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THE EXTENSIVE COMPLETION OF A DISTRIBUTIVE CATEGORY

J.R.B. COCKETT AND STEPHEN LACK

ABSTRACT. A category with finite products and finite coproducts is said to be dis-
tributive if the canonical map A×B + A×C → A× (B + C) is invertible for all objects
A, B, and C. Given a distributive category D , we describe a universal functor D → Dex
preserving finite products and finite coproducts, for which Dex is extensive; that is, for
all objects A and B the functor Dex/A × Dex/B → Dex/(A + B) is an equivalence of
categories.
As an application, we show that a distributive category D has a full distributive em-
bedding into the product of an extensive category with products and a distributive
preorder.

1. Introduction

A category with finite products and finite coproducts is said to be distributive, if for all
objects A, B, and C, the canonical map

δ : A×B + A× C → A× (B + C)

is invertible. These categories have proved to be important in theoretical computer science
as they facilitate reasoning about programs with control and the specification of abstract
data types. Every topos is a distributive category, so the categories Set, Gph, SetG, and
Shv(X) of sets, (directed) graphs, G-sets, and sheaves on a space are all distributive.
But there are many other examples which are not toposes, such as the category Top
of topological spaces and continuous maps, the category Hty of topological spaces and
homotopy classes of maps, the poset P(X) of subsets of a set X, or the opposite of the
category of commutative rings. The papers [3, 6] contain an introduction to distributive
categories; see also the book [16].

A category E with finite coproducts is said to be extensive if the functors E /A×E /B →
E /(A + B) sending a pair (f : X → A, g : Y → B) to f + g : X + Y → A + B
are equivalences of categories for all objects A and B. These categories are particularly
important in geometry – see for instance [13, 15] — but also in proof theory [1], categorical
Galois theory [2], and descent morphisms for internal structures [14]. All of the above
examples of distributive categories are also extensive except for P(X). More generally, any
distributive lattice, viewed as a preorder, is a distributive category which is not extensive.
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On the other hand, the full subcategory of Top consisting of those spaces which can be
embedded in three-dimensional Euclidean space R

3 is extensive, but it is not distributive,
because it does not have finite products — it’s not hard to show that the product of
two three-dimensional spaces would have to have dimension greater than three. Thus
an extensive category can fail to be distributive by failing to have finite products, but
this is in fact the only possible problem: every extensive category with finite products is
distributive. For a proof of this, and a general introduction to extensive categories, see
once again either of the papers [3, 6].

Thus among the distributive categories are the extensive categories with products.
Our main result is to construct for each distributive category D an extensive category
with products Dex equipped with a functor D → Dex which preserves finite products
and finite coproducts and is the universal such functor into an extensive category with
products. More formally, a functor between distributive categories is called a distributive
functor if it preserves finite products and finite coproducts. There is a 2-category Dist
of distributive categories, distributive functors, and natural transformations; and this 2-
category Dist has a full sub-2-category Extpr consisting of those distributive categories
which are also extensive. We construct a left biadjoint to the inclusion of Extpr into Dist,
sending a distributive category D to Dex. We call Dex the extensive completion of the
distributive category D .

This construction was found independently by the two authors in 1995, and appeared
in the second author’s unpublished thesis [11]. Since then, we have found a more concep-
tual approach than the explicit construction given here. This conceptual approach has
lead to the series of papers [7, 8, 9], and is described fully in the last of them [9].

Since the explicit construction may be of interest to some people who do not want to
work through the theoretical machinery involved in this conceptual approach, we decided
to write this paper to provide an exposition of this more elementary construction using
Boolean propositions. The “cost” of avoiding the theory developed in these papers is
that the proof we give below involves lengthy, and rather uninspiring, diagram-chasing in
distributive categories.

In any case, the general idea of the conceptual approach can be easily described: for
a distributive category D , there is a monad +1 on D sending an object A to A + 1,
and the Kleisli category of this monad can be viewed as an “abstract category of partial
maps” (a restriction category in the sense of [7]). This means in particular that it embeds
canonically in an actual category of partial maps (obtained from the Kleisli category by
splitting certain idempotents) and the subcategory of total maps is now Dex. There is
a striking analogy with the exact completion of a regular category. In that case one
starts with a regular category C , forms the category of relations in C , then splits certain
idempotents in this category; the resulting category is then the category of relations in
the exact completion Cex/reg: see [4] or [12] and the references therein.

Notation. The identity morphism on an object A is denoted by A. Our notation for
coproducts is: (f g) : A+B → C for the morphism induced by f : A → C and g : B → C,
and in for the injection of the nth summand, in,m for the injection of the nth and mth
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summands, and so on. Our notation for products is:
(

f
g

)
: C → A× B for the morphism

induced by f : C → A and g : C → B, and pn for the projection onto the nth factor,
while the unique map from an object A to the terminal object 1 is denoted by !. We
sometimes write tw for the canonical isomorphism A+B → B + A.

2. The category of Boolean propositions

Let D be a distributive category. A Boolean proposition in D is an object A equipped with
a morphism a : A → 1+ 1. The aim of this section is to define a category Bool(D) whose
objects are the Boolean propositions in D , to define the inclusion functor D → Bool(D)
taking each object to the “always true” proposition on that object, and to show that
Bool(D) is extensive and has finite products. In the following section we shall show that
Bool(D) has the universal property of the extensive completion Dex of D .

The description of Bool(D) is very easy, but even to prove that it is a category involves
some diagram-chasing in D . An object of Bool(D) is a Boolean proposition (A, a) in D ,
while a morphism in Bool(D) from (A, a) to (B, b) is a morphism f : A → B + 1 in D
rendering commutative

A
f ��

a

��

B + 1

b+1
��

1 + 1
i1,3

�� 1 + 1 + 1.

The composite of arrows f : (A, a) → (B, b) and g : (B, b) → (C, c) is the “Kleisli
composite”:

A
f �� B + 1

g+1 �� C + 1 + 1
C+! �� C + 1

and this composition is clearly associative. The identities are a little more delicate: the
identity at an object (A, a) is the map ιa : A → A+ 1 given by

A
(A

a) �� A× (1 + 1) δ−1
�� A+ A

A+! �� A+ 1.

2.1. Proposition. Bool(D) is a category.

Proof. We must show that each ιa is an endomorphism of (A, a), and that it satisfies
the two identity laws.

The fact that ιa is a morphism in Bool(D) follows from commutativity of

A
(A

a) ��

a

��

A× (1 + 1) δ−1
��

a×(1+1)
��

A+ A
A+! ��

a+a

��

A+ 1

a+1

��
1 + 1

∆
�� (1 + 1)× (1 + 1)

δ−1
�� 1 + 1 + 1 + 1

1+1+!
�� 1 + 1 + 1
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and the fact that the composite of the three arrows across the bottom of the diagram is
i1,3 : 1 + 1 → 1 + 1 + 1. We shall sometimes write 1(A,a) if we wish to emphasize that ιa
is being thought of as an arrow in Bool(D).

The fact that f1(A,a) = f for a map f : (A, a) → (B, b) follows from commutativity of

A
(A

a) ��

f

��

(f
f)

��

A× (1 + 1)
δ−1

��

f×(1+1)
��

A+ A
A+! ��

f+f

��

A+ 1

f+1

��
(B + 1)× (B + 1)

(B+1)×(!+!)
�� (B + 1)× (1 + 1)

δ−1
�� B + 1 +B + 1

B+!

��������������� B+1+1

B+!

��
B + 1

∆

��������������

1
�� B + 1

while the fact that 1(B,b)f = f follows from commutativity of

A
f ��

(A
a)

��

B + 1
(B

b)+1
��

( B+1
(b i2))

��

B × (1 + 1) + 1
δ−1+1�� B +B + 1

B+!

��
A× (1 + 1)

f×(1+1)��

δ−1
����������������

(B + 1)× (1 + 1) δ−1
�� B + 1 +B + 1

B+! �� B + 1

A+ A

f+f
������������������

A+!
�� A+ 1

(f i2)

����������������

and the previous result.

For an object A of D , we write t : A → 1 + 1 for the Boolean proposition on A given
by the composite of i1 : 1 → 1+1 with the unique map ! : A → 1. We think of this as the
“always true” proposition on A. There is a functor I : D → Bool(D) sending an object
A of D to (A, t) and sending a morphism f : A → B to the composite of f with the
injection B → B + 1. Since in a distributive category the coproduct injections are monic
(see [3, Proposition 3.3]), the functor I is clearly faithful. We shall see in the following
section that it exhibits Bool(D) as the extensive completion of D .

We define the disjoint union of Boolean propositions (A, a) and (B, b) to be (A+B, a�
b), where a � b is (a b) : A+B → 1 + 1.

2.2. Proposition. Bool(D) has finite coproducts; the coproduct of (A, a) and (B, b) is
(A + B, a � b), while the initial object is (0, t). The functor I : D → Bool(D) preserves
finite coproducts.

Proof. The fact that (0, t) is initial is trivial. As for binary coproducts, observe that
there is a bijection between arrows (f g) : A+B → C and pairs (f : A → C, g : B → C)
of arrows in D , natural in C. If now c : C → 1 + 1, then (f g) : A + B → C + 1 is an
arrow in Bool(D) from (A+B, a� b) to (C, c) if and only if f and g are arrows in Bool(D)
from (A, a) to (C, c) and from (B, b) to (C, c). One easily sees that the resulting bijection
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between maps (A+B, a� b) → (C, c) and pairs of maps ((A, a) → (C, c), (B, b) → (C, c))
is natural in (C, c). Thus (A+B, a � b) is the coproduct in Dex of (A, a) and (B, b).

The fact that I preserves finite coproducts is clear from the description of these co-
products in Bool(D).

It will also be useful to have an explicit description of the injections of the coproduct
(A+B, a � b). These are the maps corresponding to the identity 1(A+B,a�b) under the
bijection described in the proposition; that is, the composites of ιa�b : A+B → A+B+1
with the injections A → A+B and B → A+B. The reader will easily verify that these
are the maps

A
ιa �� A+ 1

i1,3 �� A+B + 1 B + 1
i2,3�� B.

ιb��

We now turn to finite products. We define the cartesian conjunction of Boolean
propositions (A, a) and (B, b) to be (A×B, a� b), where a� b is the composite &(a× b),
and & is

(1 + 1)× (1 + 1) δ−1
�� 1 + 1 + 1 + 1

1+! �� 1 + 1.

2.3. Proposition. Bool(D) has finite products; the product of (A, a) and (B, b) is (A×
B, a � b), while the terminal object is (1, t) The functor I : D → Bool(D) preserves finite
products.

Proof. A map f : (A, a) → (1, t) is a map f : A → 1 + 1 in D satisfying i1,3a = i1,3f ,
but since i1,3 is (split) monic, a is the unique such map. This proves that (1, t) is terminal.

We claim that the maps

A+ 1 A×B + 1
πA+1�� A×B

ιa�b�� ιa�b �� A×B + 1
πB+1 �� B + 1

exhibit (A× B, a � b) as the product of (A, a) and (B, b). Given f : (C, c) → (A, a) and
g : (C, c) → (B, b), the induced map (C, c) → (A×B, a � b) is

C
(f

g) �� (A+ 1)× (B + 1)
ε �� A×B +B + A+ 1

A×B+!�� A×B + 1

where ε : (A+1)× (B+1) → A×B+B+A+1 is the evident isomorphism arising from
distributivity of D . We leave the verifications to the reader.

The fact that I preserves finite products is clear from the description of these products
in Bool(D).

2.4. Theorem. The category Bool(D) is an extensive category with finite products, and
so in particular is distributive.

Proof. It remains only to prove that Bool(D) is extensive. It suffices by [3, Propo-
sition 4.1] to prove that Bool(D) has pullbacks along the injections of the coproduct
(1 + 1, t � t) and also that if

(A1, a1)
j1 ��

��

(A, a)

f
��

(A2, a2)
j2��

��
(1, t)

i1
�� (1 + 1, t � t) (1, t)

i2
��
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are commutative squares, then they are pullbacks if and only if the top row is a coproduct
diagram.

We observe that t � t is the composite of the unique map ! : 1 + 1 → 1 with the
injection i1 : 1 → 1 + 1. To say that f : A → 1 + 1 + 1 is a map in Bool(D) from (A, a)
to (1 + 1, t � t) is to say that

A
a ��

f

��

1 + 1

i1,3

��
1 + 1 + 1

!+1
�� 1 + 1

i1,3

�� 1 + 1 + 1

commutes, which amounts to saying that a = (! + 1)f . In this case, write f1 for (1+!)f :
A → 1 + 1. We claim that

(A, f1)
κf ��

!
��

(A, a)

f

��
(1, t)

i1
�� (1 + 1, t � t)

is a pullback square in Bool(D), where κf is the map represented by ιf1 . Commutativity
of

A
(A

f) ��

f

��

A× 3
A×(1+!)�� A× (1 + 1) δ−1

��

f×(1+1)

��

A+ A
A+! ��

f+f

��

A+ 1

f+1

��
3

∆ ��

1+!
		���������������������� 3× 3

3×(1+!)
�� 3× (1 + 1)

δ−1
�� 3 + 3

3+! �� 3 + 1

1 + 1

i1+1



����������������������

says that (f + 1)ιf1 = (i1 + 1)f1, whence it follows easily that κf is indeed a map in
Bool(D) and that the purported pullback square commutes.

As for universality, let

(B, b)
g ��

b
��

(A, a)

f

��
(1, t)

i1
�� (1 + 1, t � t)

be a commutative square in Bool(D). We must show that there is a unique arrow g′ :
(B, b) → (A, f1) for which κfg

′ = g. But if g′ : (B, b) → (A, f1), then ιf1g
′ = g′, by one of

the identity laws, so that g = κfg
′ = g′, giving the uniqueness. It remains only to show

that g is in fact an arrow from (B, b) to (A, f1) in Bool(D); that is, that

B
b ��

g

��

1 + 1

i1,3

��
A+ 1

f+1
�� 3 + 1

1+!+1
�� 1 + 1 + 1
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commutes, but this follows from the commutativity of

B
b ��

g

��

1 + 1

i1,3

��

B
b ��

g

��

1 + 1

i1,3

��
A+ 1

f+1
�� 3 + 1

!+1+1
�� 1 + 1 + 1 A+ 1

f+1
�� 3 + 1

1+1+!
�� 1 + 1 + 1

which express the fact that g : (B, b) → (A, a) is a morphism and that the square involving
g commutes.

Thus Bool(D) has pullbacks along injections. To see that the coproduct (1 + 1, t � t)
is stable under pullback, let f : (A, a) → (1+1, t) be given, and form the pullback (A, f1)
along the first injection, as above. Similarly, the pullback along the second injection can
be formed as (A, f2), where f2 is the composite (1+!)(tw + 1)f . Thus we have pullback
squares

(A, f1)

��

κf �� (A, a)

f
��

(A, f2)
λf��

��
(1, t)

i1
�� (1 + 1, t � t) (1, t)

i2
��

where λf is the map represented by ιf2 ; and we must show that the top row is a coproduct
diagram. In other words, we must show that the map (κf λf ) : (A+A, (f1 f2)) → (A, a)
represented by (ιf1 ιf2) : A+A → A+ 1 is invertible. It is so with inverse represented by
the composite

A
(A

f) �� A× (1 + 1 + 1) δ−1
�� A+ A+ A

A+A+!�� A+ A+ 1.

To show that Bool(D) is extensive, it will now suffice to show that

(A, a) ��

��

(A, a) + (B, b)

!+!
��

(1, t)
i1

�� (1 + 1, t � t)

is a pullback, where the upper horizontal arrow is the coproduct injection i1,3ιa : A →
A + B + 1. Given our explicit calculation of pullbacks along injections, this amounts to
proving, for c equal to the composite

A+B
a+b �� 1 + 1 + 1 + 1

1+tw+1 �� 1 + 1 + 1 + 1
1+1+! �� 1 + 1 + 1

that the map (A, a) → (A+B, c) represented by i1,3ιa is invertible. It is so, with inverse

A+B
ιa+! �� A+ 1 + 1

A+! �� A+ 1.
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3. The extensive completion of a distributive category

In this section we show that the functor I : D → Bool(D) sending an object to the “always
true” Boolean proposition on it exhibits Bool(D) as the extensive completion of D . In
fact we shall do more than this: we show that Bool(D) has a universal property not just
with respect to distributive functors, but with respect to arbitrary functors which preserve
finite coproducts and whose codomain is extensive. More precisely, we show that for any
extensive category E , composition with I induces an equivalence of categories between the
category of finite-coproduct-preserving functors from D to E , and the category of finite-
coproduct-preserving functors from Bool(D) to E . Then the statement that Bool(D) is
the extensive completion of D amounts to the further claim that if E has finite products,
then a finite-coproduct preserving functor Bool(D) → E preserves finite products if and
only if its composite with I does so.

Let E be an arbitrary extensive category — we do not assume that E has products
— and let F : D → E be a finite-coproduct-preserving functor. For each object (A, a) of
Bool(D), we may form the pullback

F (A, a)
ka ��

la

��

FA

Fa
��

F1
Fi1

�� F (1 + 1)

in E , since E has pullbacks along coproduct injections because E is extensive, and Fi1 is
a coproduct injection because F preserves finite coproducts. We shall show that this gives
the object-part of a functor F : Bool(D) → E . We define F on an arrow f : (A, a) → (B, b)
in Bool(D) using the cube

F (A, a)
Ff ��

la

��

ka �������������
F (B, b)

F (iB)kb

������������

lb
��

FA
Ff ��

Fa

��

F (B + 1)

F (b i2)

��

F1
F1

��

Fi1 ��											 F1

Fi1 ��											

F (1 + 1)
F (1+1)

�� F (1 + 1)

where the left and right faces are pullbacks by definition of F (A, a) and F (B, b) and by
extensivity of E , and where the remaining faces commute.

This defines a finite-coproduct-preserving functor F : Bool(D) → E . Of course it
is only defined up to isomorphism unless specific choices of the relevant pullbacks have
been made, but clearly we can ensure that FI = F . Similarly, if G : D → E is another
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finite-coproduct-preserving functor and α : F → G a natural transformation, define G as
for F , and there is now a unique way to extend α to a natural transformation α : F → G:
one defines α(A,a) so as to render commutative the cube

FA
α(A,a) ��

ka

��











la

��

GA
ka

������������

la
��

FA
αA ��

Fa

��

GA

Ga

��

F1
α1 ��

Fi1 ��








 G1

Gi1 ������������

F (1 + 1) α1+1

�� G(1 + 1).

This proves:

3.1. Proposition. If E is an extensive category, then composition with I induces an
equivalence of categories between the category of finite-coproduct-preserving functors from
Bool(D) to E , and the category of finite-coproduct-preserving functors from D to E

In particular, this means that, up to isomorphism, F is the unique finite-coproduct-
preserving functor for which FI ∼= F .

3.2. Remark. Write Sums for the 2-category of categories with finite coproducts, finite-
coproduct-preserving functors, and natural transformations; write Ext for the full sub-2-
category consisting of the extensive categories. A little 2-categorical wizardry can be used
to show that the inclusion Ext → Sums has a left biadjoint. An explicit construction of
this biadjoint is probably quite complicated, but the proposition shows that for an object
D of Sums which happens to be distributive, the value of the left biadjoint is Bool(D).

3.3. Theorem. Bool(D) is the extensive reflection of D , in the sense that for any ex-
tensive category E with finite products, composition with I : D → Bool(D) induces an
equivalence between the category of distributive functors from Bool(D) to E and the cate-
gory of distributive functors from D to E .

Proof. It remains only to show that F : Bool(D) → E preserves finite products if and
only if F does so. Since F = FI and I preserves finite products, F will certainly preserve
finite products if F does so; we must prove the converse.

Suppose then that F : D → E is a distributive functor, and that F : Bool(D) → E is
the (essentially unique) finite-coproduct-preserving functor satisfying FI = F . Clearly F
preserves the terminal object; we must show that it preserves the product of any pair of
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objects (A, a) and (B, b). To see this, consider the following diagrams in E :

F (A, a)× F (B, b)
ka×kb ��

la×lb

��

FA1 × FA2
ϕ ��

Fa×Fb

��

F (A×B)

F (a×b)

��

F1× F1
Fi1×Fi1 ��

ϕ

��

F (1 + 1)× F (1 + 1)
ϕ

		�����������������

F (1× 1)
F (i1×i1) ��

F !

��

F ((1 + 1)× (1 + 1))

F&
��

F1
Fi1

�� F (1 + 1)

where the maps labelled ϕ are the canonical isomorphisms expressing the fact that F
preserves products. The top left square is a pullback by definition of F (A, a) and F (B, b),
and by the fact that products commute with pullbacks. The two squares involving ϕ’s
commute, and the ϕ’s are invertible. The bottom square is a pullback because

1× 1
i1×i1 ��

!

��

(1 + 1)× (1 + 1)

&

��
1

i1
�� 1 + 1

is a pullback in D , and F preserves pullbacks along injections. It follows that the exterior
square is a pullback; but this just says that F preserves the product of (A, a) and (B, b).

In light of this theorem, we shall now use the notation Dex in place of Bool(D).

3.4. Proposition. If D is itself extensive, then I : D → Dex is an equivalence of
categories.

Proof. We have seen that Extpr is a full sub-2-category of Dist, and that the inclusion
has a left biadjoint taking D to Dex, with I the unit of the biadjunction. It follows from
general 2-categorical considerations that I must be an equivalence.

An object P of an arbitrary category is said to be preinitial if for each object A, there
is at most one arrow from P to A. This is clearly equivalent to the unique arrow from
the initial object being epimorphic, which is in turn equivalent to the diagram

P
1 �� P P

1��

exhibiting P as the coproduct P + P . This last characterization shows that any finite-
coproduct-preserving functor preserves preinitial objects. In an extensive category sums
are disjoint, whence it follows that the only preinitial object in an extensive category is
the initial object. Putting these facts together we deduce:
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3.5. Proposition. If D is distributive and P is a preinitial object in D , then the image
of P under I : D → Dex is initial.

In the special case that D is a preorder, every object is preinitial. This gives:

3.6. Corollary. If D is a distributive preorder, then Dex is equivalent to the terminal
category.

4. An embedding theorem

Recall [3] that a category is said to be locally distributive if it is distributive and every
slice category is distributive, and lextensive if it is extensive and has finite limits. The first
author proved [5] that a locally distributive category D can be “subdirectly decomposed”
into a distributive preorder and a lextensive category; that is, there is a distributive
preorder P and a lextensive category E and a fully faithful functor D → P×E preserving
finite coproducts and finite limits. Explicitly, write 0 for the pullback of the injections
1 → 1 + 1. Then D/0 is a distributive preorder, 0/D is lextensive, and the functor
I : D → D/0 × 0/D sending A to (p2 : A × 0 → 0, i2 : 0 → A + 0) is fully faithful and
preserves finite coproducts and finite limits.

These constructions fail if D is only assumed to be distributive, for we cannot even
guarantee the existence of 0. However we can subdirectly decompose a distributive cate-
gory into a distributive preorder and an extensive category with products. The extensive
category with products is the extensive completion Dex, while the distributive preorder is
the preorder reflection Dpr, which has the same objects as D , and A ≤ B if and only if
there is an arrow in D from A to B. Then Dpr is clearly distributive, and the canonical
map Q : D → Dpr is clearly a distributive functor. Write J : D → Dpr × Dex for the
functor induced by Q and I.

4.1. Theorem. For a distributive category D , the functor J : D → Dpr × Dex is fully
faithful, and so gives a subdirect decomposition of D into a distributive preorder and an
extensive category with products.

Proof. It remains only to prove that J is fully faithful. Certainly J is faithful, since I is
so. Suppose then that A and B are objects of D , that f : A → B + 1 is a map IA → IB
in Dex, and that QA ≤ QB. We shall exhibit a map h : A → B so that Ih = f , whence
it follows that J is full.

The fact that f : IA → IB is a map in Dex amounts to the fact that (!+!)f : A → 1+1
factorizes through the first injection. Since QA ≤ QB, there is some map g : A → B in
D . We take h : A → B be the composite

A
(g

f) �� B × (B + 1)
δ−1

�� B ×B +B
(p2 B)�� B.

To say that Ih = f is just to say that f is the composite of h and i1 : B → B + 1. In the



Theory and Applications of Categories, Vol. 8, No. 22 552

commutative diagram

A

(g
f)

��

(
g
f
i1!

)

��
B × (B + 1)

B×∆ ��

δ−1

��

B × (B + 1)× (B + 1)
B×(B+1)×(!+!)�� B × (B + 1)× (1 + 1)

δ−1×(1+1)
��

(B ×B +B)× (1 + 1)

δ−1

��
B ×B +B

i1,4

�� B ×B +B +B ×B +B

write k for the value of the composite. The codomain is the coproduct of four components,
and k factorizes through the injection of the first and fourth, but is also easily seen to
factorize through the injection of the first two. It follows that arrows u, v : B ×B +B +
B×B+B → C are equal if and only if their composites with the first injection are equal.
Finally

i1h = (i1p2 i1 i1p2 i1)k = (i1p2 i2! i1p2 i2!)k = f

whence the result.

A couple of remarks are appropriate here. First of all, if D is of the form P × E
to start with, where P is a distributive preorder and E is an extensive category with
products, then Dex may be taken to be E itself, and I the projection. On the other hand,
the preorder reflection of P × E is not in general P— for example consider the case
where P is the one-point preorder and E is Set.

Secondly, while our result involves less structure than that of [5], there is another
result involving more structure [10]. If D is not just locally distributive but a quasitopos,
then we can capture D more precisely in terms of 0/D and D/0. In that case, D is
(equivalent to) the comma category (0/D)/F where F : D/0 → 0/D is the the cartesian
closed functor from the Heyting algebra D/0 to the topos 0/D taking an object u : A → 0
of D/0 to A0 + 0. Conversely, if P is a Heyting algebra, E is a topos, and F : P → E
is a cartesian closed functor, then E /F is a quasitopos.
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