserves cofibrations and weak equivalences).
By the definition of LwC by means of the pushout the two rightmost vertical maps
must then also be weak equivalences (using lemma 3.6, the conditions of lemma 3.5 are
readily checked in the current application).

The importance of this construction is that we have replaced W by a simplicial
groupoid, or loosely: we have “inverted all the morphisms in C coming from W”. This
is important in many applications. For instance, Dwyer and Kan show that if V = S
and C is a simplicial model category with weak equivalences W, then π0LwC is nothing
but the homotopy category of C, and LwC is equivalent to the full subcategory of C
whose objects are both fibrant and cofibrant.

0.6. Definition. Let B be a S-category. The category π0B is the category with the
same objects as B, but with morphism sets from a to b the set of path components
π0B(a, b). We say that a S-category B is groupoid-like if π0B is a groupoid.

0.7. Theorem. Let (C, w) be as above. If W is groupoid-like, then

(C, w) ← B(C, w) → L(C, w)
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are weak equivalences. In particular

C ← BwC → LwC

are weak equivalences.

Proof. By construction (C, w) ← B(C, w) is a weak equivalence (this is is always
true). If W is groupoid-like, then QW is groupoid-like and by [DK, 9.5] the functor
QW → QW[QW−1] is a weak equivalence, and an inclusion (i.e. cofibration) on every
morphism space. Since Σ: S → V preserves cofibrations and weak equivalences, and
since by lemma 3.6 ΣQW → BwC is a cofibration on morphism objects, the gluing
lemma 3.5 assures that BwC → LwC is a weak equivalence.

It is important for various applications that if W already consists of isomorphisms,
then the localization does not mess up things too badly. The theorem assures that
localization does not change the homotopy type, and the following corollary says that
there actually is a map between them (and not just in the homotopy category).

0.8. Corollary. On the category of pairs (C, w : ΣW → C) such that W is a (simpli-
cial) groupoid there is a natural weak equivalence

L(C, w) ∼→ (C, w)

such that
L(C, w)

�����������
B(C, w)��

��
(C, w)

commutes.

Proof. Note that since all the morphisms in W are isomorphisms QW → W factors
naturally through QW → QW[QW−1], and so by the universal property of the pushout

ΣQW Bww ��

��

BwC

��
Σ(QW[QW−1])

Lww �� LwC

we get the desired map. The map is a weak equivalence by theorem 0.7.

This construction also inherits the “closure properties” of [DK]. Recall that if E is a
small category, a subcategory F ⊆ E is said to be closed if F consists of exactly those
morphisms in E that are mapped to isomorphisms under the functor E → E [F−1]. The
closure F of a subcategory F ⊆ E is the smallest closed subcategory of E containing F .
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0.9. Theorem. Let C be a VO-category, let W1
f→ W2

g→ RC be SO-functors (R is
the right adjoint of Σ), let w2: ΣW2 → C be the adjoint of g and let w1: ΣW1 → C be
the adjoint of gf . Then f defines a map (C, w1) → (C, w2). The induced functor

Lw1C → Lw2C
is a weak equivalence if and only if

im{π0g:π0W2 → π0RC} ⊆ im{π0gf :π0W1 → π0RC}

Proof. Let QW1 � P
∼� QW2 be the functorial factorization of QW1

Qf→ QW2

(where Q is the cofibrant replacement functor in SO-categories). Then P is cofibrant
and P

∼� W2 is a weak equivalence. Let QWi � Ti
∼� RC (resp. P � T

∼� RC) be the
functorial factorization of QWi

∼� Wi → RC (resp. P
∼� QW2

∼� W2
g→ RC). Then we

have a sequence of pushouts

QW1[QW−1
1 ]

∐
QW1

T1 → QW1[QW−1
1 ]

∐
QW1

T

→ P [P−1]
∐
P

T → QW2[QW−1
2 ]

∐
QW2

T2

induced from QW1 � P
∼� QW2 and T1

∼→ T
∼→ T2 (from the functoriality of the

factorizations). The outer maps are weak equivalences by the gluing lemma (which is
true in SO-categories) and the middle map is an equivalence by [DK, 10.5].

Let ΣTi � Bi
∼� C be the functorial factorization of ΣTi

∼→ ΣRC → C. This induces
a weak equivalence BwiC ∼→ Bi under ΣQWi. Define Li by the pushouts

ΣQWi
��

��

ΣTi ��

��

Bi

��
Σ(QWi[QW−1

i ]) �� ΣLi �� Li

(the leftmost square is a pushout since Σ is left adjoint). The induced map LwiC → Li
is a weak equivalence by the gluing lemma. That L1 → L2 is a weak equivalence now
follows since Ls1 → Ls2 is a weak equivalence.

This theorem implies that we may assume without loss of generality that the adjoint
of w is an inclusion of a subcategory W ⊆ RC such that π0W is closed in π0RC.
0.10. Further functoriality. The construction above may seem restrictive, due to
the fact that we do not allow our set of objects to vary. This is superficial due to the
following considerations.

Let P be the category whose objects are pairs (C, w) where C is a small V -category
and w : ΣW → C is a V (obC)-functor. A morphism (C, w) → (C′, w′) is a S-functor
WF : W → W ′ and a V -functor F : C → C′ such that Fw = w′ΣWF . See section 4 for
further details.
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0.11. Lemma. The localization extends to functors

B,L : P → P

connected by natural transformations

id← B → L

On the subcategory of pairs (C, w : ΣW → C) such that W consists of isomorphisms
there is a natural weak equivalence L(C, w) → (C, w) such that

(C, w)

�����������
B(C, w)��

��
(C, w)

commutes.

Proof. This follows by the construction of the localization, plus lemma 1.5 and lemma
3.8.

1. VO-categories and graphs

To set the notation we briefly recall the relevant definitions of enriched categories, and
make the relationship to graphs explicit.

Let V be a category. A V -graph G is a class of “objects” obG together with a
choice of “morphism spaces” G(c, d) ∈ obV for each ordered pair (c, d) of elements in
obG. A map of V -graphs F :G → H is a function F : obG → obH, together with maps
G(c, d) → H(F (c), F (d)) in V .

If V is furthermore equipped with a monoidal structure, (V,�, I), we may talk about
V -categories. A V -category C is a V -graph together with units I → C(c, c) and com-
position C(c, d)�C(b, c) → C(b, d) satisfying the usual unital and associativity condi-
tions. A V -functor F from C to D is an assignment obC → obD together with maps
C(c, c′) → D(F (c), F (c′)) preserving unit and composition. A V -natural transforma-
tion between two V -functors F,G: C → D is a collection of maps ηc:F (c) → G(c) ∈ D
indexed by the objects of C such that the following diagram in V commutes

C(c, c′) ��

��

D(F (c), F (c′))

(ηc′ )∗
��

D(G(c), G(c′))
(ηc)

∗
�� D(F (c), G(c′))

1.0. The free/forgetful adjoint pair. If V has finite coproducts (which we will
call ∨), and the monoidal product (which we will call �) is naturally distributive over
the coproduct, then the forgetful functor

U :V -categories → V -graphs
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has a left adjoint, namely the free functor F which on an V -graph G is the V -category
FG with the same objects as G, but with morphism spaces given by

FG(c, d) =

{ ∨
q≥0

∨
c1,...,cq∈obG G(c1, d)�G(c2, c1) . . .�G(c, cq) if c �= d

I ∨ ∨
q≥0

∨
c1,...,cq∈obG G(c1, c)�G(c2, c1) . . .�G(c, cq) if c = d

The composition is given by concatenation of terms, with the I ⊆ FG(d, d) acting as
the unit via I�G(c, d) ∼= G(c, d). The units of adjunction G → UFG and FUC → C
are given by the obvious inclusion and composition. Note that the requirement that �
is distributive over ∨ is automatic if V is closed (symmetric monoidal), since −�v is
a left adjoint and so preserve all colimits, and likewise in the other factor because of
symmetry.

Let O be a set. A VO-graph G is simply a V -graph with obG = O, but a map of
VO-graphs is a map of V -graphs which is the identity on objects. Otherwise said, a
morphism G → H of VO-graphs is a collection of morphisms G(c, d) → H(c, d) ∈ V .
This forms a category we will call VO-graphs (which is isomorphic to V O×O).

Likewise, if V is monoidal, a VO-category is a V -category C with obC = O, and
VO-functors are demanded to be the identity on objects. This forms a category we
will call VO-categories. A natural transformation η:F → G (or rather, a VO-natural
transformation) between two VO-functors is the same as a V -natural transformation
(note however that ηc is always an endomorphism since F (c) = G(c) = c).

Note that the above free and forgetful functors restrict to an adjoint pair of functors
between VO-categories and VO-graphs.

Limits of VO-categories are limits in V -categories and are formed at each morphism
object, i.e. if X:J → VO-categories is a functor, then lim←−−

j∈J Xj (if it exists) is the
VO-category with morphism objects(

lim←−−
j∈J
Xj

)
(c, c′) = lim←−−

j∈J
(Xj(c, c′))

Hence the category of VO-category is closed if V is closed.

1.1. Lemma. If V is a closed category, then the forgetful functor

U :VO − categories → VO − graphs

preserves and creates filtered colimits.

Proof. Let J be filtered and X a functor from J to VO-categories. Then we define
the composition on the graph lim−−→

j∈J UXj via(
lim−−→
j∈J
Xj(c, d)

)
�

(
lim−−→
j∈J
Xj(b, c)

)
lim−−−−−−−→

(i,j)∈J×J
(Xi(c, d)�Xj(b, c))∼= ��

lim−−→
j∈J
Xj(b, d) lim−−→

j∈J
(Xj(c, d)�Xj(b, c))��

∼=
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where the first isomorphism is due to the fact that V is closed, and the second is an
isomorphism since J is filtered and hence the diagonal J → J × J is final. The unit is
induced by I → Xj(c, c) → lim−−→

j∈J Xj(c, c).

1.2. Corollary. If V is a cocomplete closed category, then the category of VO-
categories is cocomplete.

Proof. This follows by [B, 4.3.6] and lemma 1.1, since the triple UF preserves filtered
colimits and VO-categories are the UF -algebras in the category of VO-graphs.

Another application of lemma 1.1 is the following observation

1.3. Lemma. Let F : C → D be a functor from a category C to a category D. Assume
F has a right adjoint which preserves filtered colimits. Let d ∈ obD be an object which
is small relative to D. Then F (d) is small relative to C.
Proof. Let U be the right adjoint. Let X:K → C be a functor and K filtering. Then

C(Fd, lim−−→
k∈K

Xk) ∼= D(d, U lim−−→
k∈K

Xk) ∼= D(d, lim−−→
k∈K

UXk)

Since d is small relative to D, there is a regular cardinal κ such that for every regular
cardinal λ ≥ κ and any functor Y :λ→ D the canonical map

D(d, lim−→
λ

Y )
∼=→ lim−→

λ

D(d, Y )

is an isomorphism. Hence for every functor X:λ→ C for λ ≥ κ the map

D(d, lim−→
λ

UX)
∼=→ lim−→

λ

D(d, UX) ∼= lim−→
λ

C(Fd,X)

is an isomorphism, and we are done.

1.4. Pushouts. This paper relies heavily on a close control over the pushouts in the
category of VO-categories. Before we start to describe these in detail, we note the
following fact which is useful for extending the functoriality of the localization

1.5. Lemma. The forgetful functor

VO-categories → V -categories

preserves pushouts.

Proof. Let

C0
fY ��

fX

��

CY
gX

��

∈ VO-categories

CX gY �� CXY
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be a pushout square in VO-categories, and let

C0
fY ��

fX

��

CY
hX

��

∈ V -categories

CX hY �� C

be a commutative diagram in V -categories. We must show that there is a unique
CXY h→ C with hgY = hY and hgX = hX .

Let D ∈ VO-categories be given by D(c, d) = C(hXc, hXd). This is clearly well
defined, and we have a factorization

CX h′
X→ D i→ C

of hX with i induced by D(c, d) = C(hXc, hXd). Since hX and hY are equal on objects
(since the diagram is commutative, and fX and fY are both the identity on objects) we
also get a factorization

CY h′
Y−→ D i→ C

of hY such that

C0
fY ��

fX

��

CY
h′

X

��

∈ VO-categories

CX
h′

Y

�� D

commutes. Hence there is a unique map CXY h′
→ D ∈ VO-categories such that h′gX =

h′X and h′gY = h′Y . The desired universal map is thus CXY h′
→ D i→ C. This is universal

since any map CXY → C must factor through D i→ C.
We also need an explicit description of the pushout in VO-categories. We do this

by describing the morphism objects of a pushout by means of the colimit over a quite
unruly diagram in V . The diagram is not directed, but it is a “Reedy” diagram which
still makes it possible to get homotopical control over the pushout.

Remember what the “amalgamated product” looks like: if AX ← A0 → AY is a
diagram of rings, we could try to model the pushout as the colimit of a diagram of
abelian groups. It certainly should contain “words” in AX and AY , where adjacent
letters from the same ring should be multiplied, and elements from A0 should be free
to choose whether they wanted to be imaged in AX or AY . Thus the pushout is going
to be a colimit of a diagram of large tensor products of AX , AY and A0. Hence the
need for an indexing category codifying multiplication, insertion of units and the maps
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AX ← A0 → AY . This is our next task, complicated by the fact that we must allow
many objects (which is kind of nice since “insertion of units” are clearly marked by
repetition of objects)
1.6. The indexing category. The rest of section 1 deals with the technical details
of how best to describe the pushout. All of it is used in the proof of lemma 3.5 and 3.6
below, but is not needed elsewhere in this paper.

We use the usual notation with ∆ the category of nonempty finite ordered sets. For
every natural number q we let [q] ∈ ∆ be the ordered set {0 < 1 < · · · < q}, and for
every 0 ≤ i ≤ q we let di ∈ ∆([q − 1], [q]) be the monomorphism that skips i ∈ [q].
We consider ∆ as a full subcategory of the category of categories: a finite ordered set
S is identified with the category whose objects are the elements of S, and which has a
morphism i← j whenever i < j.

Let O be a set, c, d ∈ O, and let Oc,d be the following category. The objects of Oc,d

are triples (i, C, q) where q is a natural number and i and C are functions (the ordering
is not used yet!)

i: [q] → {0, X, Y }, C:∆([q], [1]) → O
such that

∆([0], [1]) → ∆([q], [1]) C→ O
sends d0 : [0] → [1] to d and d1 : [0] → [1] to c. In other words

obOc,d =
∐
q≥0

{0, X, Y }[q] ×O∆([q],[1]) ×O∆([0],[1]) {c, d}

We will often refer to the values ik = i(k) as the “indices” of α = (i, C, q) and the values
of C as the “objects”.

To each object α = (i, C, q) we attach a number

deg(α) =
q∑

k=1

deg(ik)

which we call the degree of α, where deg(0) = 1 and deg(X) = deg(Y ) = 2. In fact, we
consider {0, X, Y } to be the objects of the category

X ← 0 → Y

and for two functions i, j : [q] → {0, X, Y } we write i ≤ j if for all k ∈ [q] there is a map
from ik to jk in X ← 0 → Y . Note that X and Y are not commensurable.

Let α = (i, C, q) and β = (j,D, p) be objects of Oc,d. Then the set of morphisms
from α to β is the set of weakly monotone maps φ: [q] → [p] having the property that D

is the composite ∆([p], [1])
φ∗
→ ∆([q], [1]) C→ O and for all k ∈ [q] we have that ik ≤ jφ(k).

For the record we display this as

Oc,d(α, β) = {φ ∈ ∆([q], [p]) |D = Cφ∗, i ≤ jφ}
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Note that this last condition implies that for every j ∈ [p] all the ik’s with k ∈ φ−1(j)
must be commensurable (X and Y do not both appear).

The category Oc,d enjoys the property that all morphisms can be uniquely factored

into the composition of one map coming from a subcategory
←
Oc,d followed by a map in

a subcategory
→
Oc,d. We proceed to describe these subcategories.

Restricting our attention to the epimorphisms in ∆ we get the inverse category
←
Oc,d

if we do not allow any degrees to rise. More precisely, a map from α = (i, C, q) to
β = (j,D, p) in Oc,d is in the inverse category if

(1) the corresponding φ ∈ ∆([q], [p]) is an epimorphism and
(2) ik = jφ(k) for all k ∈ [q]

All non-identities in
←
Oc,d(α, β) decrease the degree (since some ik’s are deleted). The

inverse category is going to control the multiplications in the coproduct.

Likewise, restricting to the monomorphisms in ∆ we get the direct category
→
Oc,d (here

there are no further conditions on the behavior of the maps). It is worthwhile to notice
that the maps that are identities when just considered as maps in ∆ need not be so in
→
Oc,d: source and target may still disagree and the map may just increase the degree of
the indices ik. These maps correspond to the maps CX ← C0 → CY in the coproduct.
The other maps in the direct category will involve insertion of units as well. All the
non-identities in the direct category increase the degree.

Given a map g:α→ β ∈ Oc,d we get a unique factorization g =
→
g ◦←
g where

→
g ∈

→
Oc,d

and
←
g ∈

←
Oc,d (first delete all repetitions that are to be deleted to get from α to β, and

then expand the length and raise the degrees).
For homotopical reasons the connectivity of under categories of the inverse category

is important. The following obvious lemma will later be interpreted as “Oc,d has fibrant
constants”.

1.7. Lemma. Let α ∈ obOc,d. Then the under category α/
←
Oc,d has a final object given

by deleting all possible repetitions of indices in α.

1.8. The direct subcategory. We also need to understand the over categories
→
Oc,d/α. What objects can map to α = (i, C, q) via non-identity maps in the direct
categories? For sure, they must have lower degree than α, and can leave a trace in α in
the form of a repetition of ck’s or an index ik �= 0. In fact, for most practical purposes,

the most important thing about
→
Oc,d/α is a manageable subcategory which we call Fc,d

α .
This can be described as follows:

Let
S(α) = [q]− i−1(0), T (α) = i−1(0) ∩ {k ∈ [q]|C = C(dksk)∗}

and U(α) = S(α) ∪ T (α) ⊆ [q]. Given a subset u ⊆ U(α) let uS = u ∩ S(α) and
uT = u ∩ T (α) = {k1 < · · · < kt}. Define p, ψu: [q] → [p] and φu: [p] → [q] by

(1) [p] ∼= [q]− uT ,
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(2) ψu = sk1 . . . skt and
(3) φu: [p] ∼= [q]− uT ⊆ [q].

Let
βu = (iψu, C(ψu)∗, p)

fu→ α ∈
→
Oc,d

where fu corresponds to φu. By the definition of T (α) this is well defined since ψuφu =
id[p]. The increases in indices is encoded in uS .

Furthermore, if v ⊂ u, there is a unique map fuv :βv → βu ∈
→
Oc,d such that fv = fufuv .

Now, let Fc,d
α ⊂

→
Oc,d/α be the subcategory with the fu’s as objects and the fuv ’s as

maps. We see that Fc,d
α is isomorphic to the opposite of the category of subsets of U(α).

If U(α) = ∅ we see that Fc,d
α =

→
Oc,d/α = idα, but if U(α) �= ∅ then any non-identity

map γ
g→ α ∈

→
Oc,d defines a proper subset u = uS∪uV ⊆ U(α) where uS are the indices

that are increased (either from zero, or from not originally being there) and uV are the
objects that are repeated. Note that the indices corresponding to uV may be nonzero.
However, g factors as γ

g1→ βu
fu→ α, and this factorization is unique in the sense that

for any other factorization γ
g2→ βv

fv→ α with ∅ �= v ⊂ U(α) we have that v ⊂ u and
g1 = fvug2:

γ
g1 ��

g2

��

βu
fu

v



��
��

��
�

fu

��
βv

fv �� α

The important outcome of all this is

1.9. Lemma. Let α ∈ Oc,d. Then

Fc,d
α − idα ⊆

→
Oc,d/α− idα

is a final subcategory [McL, p 213], and Fc,d
α isomorphic to a cube with idα as the final

object.

1.10. An explicit description of the morphism objects in a pushout of

VO-categories. Given a diagram

CX ← C0 → CY
of VO-categories, we now give an interpretation of the morphism objects from c to d of
the pushout category CX

∐
C0

CY in terms of a functor Cc,d from Oc,d to V . Let IO be
the initial VO-category with

IO(c, d) =
{

I, if c = d
the initial object ∗ ∈ V , otherwise
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If α = (i, C, q) ∈ obOc,d, let Ck = C(φk) where φk: [q] → [1] which takes the value 0
exactly k times. Then

Cc,d(α) = �q
k=0Cik(Ck+1, Ck)

with the maps in Oc,d being sent to maps induced by the insertion of the unit I, the
maps

CX ← C0 → CY
and composition (when made possible by repetitions of indices). Let

CXY (c, d) = lim−−−−−→
α∈Oc,d

Cc,d(α) ∈ V

We must show that this defines a VO-category CXY , and that CXY ∼= CX
∐

C0
CY . The

identity of CXY is given by the canonical map

IO(c, d) → C0(c, d) = Cc,d(0, (c, d), 0)

and the composition is given by concatenation

Cc,d(α)�Cb,c(β) ∼=→ Cb,d(α ! β)

where (i, C, q) ! (j,D, p) = (i ! j, C !D, q + p+ 1),

[q] ! [p] ∼= [q + p+ 1]

is concatenation (each element of [p] is greater than each element in [q]),

i ! j: [q] ! [p] → {0, X, Y }

is i on [q] and j on [p] and

C !D:∆([q] ! [p], [1]) → O

is induced by the map ∆([q]! [p], [1]) → ∆([q], [1])∨∆([p], [1]) gotten by observing that
any weakly monotone map [q] ! [p] → [1] must be constantly equal to 0 on [q] or be
constantly equal to 1 on [p] (so the ∨ is over two different constant maps) and the fact
that C and D both equal to c on the critical spot.

The associativity and unital axioms for CXY are be fairly obvious, and likewise that
CXY actually describes the pushout.
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2. Inheritance of enrichment

In the following section we will establish some properties of the free/forgetful pair be-
tween graphs and categories which will assure that the category of VO-categories is
an S-category. This is used only in theorem 3.3. and theorem 4.1, and so is not a
prerequisite for the localization construction given in section 0.

The category of monoids in a monoidal category (V,�, I) will usually not form a
V -category. For instance, the category of associative rings is not enriched over abelian
groups. However, in the cartesian closed situation the enrichment survives. The obvious
example is (V,�, I) sets with cartesian product (monoids do form a category), and this
captures the essence in the statements below.

If (V,�, I) and (V ′,�′, I′) are two monoidal categories, a monoidal adjunction

(V,�, I)
L
�
R

(V ′,�′, I′)

is a pair of (lax) monoidal functors such that L is left V ′-adjoint to R; that is, there is
a natural isomorphism in V ′

RV (LX, v) ∼= V ′(X,Rv)

For the rest of the section we fix a complete and cocomplete closed category (V,�, I),
a cartesian closed category (V ′,×, ∗) and a monoidal adjunction

(V,�, I)
L

�
R

(V ′,×, ∗)

such that L is strong monoidal (that is, the natural transformations I → L∗ and
La�Lb→ L(a× b) are natural isomorphisms).

The reason to mess up the theory with V ′ is the canonical V ′-functor

RV ×RV → R(V�V )

Composing this with

R(V�V ) R�−→ RV

we get a “square”
�:RV ×RV → RV

sending (v1, v2) ∈ obV × V to v1�v2. The square is essential for the enrichment on
monoids and V -categories.
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2.1. Lemma. Let O be a set and R, V and V ′ as above. The free/forgetful triple on
VO-graphs lifts to a V ′-functor.

Proof. Let G and H be VO graphs. The V ′-object of morphisms from G to H is given
by ∏

c,d∈O
RV (G(c, d),H(c, d))

We have to show that there is a map in V ′

∏
c,d∈O

RV (G(c, d),H(c, d)) →
∏
c,d∈O

RV (UFG(c, d), UFH(c, d))

lifting the morphism we get when forgetting all the way down to sets, but this is clear
using the same formula (which is messy when you write it out, explanations of the
various terms follow):

∏
c,d∈O RV (G(c, d),H(c, d))

∆

��∏
c,d∈O

∏
q≥0

∏
c=c0,c1,...cq=d∈O

∏
1≤i≤q RV (G(ci, ci−1),H(ci, ci−1))

�
��∏

c,d∈O
∏
q≥0

∏
c=c0,c1,...cq=d∈O RV (�1≤i≤qG(ci, ci−1),�1≤i≤qH(ci, ci−1))

��∏
c,d∈O

∏
q≥0

∏
c=c0,c1,...cq=d∈O RV (�1≤i≤qG(ci, ci−1), UFH(ci, ci−1))

∼=
��∏

c,d∈O RV (UFG(c, d), UFH(c, d))

The first map is the obvious diagonal (the empty product is given by ∗), the second is
the square (the empty square is given by I, and the corresponding maps from the empty
products are given by the structure map ∗ → RI ∼= RV (I, I)). The third map is induced
by the maps �1≤i≤qH(ci, ci−1) → UFH(c, d) and the last map is the isomorphism given
by the formula for UFG(c, d).
2.2. Corollary. The category of VO-categories is naturally a tensored and cotensored
V ′-category.

Proof. To simplify the notation, let the V -object of morphisms from a VO-graph G
to another H be written {G,H}. The previous lemma says that the free/forgetful triple
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induces a map R{G,H} → R{UFG, UFH} in V ′. If C and D are VO-categories, then
we define the V ′-object of morphisms from C to D as the equalizer of

R{UC, UD} ��

���������������
R{UFUC, UFUD}

��
R{UFUC, UD}

(using the structure of C and D as UF -algebras and lemma 2.1.).
If X ∈ obV ′ then the cotensor CX is the VO-category with morphism objects

CX(c, c′) = V (LX, C(c, c′))
This commutes with the monoidal structure (due to the fact that the diagonal map
X → X × X is a V ′-map: there is no guarantee that there is a diagonal in (V,�, I)
which explains why we can’t expect an enrichment in V ), and so defines a VO-category,
and the natural isomorphism

V ′(X,RV (D(c, c′), C(c, c′))) ∼= RV (D(c, c′), V (LX, C(c, c′)))
gives that it actually is a cotensor.

The category of VO-graphs is tensored over V ′ by letting X ⊗ G be the VO-graph
with morphisms (X ⊗G)(c, d) = LX�G(c, d). The tensor in VO-categories of X and C
is defined as the coequalizer of

F (X ⊗ UFUC) ⇒ F (X ⊗ UC)

where the upper map is induced by UFU
U(unit of adjunction)�� U and the lower map is

induced by the identity through

R{X ⊗ UC, X ⊗ UC} ∼= V ′(X,R{UC, X ⊗ UC}) → V ′(X,R{UFUC, UF (X ⊗ UC)})
∼= R{X ⊗ UFUC, UF (X ⊗ UC)} ∼= [F (X ⊗ UFUC), F (X ⊗ UC)]

which makes sense since UF is a V ′-functor.

3. The model structure

We will be working with enriched model categories by which we mean the following:
Let (V,�, I) be a closed category. Assume given a model structure on V . We say that

V is a (discrete) monoidal model category if the following condition holds: if i:A � B
is a cofibration in V and p:X � Y is a fibration in V then

V (B,X) → V (B, Y )
∏

V (A,Y )

V (B, Y ) ∈ V
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is a fibration in V which is a weak equivalence if either i or p is a weak equivalence.
By adjointness this is equivalent to the axiom which Schwede and Shipley call the

pushout product axiom and which says that if A
i�B and C

j
�D are cofibrations in V ,

then the canonical map

(A�D)
∐
A�C

(B�C)
(i,j)−→ B�D

is a cofibration, and if in addition one of the maps i and j is a weak equivalence, then
(i, j) is a weak equivalence.

By induction and the fact that � commutes with colimits we immediately get the
following lemma:

3.1. Lemma. Given cofibrations ji : Ai0 � Ai1 ∈ V for i = 1, . . . , n. Consider the
n-cube obtained by considering all n-fold square products A1

i1
� . . .�Anin . Then the

canonical map (j1, . . . , jn) from the colimit of the punctured cube to A1
1� . . .�An1 is

a cofibration, and if one of the Ai0 � Ai1 is a weak equivalence then so is (j1, . . . , jn).

A V -model category is a tensored and cotensored V -category C with a model structure
such that if i:A� B is a cofibration in C and p:X � Y is a fibration in C then

C(B,X) → C(B, Y )
∏

C(A,Y )

C(B, Y ) ∈ V

is a fibration in V which is a weak equivalence if either i or p is a weak equivalence.
If (V,�, I) and (V ′,�′, I′) are two monoidal model categories, a monoidal Quillen

adjunction

(V,�, I)
L
�
R

(V ′,�′, I′)

is a pair of (lax) monoidal functors such that L preserves cofibrations and trivial cofi-
brations and L is V ′-adjoint to R, that is there is a natural isomorphism

RV (LX, v) ∼= V ′(X,Rv)

In our intended applications (V ′,�′, I′) will be simplicial sets with cartesian product
(S,×, ∗), and I will equal L∗ (and so I will be cofibrant). The importance of this relation
to the simplicial world is that the simplicial structure will survive even when restricting
to subcategories of monoids or VO-categories due to the results in the previous section.
The fact that I is cofibrant will simplify many arguments regarding homotopy invariance
of certain colimit constructions.

Formalizing this, we say that a monoidal simplicial model category is
(1) a monoidal model category (V,�, I) with I cofibrant
(2) a monoidal Quillen adjunction

(V,�, I)
Σ
�
R

(S,×, ∗)
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If O is a set, the category of VO-categories is a tensored and cotensored S-category
(corollary 2.2.).

If V is a model category and O is a set, then the category of VO-graphs has a
model structure given by declaring that a map G → H of VO-graphs is a weak equiv-
alence (resp. (co)fibration)) if G(c, c′) → H(c, c′) ∈ V is a weak equivalence (resp.
(co)fibration)) for every c, c′ ∈ O.

3.2. Definition. Let O be a set and V a monoidal model category. The fibrations
(resp. weak equivalences) in the category of VO-categories are the maps that induce
fibrations (resp. weak equivalences) of VO-graphs (i.e. on all morphism objects). The
cofibrations are the VO-functors having the left lifting property with respect to VO-
functors that are both weak equivalences and fibrations.

If v ∈ obV and c0, c1 ∈ O, then Ov,c0,c1 is the VO-graph that has morphism objects

Ov,c0,c1(c
′, c′′) =

{
v if c0 = c′ and c1 = c′′

∗ otherwise

where ∗ is the initial object in V . If f : v → w ∈ V , then Of,c0,c1 :Ov,c0,c1 → Ow,c0,c1 is
the obvious map of VO-graphs. If I is a set of maps in V , we let OI be the corresponding
set of maps in VO-graphs, and FOI be its image in VO-categories under the free functor
F (see section 1.0).

We say that a simplicial closed model category V has a monoidal fibrant replacement
functor T0 if there is a lax monoidal functor T0:V → V with a natural transformation

v → T0(v)

consisting of weak equivalences with T0(v) fibrant.

3.3. Theorem. Let O be a set and V be a locally presentable cofibrantly generated
monoidal simplicial model category with a monoidal fibrant replacement functor.

Then the category of VO-categories is a cofibrantly generated simplicial model cate-
gory where the weak equivalences, fibrations and cofibrations are specified in the defini-
tion above.

If I (resp. J) is a set of generating cofibrations (resp. cofibrations that are weak
equivalences) in V , then FOI (resp. FOJ) is a set of generating cofibrations (resp.
cofibrations that are weak equivalences) in VO-categories.

Proof. By Beck’s theorem we have that VO-categories are UF -algebras, where UF
is the triple deriving from the free/forgetful adjoint pair between VO-categories and
VO-graphs. By section 2 the category of VO-categories is a tensored and cotensored
S-category. Since UF is simplicial (lemma 2.1), and the monoidality of the fibrant re-
placement functor assures that it lifts to a fibrant replacement functor for VO-categories,
the theorem follows from the arguments of [S, corollary B2].
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The condition that V is locally presentable is just there to assure that the small
object argument will not run into any problems: all objects are small with respect to
the entire category. This condition is in practice satisfied by models stemming from the
simplicial world, but not by topological examples.

Since the arguments involving the factorization we actually use do not depend on the
fibrant replacement functor, but only the small object argument, we get immediately

3.4. Lemma. Let O be a set and V be a locally presentable cofibrantly generated mo-
noidal model category.

If I is a set of generating cofibrations in V , then there is a functorial replacement
functor which to every VO-functor f : C → D assigns a factorization C � E ∼� D into a
cellular FOI-cofibration i: C � E followed by p: E ∼� D which is both a weak equivalence
and a fibration.

We have not assumed that V was left proper, so we can not expect left properness
for VO-categories. However, we do have the following gluing lemma.

3.5. Lemma. Let V be a monoidal model category with I cofibrant. Let

CX
�

��

C0
�� ��

�
��

CY
�

��
DX D0

�� �� DY

be a diagram in VO-categories where the units IO → C0 and IO → D0 and all the
horizontal maps are cofibrations when considered as morphisms of VO-graphs and the
vertical maps are weak equivalences. Then the map of pushouts

CX
∐
C0

CY → DX

∐
D0

DY

is a weak equivalence of VO-categories.

Proof. Consider the description of the morphism objects of the pushout categories
given in section 1.10. The morphism objects from c to d in CXY was described as
the colimit over a certain category Oc,d of a functor Cc,d:Oc,d → V which on the
object α = (i, C, q) ∈ obOc,d has the value Cc,d(α) = �q

k=0Cik(Ck+1, Ck). We define
the morphism objects of DXY in the exact same way, except that we call the functor
Oc,d → V induced in the same way with D’s instead of C’s Dc,d instead of Cc,d. The
map of pushouts CX,Y → DXY is then induced by the obvious natural transformation

Cc,d(α) = �q
k=1Cik(Ck, Ck−1) → �q

k=1Dik(Ck, Ck−1) = Dc, d(α)
The strategy is to prove that Cc,d is Reedy cofibrant (see [H, 17.3.2.2]), and so since

lemma 1.7. claims that Oc,d has “fibrant constants”, that

holim−−→
Oc,d

Cc,d → lim−−→
Oc,d

Cc,d = CXY (c, d)
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is a weak equivalence by [H, 20.7.2.1] (and likewise for D) and using that in this case
the homotopy colimit is a homotopy invariant [H, 20.4.3].

To prove that Cc,d is Reedy cofibrant, we have to consider the latching category

Lα =
→
Oc,d/α− idα

for all objects α = (i, C, q) in Oc,d and show that the map

lim−→
Lα

Cc,d → Cc,dα

is a cofibration in V . This can conceivably be proven directly, but our task is simplified
greatly by restricting our attention to the final subcategory

Fc,d
α − idα = 8α ⊆ Lα

Note that Cc,d|Fc,d
α is a cube, and lemma 3.1. will guarantee that the map from the

punctured cube to the final node is a cofibration. In its simplest form it may look like

C0(c, d)�C0(b, c) ��

��

C0(c, d)�CY (b, c)

��
C0(d, d)�C0(c, d)�C0(b, c) �� C0(d, d)�C0(c, d)�CY (b, c)

where the vertical maps are given by insertion of a unit I → C0(d, d) and horizontal maps
are induced by 0 → Y . Discarding the C0(c, d)� which commutes with colimits anyhow,
we see that we have an example of the square product axiom, since both I → C0(d, d)
and C0(b, c) → CY (b, c) are cofibrations in V . The general case is similar: the cube
Cc,d|Fc,d

α is a cube of successively more square product factors (maps induced by units)
or increase in indices (maps in the pushout). Discarding the square product factors
being constant throughout the cube and inserting I’s where units are to be inserted
later on, we are left with a cube of the form given in lemma 3.1, and so

lim−→
,α

Cc,d → Cc,dα

is a cofibration in V . Since 8α ⊆ Lα is final, the map

lim−→
Lα

Cc,d → lim−→
,α

Cc,d

is an isomorphism and so Cc,d is Reedy cofibrant.
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3.6. Lemma. Let V be a monoidal model category with I cofibrant and with generating
set of cofibrations I. Then every cellular FOI-cofibration C � D of VO-categories where
the morphism objects of C are cofibrant in V induces cofibrations C(c, d) � D(c, d) of
morphism objects.

Proof. It is enough to prove that if c, d ∈ O and f : v → w ∈ I, then for a pushout in
VO-categories

FOv,c,d ��

��

FOw,c,d

��
C1

�� C2

with C1(x, y) ∈ V cofibrant for all x, y ∈ O we have that the induced maps C1(x, y) →
C2(x, y) are cofibrations. But this follows by an analysis of the diagrams defining the
pushout as in the previous lemma, since the freeness of two of the categories imply that
the multiplication part can be ignored, and we are left with a colimit of cobase changes,
each of which are cofibrations since cofibrations are preserved by �-ing with cofibrant
objects.

3.7. Moving the objects. In many applications, it is convenient and sufficient to
do the constructions solely within VO-categories if we are only concerned with just one
category at the time. However, we will have the occasion to use a wider functoriality
which is the consequence of the following lemma.

3.8. Lemma. The functorial factorizations coming from the cofibrant generation of the
category of VO-categories is functorial in the category of V -functors. More precisely,
let O1 and O2 be two sets and consider the commutative diagram in V -categories

C1
f1

��

F

��

D1

G

��
C2

f2
�� D2

where f i ∈ VOi-categories. Let

Ci � Zfi

∼� Di

be the functorial factorization of lemma 3.4 in VOi-categories, coming from a choice of

generation of the cofibrantly generated model category V . Then there is a map Zf1
Z(F,G)−→

Zf2 such that

C1 ��

F

��

Zf1
∼ ��

Z(F,G)

��

D1

G

��
C2 �� Zf2

∼ �� D2
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commutes. Furthermore, if O3 is yet another set, and

C2
f2

��

D

��

D2

E

��
C3

f3
�� D3

is a commutative diagram in V -categories with f3 in VO3-categories, then

Z(DF,EG) = Z(D,E)Z(F,G)

Proof. Consider the way the functorial factorizations are gotten in cofibrantly gener-
ated model categories via the small object argument (see e.g. [H, 13.4.14]). Let K be a
set of maps in V permitting the small object argument. Recall the set Oi

K of maps in
VOi-graphs introduced just before theorem 3.3. Furthermore, let F i be the free functor
from VOi-graphs to VOi-categories. Note that a map F 1(O1

v,c,d) → C1 is the same as
a map v → C1(c, d) in V , which induces a map v → C1(c, d) → C2(Fc, Fd) which is the
same as a map F 2(O2

v,Fc,Fd) → C2. If σ : v → w ∈ V , then a diagram

F 1(O1
v,c,d)

F 1((O1)σ,c,d) ��

��

F 1(O1
w,c,d)

��
C1

f1
�� D1

induces a diagram
v

σ ��

��

w

��
C1(c, d)

f1
��

F

��

D1(c, d)

G

��
C2(Fc, Fd)

f2
�� D2(Gc,Gd)

since F equals G on objects, which again gives a diagram

F 2(O2
v,Fc,Fd)

F 2(O2
σ,F c,F d)

��

��

F 2(O2
w,Fc,Fd)

��
C2

f2
�� D2
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Now, since the free functor commutes with coproducts, and the coproduct in VOi-
graphs is just the coproduct in V of each morphism object we get a map of squares
from ∐

t∈X1 F 1(O1
σ(t),v(t),w(t)) ��

��

∐
t∈X1 F 1(O1

τ(t),v(t),w(t))

��
C1 �� D1

to ∐
t∈X2 F 2(O2

σ(t),v(t),w(t)) ��

��

∐
t∈X2 F 2(O2

τ(t),v(t),w(t))

��
C2 �� D2

By 1.5 this induces a map of the corresponding pushouts, and since filtered colimits are
computed on each morphism object, the result is clear.

4. The category P of pairs

In this section we develop some machinery pertaining to the category of pairs used in
the localization functor. Note that the representation of the category of pairs used in
section 0 is only isomorphic to the one we use here.

Let V be a closed category, and let R be a lax monoidal functor (V�, I) → (S,×, ∗).
Let Pfree be the category whose objects are pairs

(C,W w→ RC)

where C is a (small) V -category and W → RC a S-functor of (small) S-categories. In
section 0 we used that in that context R had a left adjoint Σ: S → V , and represented
the pair (C,W → RC) by means of the adjoint (C,ΣW → C). That was convenient at
the time (less notational burden at the time of the definition of the localization), but
here it is simpler to stick with our current definition.

A morphism
(C, w) → (C′, w′)

in Pfree is a pair
F : C → C′, WF :W → W ′

where F is a V -functor such that

W w ��

WF

��

RC
RF

��
W ′ w′

�� RC′
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commutes.
In other words: Pfree is defined by the pullback

Pfree ��

��

V -categories

��S-functors
target��S-categories

4.0. The subcategories Pfix ⊆ P ⊆ Pfree
. The localization as we have defined it

eventually turned out to live in the full subcategory P ⊆ Pfree whose objects (C, w)
have the property that w : W → RC is the identity on objects (see lemma 0.11.).

However, at the outset it was not clear that one could allow all the morphisms:
the localization construction was originally performed in the much smaller subcategory
Pfix ⊆ P whose morphisms are morphisms

(C, w) F,WF−→ (C′, w′)

where F (and hence WF ) is the identity on objects.
The inclusion functor P ⊆ Pfree has a right adjoint φ : Pfree → P which is important

for many applications. If (C, w : W → RC) ∈ obPfree, then φ(C, w) = (φwC, φw) each
of whose factors are defined below. The first factor φwC is the V -category with objects
obW and with morphism object from c ∈ obW to d ∈ obW given by

φwC(c, d) = C(wc,wd)
The second factor φw : W → RφwC is induced by w

W(c, d) → RC(wc,wd) = RφwC(c, d)

This is a functor, since if (C, w) F,WF−→ (C′, w′) is a map in Pfree, then we get a map

φ(C, w) φ(F,WF )−→ φ(C′, w′) in P with first factor

φwC(c, d) = C(wc,wd)
F→ C′(Fwc, Fwd) = C′(w′WFc,w′WFd) = φw′C′(WFc,WFd)

and second factor WF as before.
Note that the composite P ⊆ Pfree φ→ P is the identity. When considered as an

endofunctor on Pfree φ is idempotent (φ2 = φ) and there is a natural transformation
φ→ idPfree given by the obvious map φwC → C which is the identity on morphisms.

Using this we get that φ is right adjoint to the inclusion as promised.
We say that a morphism (C, w) F,WF−→ (C′, w′) in Pfix is a weak equivalence (resp.

fibration) if both F and WF are. The following easy lemma is not needed in the text
above, but is good for the intuition.
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4.1. Lemma. Let V be a locally presentable cofibrantly generated monoidal simplicial
model category with a monoidal fibrant replacement functor. Then the category of fixed
pairs Pfix is a disjoint union of simplicial model categories.

Proof. Let O be a set, and consider the component of Pfix of pairs with set of objects
O. The limit, two out of three, retract and half of the lifting axiom are obvious. A
cofibration is a map with the left lifting property with respect to maps that are both
fibrations and weak equivalences. Note that a map

(A, wa : Wa → RA) → (B, wb : Wb → RB)

is a cofibration if and only if both Wa → Wb and

A
∐
ΣWa

ΣWb → B

are cofibrations.
Hence the map is a weak equivalence and a cofibration if and only if Wa → Wb and

A∐
ΣWa

ΣWb → B are cofibrations and weak equivalences (by the two out of three
axiom since cofibrations that are weak equivalences are stable under pushout). Thus
the other part of the lifting axiom is true too.

The factorization axiom is proven by first factoring

Wa � ZWF � Wb

(where either the first or the latter is a weak equivalence), and then letting PF =
A∐

ΣWa
ΣZWF , and lastly factoring PF → B as PF � ZF � B. Let wF :ZWF → RZF

be the adjoint of ΣZWF → PF → ZF . By construction (A, wa) → (ZF , wF ) is a
cofibration and (ZF , wF ) → (B, wb) a fibration, and by proper choices we can make one
of them a weak equivalence as well.

The simplicial structure is given by the simplicial structure on VO-categories and
SO-categories.

We see that in this structure, the map B(C, w) → (C, w) constructed for use in the
localization is a weak equivalence and a fibration, whereas B(C, w) → L(C, w) is a
weak equivalence but not a cofibration since QW → QW[QW−1] is not a cofibration of
S-categories (only a cofibration of S-graphs).
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