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ON SIFTED COLIMITS AND GENERALIZED VARIETIES

J. ADÁMEK AND J. ROSICKÝ

ABSTRACT. Filtered colimits, i.e., colimits over schemes D such that D-colimits in
Set commute with finite limits, have a natural generalization to sifted colimits: these
are colimits over schemes D such that D-colimits in Set commute with finite prod-
ucts. An important example: reflexive coequalizers are sifted colimits. Generalized
varieties are defined as free completions of small categories under sifted-colimits (anal-
ogously to finitely accessible categories which are free filtered-colimit completions of
small categories). Among complete categories, generalized varieties are precisely the va-
rieties. Further examples: category of fields, category of linearly ordered sets, category
of nonempty sets.

Introduction

Filtered colimits belong, no doubt, to the most basic concepts of category theory. Let us
just recall the notion of a finitely presentable object as one whose hom-functor preserves
filtered colimits. (This, in every variety of algebras, is equivalent to the usual – less elegant
– algebraic definition.)

Now, filtered colimits are characterized as colimits with domains (or diagram schemes)
D such that D-colimits commute in Set with finite limits. In the present paper we work
with a wider class of colimits: sifted colimits, i.e., colimits of diagrams whose domain D is
such that D-colimits commute with finite products in Set. Important example: reflexive
coequalizers (i.e., coequalizers of pairs f1, f2 : A → B for which d : B → A exists with
f1d = f2d = id ). We call an object A strongly finitely presentable if its hom-functor
preserves sifted colimits. This implies, of course, that A is finitely presentable. But,
due to the reflexive coequalizers, A is also a regular projective. In a variety1, strongly
finitely presentable algebras are precisely the finitely presentable regular projectives (i.e.,
precisely the retracts of free algebras on finitely many generators). This is what H.-E.
Porst calls varietal generator (see [P]) and M.-C. Pedicchio and R. Wood call effective
projective in [PW].

Recall the concept of a finitely accessible category of C. Lair [L1] and M. Makkai and R.
Paré [MP]: it is a category K with filtered colimits and a set of finitely presentable objects
whose closure under filtered colimits is all of K. We introduce the natural restriction by
substituting “filtered” by “sifted”: We call a category K a generalized variety if it has
sifted colimits and a set of strongly finitely presentable objects whose closure under sifted
colimits is all of K. Every variety has this property, and among complete categories,
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1Throughout the paper by a variety we mean a category of finitary algebras (possibly many-sorted)
presented by equations.
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varieties are the only ones. But there are other interesting examples: for categories with
connected limits, to be a generalized variety is equivalent to being multialgebraic in the
sense of Y. Diers (e.g., the category of fields and homomorphisms and the category of
linearly ordered sets and order-preserving maps are multialgebraic).

An example of a generalized variety which is not multialgebraic is the category of all
nonempty sets and functions.

Acknowledgement. The authors have much benefited from discussions with J. Velebil
concerning sifted colimits, in particular, their presentation of Lair’s proof (Theorem 1.6,
implication 2 → 3), has been much influenced by Velebil’s analysis of that proof.

1. Sifted colimits

1.1. Definition. A small category D is called sifted if colimits over D commute in Set
with finite products.

1.2. Remark. (a) Explicitly, D is sifted iff it is nonempty (and thus, colimits over D
commute with empty product) and given diagrams D1, D2 : D → Set, then the canonical
map

colim(D1 ×D2)→ colimD1 × colimD2

is an isomorphism.

(b) By sifted colimits we mean colimits over sifted categories.

(c) Filtered colimits are sifted, of course. In fact, small filtered categories D can be
defined by the property that colimits over D commute in Set with finite limits.

(d) Every category D with finite coproducts is sifted. This follows from Theorem 1.5
below.

(e) Commutation of D-colimits with products of pairs has been studied by C. Lair
in [L2]. There he introduced the concept of a tamisante category D as a category such
that for every pair (A, B) of objects the category of all cospans with domains A, B is
connected. And he proved that every tamisante category D has the property that D-
colimits commute in Set with products of pairs. We prove that this sufficient condition is
in fact also necessary. We present a full proof of the necessity below based on a concept
of “morphism of zig-zags”, but the main idea of that proof has been taken over from [L2].

Explicitly: the category of cospans with domains A, B, denoted by (A, B) ↓ D, has as
objects all cospans2

A ϕ0

// Z Bϕ1

oo

2Arrows in the diagram corrected 2007-01-22.
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in D and as morphisms all commutative diagrams3

Z

��

A

ϕ0

>>~~~~~~~~~~~

ϕ′0
  @

@@
@@

@@
@@

@@
B

ϕ1

``AAAAAAAAAAA

ϕ′1
~~~~

~~
~~

~~
~~

~

Z ′

in D.

1.3. Example. Reflexive coequalizers are sifted colimits: they are easily seen to be
precisely the colimits over the category D obtained from the following graph

A

f1 //

f2

//
B

doo

modulo the equations
f1d = f2d = id .

In Set, reflexive coequalizers commute with finite products. In fact, given Di : D → Set,
a coequalizer of Dif1 and Dif2 is the canonical map ci : DB → DB/ ∼i where for two
elements x, y ∈ DB we have x ∼i y iff x can be connected with y by a (Dif1, Dif2)-zig-zag.
The reflexivity of the pair f1, f2 guarantees that given x ∼1 y and u ∼2 v we can choose
those two zig-zags to be of the same type and hence, to render a (D1f1×D2f1, D1f2×D2f2)-
zig-zag between (x, u) and (y, v).

1.4. Remark. (a) In the following theorem we work with zig-zags in a category D, i.e.,
diagrams of the following form

(1) Z0
ϕ0 //Z1 Z2

ϕ1oo ϕ2 // · · ·Zn−1 Zn
ϕn−1oo

(where n = 0 represents Z0 as an “empty zig-zag” and n = 2 is just a (Z0, Z2)-cospan).
(b) A zig-zag morphism from the zig-zag (1) to the following zig-zag

(2) Z ′
0

ϕ′0 //Z ′
1 Z ′

2

ϕ′1oo
ϕ′2 // · · ·Z ′

m−1 Z ′
m

ϕ′n−1oo

is a collection h = (hi)
m
i=0 of morphisms

hi = Zr(i) −→ Z ′
i for i = 0, . . . ,m

where r(0) ≤ r(1) ≤ . . . ≤ . . . r(m) and the following holds each i = 0, . . . ,m− 1

3Vertical arrow added to the diagram 2007-01-22.
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either r(i + 1) = r(i) and the triangle composed by hi+1, hi, ϕ
′
i commutes,

(3) or r(i + 1) = r(i) + 1 and the diagram composed of hi+1, hi, ϕ
′
i and ϕr(i)

commutes.
Example of a zig-zag morphism:

Z0
// Z1

h0

wwooooooooooooooooooooooo

h1

~~~~
~~

~~
~~

~~
~~

h2

��

Z2
oo

h3

��

h4

  @
@@

@@
@@

@@
@@

@

Z ′
0

// Z ′
1 Z ′

2
oo // Z ′

3 Z ′
4

oo

(c) Composition of zig-zag morphisms as well as identity morphisms are defined
component-wise.

1.5. Notation. (a) ZZ(D) denotes the category of zig-zags inD and zig-zag morphisms.
(b) For a functor F : A −→ Set the category elF of elements of F has objects (A, a)

where A ∈ A and a ∈ FA; morphisms f : (A, a)→ (A′, a′) are A-morphisms f : A→ A′

with Ff(a) = a′. The forgetful functor U : elF → A is given by U(A, a) = A.

1.6. Theorem. The following conditions on a small, nonempty category D are equiva-
lent:

(1) D is sifted,

(2) the category (A, B) ↓ D of all (A, B)-cospans is connected for every pair A, B of
objects of D

and

(3) every pair of zig-zags of D has a cospan in the category ZZ(D) of zig-zags.

Remark. Explicitly, (2) states that for every pair (A, B) of objects of D (i) an (A, B)-
cospan exists and (ii) two (A, B)-cospans are always connected by a zig-zag in (A, B) ↓ D.

Proof. 1 → 2: Consider the diagrams D(A,−), D(B,−) : D → Set. They obviously
both have a colimit isomorphic to 1 in Set, therefore, the diagram

D = D(A,−)×D(B,−)

has a colimit isomorphic to 1× 1 = 1. This means that the category elD of elements D
is connected. It is easily seen that el (D) ∼= (A, B) ↓ D.

2 → 3: Assuming (2) we prove the following strengthening of (3):
(3∗) Given zig-zags

Z – connecting A and B,
Z ′ – connecting A′ and B′,
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then for every pair of cospans

A
p // A∗ A′p′oo and B

q // B∗ B′q′oo

there exists a zig-zag

Z∗ − connecting A∗ and B∗

and two zig-zag morphisms:

h : Z → Z∗ with the first component p and the last one q,
h′ : Z ′ → Z∗ with the first component p′ and the last one q′ .

It is clear that (2) and (3∗) imply (3).

We proceed by induction on the sum of the lengths of Z and Z ′. Denote these lengths
by n and m, resp.

Initial step: n + m 5 2. Thus, n 5 2 and m 5 2 and the initial data can be presented
as follows:

A
ϕ0 //

p

��

Z1

r

��

B
ϕ1oo

q

��
A∗ C∗ B∗

A′

p′

OO

ϕ′0

// Z ′
1

r′

OO

B′

q′

OO

ϕ′1

oo

The upper horizontal line is Z (if n = 0, put ϕ0 = ϕ1 = id A), the lower horizontal
line is Z ′ (if m = 0, put ϕ′

0 = ϕ′
1 = id A′). The (Z1, Z

′
1)-cospan in the middle has been

chosen arbitrarily, applying (2) to (Z1, Z
′
1) ↓ D.

Now we have two (A, A′)-cospans above: (p, p′) and (rϕ0, r
′ϕ′

0). By applying (2) to

(A, A′) ↓ D we connect these two cospans by a zig-zag whose objects are (h0, h
′
0)

def
=

(p, p′), (h1, h
′
1), . . . , (hk, h

′
k)

def
= (rϕ0, r

′ϕ′
0). Analogously, we have two (B, B′)-cospans

(q, q′) and (rϕ1, r
′ϕ′

1) which can be connected by a zig-zag in (B, B′) ↓ D, say, with

objects (hk, h
′
k) = (rϕ1, r

′, ϕ′
1), (hk+1, h

′
k+1), . . . , (hl, h

′
l)

def
= (q, q′). This defines a zig-zag

Z∗ with the desired properties indicated by the middle horizontal line in the following
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diagram:

A
ϕ0 //

p=h0

�� ��8
88

88
88

88
88

##F
FFFFFFFFFFFFFF

hk−1

''OOOOOOOOOOOOOOOOOOOOO Z1

hk =r

��

B
ϕ1oo

q=h1

������
��

��
��

��
�

zztttttttttttttttt

hk+1

vvmmmmmmmmmmmmmmmmmmmmmmmm

A∗ = Z∗
0
// Z∗

1
// Z∗

2
// · · ·Z∗

k−1 Z∗
k

oo // Z∗
k+1 · · · Z∗

l−2
oo Z∗

l−1
oo Z∗

l = B∗oo

A′
ϕ′0

//

p′=h′0

OO CC�����������

<<xxxxxxxxxxxxxxx

77ooooooooooooooooooooo
Z ′

1

h′k =r′

OO

B′
ϕ′1

oo

q′=h′1

OO\\::::::::::::

ddJJJJJJJJJJJJJJJJ

h′k+1

hhQQQQQQQQQQQQQQQQQQQQQQQQ

Induction step: n + m > 2. Suppose e.g. n > 2 and apply the induction hypothesis
first on the pair of zig-zags

Z̃ ≡ A
ϕ0−→ Z1

ϕ1←− Z2 (the initial segment of Z)

and A′ (zig-zag of length 0) and the given cospan A
p−→ A∗ p′←− A′ together with an

arbitrarily chosen (Z2, A
′)-cospan Z2

r−→ C∗ r′←− A′. We obtain a zig-zag Z̃∗ connecting
A∗ with C∗ and zig-zag morphisms

h̃ : Z̃ → Z̃∗ and h̃′ : A′ → Z̃∗

with the specified first and last components.
Next, we apply the induction hypothesis on the rest Ẑ of Z (a zig-zag connecting Z2

with B) and the zig-zag Z ′ using the following cospans:

Z2
r // C∗ A′r′oo and B

q // B∗ B′q′oo

We obtain a pair of zig-zag morphisms

ĥ : Ẑ → Ẑ∗ and ĥ′ : Z ′ → Ẑ∗ .

Here Ẑ∗ is a zig-zag connecting C∗ with B∗, and by gluing Z̃∗ together with Ẑ∗ at C∗ (the
end-object of the first one and the start object of the latter one), we obtain a zig-zag Z∗

connecting A∗ with B∗. Also, the first component of ĥ is r, equal to the last component
of h̃, thus, we obtain a morphism of zig-zags

h : Z → Z∗

by using first the components of h̃ and then those of ĥ (except that the first component

of ĥ is not repeated, of course). Analogously with

h′ : Z ′ → Z∗ .

3→ 1: It suffices to prove that 3∗ → 1. We first observe that (3∗) implies the following
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(4) Let Z and Z ′ be zig-zags connecting A and B. Then there exists a zig-zag Z∗

connecting A and B and zig-zag morphisms h : Z → Z∗, h′ : Z ′ → Z∗ which both
have the first component id A and the last one id B.

In fact, apply (3∗) to p = p′ = id A and q = q′ = id B.
Let D, D′ : D → Set be diagrams and suppose colimits of D, D′ and D×D′ are given

as follows:

(Dd
cd→ C) = colimD

(D′d
c′d→ C ′) = colimD′

and

(Dd×D′d
c∗d→ C∗) = colim(D ×D′) .

We prove that the canonical map

f : C∗ → C × C ′, f · c∗d = cd × c′d

is a bijection.
(a) f is surjective. In fact, given (x, x′) ∈ C×C ′ there exist d, d′ ∈ D such that (x, x′)

lies in the image of cd × c′d. By (4) there exists a (d, d′)-cospan in D, say, with codomain
d∗. Then cd factors through cd∗ and c′d′ through c′d∗ , thus, (x, x′) lies in the image of
cd∗ × c′d∗ = f · c∗d∗ - thus, f is surjective.

(b) f is injective. We prove that if two elements u, ū ∈ C∗ fulfill

(5) f(u) = f(ū)

then u = ū. We can express u and ū in the following form:
u = c∗d(v, v∗) for d ∈ D, v ∈ Dd and v′ ∈ D′d
ū = c∗

d̄
(w, w̄) for d̄ ∈ D, w ∈ Dd̄ and w′ ∈ D′d̄

Then (5) is equivalent to

(6) cd(v) = cd̄(w) and c′
d̄
(v′) = cd̄(w

′) .

By the well known description of colimits in Set, this means that the elements (d, v) and
(d̄, w) can be connected by a zig-zag Z in the category elD of elements of D, and the
elements (d, v′) and (d̄, w′) can be connected by a zig-zag Z ′ in elD′.

The forgetful functor

U : elD → D , (d , x ) 7−→ d

can be applied component-wise to obtain a functor on zig-zags

ZZ(U) : ZZ(elD)→ ZZ(D) .

Analogously for ZZ(U ′).



Theory and Applications of Categories, Vol. 8, No. 3 40

Case 1: ZZ(U) maps the zig-zag Z to the same (underlying) zig-zag Z0 in D as
ZZ(U ′) maps Z ′. In this case immediately combine Z and Z ′ to a zig-zag connecting
(d, (v, v′)) with (d̄, (w,w′)) in el (D×D′) (and having underlying zig-zag Z0). This proves
c∗d(v, v′) = c∗

d̄
(w,w′), in other words, u = ū.

Case 2: the underlying zig-zags of Z and Z ′ are different. Denote by D[d, d̄] the sub-
category of ZZ(D) of all zig-zags connecting d with d̄ and all zig-zag morphisms with first
component id d and last one id d̄. Analogously elD[(d, v), (d̄, w)] and elD′[(d, v′), (d̄, w′)].
The forgetful functor U : elD → D is a cofibration. It is easy to verify that, then, ZZ(U)
is a cofibration too, and so is the domain-codomain restriction

Ũ : elD[(d, v), (d̄, w)]→ D[d , d̄ ] ,

Analogously, the cofibration U ′ leads to a cofibration

Ũ ′ : elD′[(d, v′), (d̄, w′)]→ D[d , d̄ ] .

Applying (4) to the zig-zags Ũ(Z), Ũ ′(Z ′), we obtain a zig-zag Z0 in D(d , d̄) and zig-zag
morphisms

h : Ũ(Z)→ Z0 and h′ : Ũ(Z ′)→ Z0

in D(d , d̄). Since Ũ is a cofibration, it lifts Z0 to a zig-zag Z̄ and it lifts h to a zig-zag

morphism h̄ : Z → Z̄ with Ũ(h̄) = h; analogously we obtain h̄′ : Z ′ → Z̄ ′. Now Z̄ and Z̄ ′

have the same underlying zig-zag, Z0, and we can apply Case 1.

2. The Completion Sind

2.1. Analogously to the free completion

Ind A

ofA under filtered colimits introduced by Grothendieck [AGV], we study a free completion

Sind A

of A under sifted colimits. For example, if A is a small category with finite colimits, then

Ind A = [Aop,Set]lex

is the category of all presheaves on Aop preserving finite limits, see [AGV], and, as we will
show,

Sind A = [Aop,Set]fp

is the category of all presheaves on Aop preserving finite products. There are many more
analogies between Ind and Sind .
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2.2. Definition. For every category A we denote by

ηA : A → Sind A

a free completions of A under sifted colimits. That is, ηA is a full embedding into a
category Sind A with sifted colimits with the following universal property:

For every category B with sifted colimits the functor category [A,B] is equiva-
lent to the category [Sind A,B]sift of all functors from Sind A to B preserving
sifted colimits via the functor

(−) · ηA : [Sind A,B]sift → [A,B] .

2.3. Examples. (1) If A is a poset then

Ind A = Sind A

is the ideal completion of A, i.e., the poset of all ideals (directed down-sets) ordered by
inclusion.

(2) Let A be a category with finite coproducts. Denote by A∗ a free completion of
A under reflexive coequalizers (this has been described explicitly by A. Pitts, see [BC]).
Then

Sind A = Ind A∗ ,

as proved in 2.8 below.
(3) For the category A:

A

f1 //

f2

//
B

doo

with the free composition modulo
(1) f1d = f2d = id
we see that A is finite and has split idempotents, thus,

Ind A = A .

However, Sind A contains a coequalizer c : B → C of the reflexive pair f1, f2. In fact,
Sind A is the extension of A as follows

A

f1 //

f2

//
B

doo c // C

with free composition modulo (1) and cf1 = cf2.
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(4) In general, the equation Sind A = Ind A∗ is not true.
Consider the category A given by the following graph

...
...

A2

p2 //
q2

// B2

A1

a1

OO

p1 //
q1

// B1

d1

``AAAAAAAAAAAAAAAA

b1

OO

A0

a0

OO

p0 //
q0

// B0

d0

``AAAAAAAAAAAAAAAA

b0

OO

and the following commutativity conditions for all n ∈ ω:

pn+1an = bnpn , qn+1an = bnqn , an+1dn = dn+1bn ,

and
bn = pn+1dn = qn+1dn .

Since A has no reflexive pairs, A = A∗. The category Ind A is obtained by adding to A a
colimit Aω of the chain (An)n∈ω, a colimit Bω of the chain (Bn)n∈ω, and three morphisms
pω = colimpn, qω = colimqn, dω = colimdn. Since pωdω = qωdω = id , we obtain a
reflexive pair without a coequalizer in Ind A, thus, Ind A 6= Sind A.

2.4. Remark. Let D be a small category. Recall that a presheaf D in SetD is called
flat if it is a filtered colimit of hom-functors. Or, equivalently, if the dual of the category
elD of elements of D is filtered. The completion Ind A can be, for A small, described as
the category of all flat presheaves on Aop, see [B].

Recall further that if D is small, than F is flat iff LanY F preserves finite limits; here
LanY F denotes a left Kan extension of F along the Yoneda embedding Y : D → SetD

op

.
We now generalize this to sifted colimits.

2.5. Definition. A functor D : D → Set is called sifted-flat provided that it is a sifted
colimit of hom-functors.

2.6. Theorem. The following conditions on a functor F : D → Set, D small, are
equivalent:

(i) F is sifted-flat,
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(ii) the dual of the category of elements of F is sifted,

(iii) F lies in the (iterated) closure of hom-functors under sifted colimits,

(iv) LanY F preserves finite products.

Remark. (iv) can be weakened to
(iv)∗ LanY F preserves finite products of hom-functors.

(iv)∗ →(ii):
Proof. For two hom-functors hom(−, A1), hom(−, A2) put

D = hom(−, A1)× hom(−, A2).

Then (LanY F )(D) is a colimit of F ·ED (where ED : elD → D is the diagram of elements
of D; observe that objects of elD are spans A1

x1← X
x2→ A2). Denote by

c(x1, x2) : FX → LanY F (D)

a colimit cocone of F · ED in Set. Now (iv)∗ states that for arbitrary objects A1 and A2

the maps
πi : LanY F (D)→ FAi (i = 1, 2)

defined by
πi · c(x1, x2) = Fxi for all spans (x1, x2)

form a product in Set. We will prove that this implies that the dual of the category elF
of elements of F is sifted.

For arbitrary elements (A1, a1) and (A2, a2) of F (i.e., objects of elF ) we know that
(a1, a2) ∈ FA1 × FA2 has the form (π1(ā), π2(ā)) for some ā ∈ LanY F (D). And since
LanY F (D) = colimFED, ā has the form ā = c(x1, x2)(a) for some span A1

x1← X
x2→ A

and some a ∈ FA. Thus ai = πi · c(x1, x2)(ā) = Fxi(a) and we proved the existence of a
cospan in (elF )op

(A1, a1)
x1→ (X, a)

x2← (A2, a2) .

Let another cospan

(A1, a1)
x′1→ (X ′, a′)

x′2← (A2, a2)

be given. Then

πic(x1, x2)(a) = ai = πic(x
′
1, x

′
2)(a

′) for i = 1, 2

implies (since π1, π2 are projections of a product) that

c(x1, x2)(a) = c(x′1, x
′
2)(a

′) .

By construction of colimits in Set, the latter means that the two elements of FED,
((x1, x2), a) and ((x′1, x

′
2), a

′), are connected by a zig-zag in (el (FED))op. Now we have an
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obvious forgetful functor (el (FED))op → (elF )op which maps that zig-zag onto a zig-zag
connecting (x, a) with (x′, a′) in (A1, A2) ↓ D.

(ii) → (i) → (iii) is trivial
(iii) → (iv) Since LanY (−) preserves colimits, (iii) implies that LanY F is obtained as

an iterated sifted colimit from the set of functors LanYD(−, A). The last functor preserves
finite products (since this is just the evaluation-at-A functor from SetD

op

to Set). And
a sifted colimit of functors preserving finite products preserves finite products too. This
proves (iv).

2.7. Corollary. For every small category A we can describe Sind A as the full subcat-
egory of SetA

op

of all sifted-flat functors (with respect to the codomain restriction of the
Yoneda embedding Y : A → SetA

op

).

Proof. Following 2.6 (iii), the full subcategory Ā of SetA
op

consisting of all sifted-flat
functors has sifted colimits. Following 2.6 (ii), a left Kan extension LanY H : Ā → B
exists for each functor H : A → B where B has sifted colimits. Since LanY H clearly
preserves sifted colimits, Ā ≈ Sind A.

2.8. Corollary. If A is a small category with finite coproducts then

Sind A = [Aop,Set]fp

Proof. Since Y : Aop → SetA preserves finite products, any sifted-flat functor F :
Aop → Set preserves finite products following 2.6 (iv). Conversely, if F preserves finite
products then LanY F preserves finite products of hom-functors because

(LanY F )(hom(−, A1)× hom(−, A2)) ∼= (LanY F )(hom(−, A1 × A2))
∼= F (A1 × A2)
∼= F (A1)× F (A2)
∼= LanY (F )(hom(−, A1))× (LanY F )(hom(−, A1)).

Hence F is sifted-flat following 2.6 (iv)∗.

Remark. The last corollary proves the claim of Example 2.3 (2): the categories
[(A∗)op,Set]lex and [Aop,Set]fp are equivalent.

2.9. Remark. Corollary 2.8 immediately generalizes to small categories A with finite
multicoproducts. (A multicoproduct of a finite set A1, . . . , An is a set of cocones (cij :
Aj → Ci)j=1,...,n, i ∈ I such that every cocone of A1, . . . , An factors through precisely one
of these, and the factorization is unique). A functor F : Aop → Set is said to preserve
multiproducts provided that for each finite set A1, . . . , An of objects in A the cone

πj :
∐
i∈I

FCi → FAj (j = 1, . . . , n)

where πj has components Fcij, is a product in Set. Then

SindA = [Aop,Set]fmp
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is the full subcategory of SetA
op

formed by all functors preserving finite multiproducts.
In fact, Y : Aop → SetA preserves finite multiproducts. Since LanY F preserves

for any F : Aop → Set arbitary coproducts, any sifted-flat functor F preserves finite
multiproducts following 2.6.(iv). Conversely, if F preserves finite multiproducts then
LanY F preserves finite products because

(LanY F )(
n∏

j=1

hom(−, Aj)) ∼= (LanY F )
∐
i∈I

hom(−, Ci))

∼=
∐
i∈I

(LanY F )(hom(−, Ci))

∼=
∐
i∈I

FCi

∼=
n∏

j=1

FAj

∼=
n∏

j=1

(LanY F ) hom(−, Aj).

3. Generalized Varieties

3.1. Recall from [L1] and [MP] the fruitful concept of a finitely accessible category, i.e.,
a category K such that

(a) K has filtered colimits

and

(b) K has a (small) set A of finitely presentable objects such that every object of K is a
filtered colimit of objects in A.

Moreover, finitely presentable objects are, of course, precisely those whose hom-functors
preserve filtered colimits. We now substitute “filtered” by “sifted” and obtain the follow-
ing concepts.

3.2. Definition. An object of a category is called strongly finitely presentable provided
that its hom-functor preserves sifted colimits.

3.3. Lemma. Let K be a category with kernel pairs. An object which is strongly finitely
presentable is

(i) finitely presentable
and

(ii) a regular projective.

IfK is a variety of finitary algebras, (i) and (ii) are equivalent to strong finite presentability.
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Proof. If K is strongly finitely presentable, then hom(K,−) preserves coequalizers of
kernel pairs, since these are reflexive coequalizers (see 1.3 (1)), thus, K is a regular
projective.

Suppose K is a variety. Then for every object K with (i) and (ii), the functor
hom(K,−) : K → Set preserves limits, filtered colimits and regular epimorphisms. Hence
it is a completely exact functor, which implies that it preserves sifted colimits, see [ALR].

3.4. Examples. (1) In Set, finitely presentable = strongly finitely presentable, the same
holds in the category K-Vec of vector spaces over a field K.

(2) In Ab the category of Abelian groups, strongly finitely presentable objects are
precisely the free Abelian groups on finitely many generators.

(3) In Pos the category of posets, strongly finitely presentable objects are the finite
discretely ordered ones (=finitely presentable regular projectives).

3.5. Remark. (i) A finite coproduct of strongly finitely presentable objects is strongly
finitely presentable.

(ii) For finite colimits this is no longer true (see 3.4.2)
(iii) A finite multicoproduct of strongly finitely presentable objects has all components

strongly finitely presentable.
In fact, let Aj, j = 1, . . . , n be strongly finitely presentable objects in K and (cij :

Aj → Ci), i ∈ I be a multicoproduct in K. Let (st : Xt → X)t∈T be a sifted colimit in K.
Then ∐

i∈I

hom(Ci, colimt∈T Xt) ∼=
n∏

j=1

hom(Aj, colimt∈T , Xt)

∼= colimt∈T

n∏
j=1

hom(Aj, Xt)

∼= colimt∈T

∐
i∈I

hom(Ci, Xt)

∼=
∐
i∈I

colimt∈T , hom(Ci, Xt)

and this canonical isomorphism has canonical components

hom(Ci, colimt∈T Xt) ∼= colimt∈T hom(Ci, Xt)

for each i ∈ I. Hence Ci is strongly finitely presentable (for each i ∈ I).

3.6. Definition. By a generalized variety is meant a category which has
(a) sifted colimits

and
(b) a (small) set A of strongly finitely presentable objects such that

every object is a sifted colimit of objects in A.
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3.7. Examples. (1) Every variety V is a generalized variety. In fact, choose a set A of
representatives for finitely presentable regular projectives. Every object K is a canonical
colimit of the forgetful functor A ↓ K → V (since A is dense) and since A has finite
coproducts, so does A ↓ K, thus, the canonical colimits are sifted (1.3 (2)).

(2) In the next section we will see other examples of generalized varieties: fields,
linearly ordered sets, sets and injective functions. These are generalized varieties with
connected limits.

(3) The category of non-empty sets and functions is, obviously, a generalized variety
(and does not have connected limits).

(4) Let us mention an interesting non-example: the category Grac of connected graphs
and graphs homomorphisms. This category has sifted colimits because it is closed under
sifted colimits in Gra, the category of all graphs. (In fact, let D be a small category such
that every pair of objects has a cospan, then a D-colimit of connected graphs in Gra is
connected). It is easy to see that the “obvious” dense set A in Gra, consisting of (a) a
single vertex (no edges) and (b) a single edge, lies in Grac and forms a strong generator of
strongly finitely presentable objects of Grac. Nevertheless, Grac fails to be a generalized
variety. In fact, the only regular projectives in Grac are the graphs with a single vertex,
and they do not generate other graphs by sifted colimits in Grac.

(5) The category Gra∗c of connected graphs and injective graph homomorphisms is
a generalized variety. The existence of sifted colimits is clear, and strongly finitely pre-
sentable objects are precisely finite connected graphs. Any connected graph is a sifted
union of finite connected graphs.

3.8. Lemma. In every generalized variety K the collection K0 of all strongly finitely pre-
sentable objects is essentially small and dense, and the comma-categories K0 ↓ K are
sifted for all objects K of K.

Proof. Let A be set as in 3.5 (b). Let K0 ∈ K0 be expressed as a sifted colimit

(Ai
ai→ K0)i∈I with Ai ∈ A for each i ∈ I. Since hom(K0,−) preserves that colimit, id K0

factors through some Ai. Thus, K0 consists of retracts of objects in A. Since A is small,
this proves that K0 is essentially small.

Let K ∈ K be an arbitrary object and express K as a sifted colimit (Ai
ai→ K)i∈I with

Ai ∈ A. Every morphism f : K0 → K, K0 ∈ K0, factors through some ai and given two
such factorizations:

f = ai · f ′ = aj · f ′′ (i, j ∈ I)

then they are connected by a zig-zag in A ↓ K – this follows from the fact that hom(K,−)
preserves the above colimit. We conclude that K is a canonical colimit of the diagram
K0 ↓ K → K. And that diagram is sifted because the original sifted diagram of all
Ai

ai→ K is a cofinal subdiagram in it.

3.9. Remark. (1) Finitely accessible categories are precisely the categories Ind A, A
small. Quite analogously: generalized varieties are precisely the categories

Sind A , A small .
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In fact, Sind A is a generalized variety because, by 2.6, every object of Sind A is a sifted
colimit of objects of A (or, the corresponding hom-functors), and since Sind A is closed
under sifted colimits in SetA

op

, and hom-functors are strongly finitely presentable in
SetA

op

, they are also strongly finitely presentable in Sind A.
Conversely, if K is a generalized variety, let A be a full subcategory representing

all strongly finitely presentable objects. By Lemma 3.8, all objects of K are canonical
sifted colimits of A-objects. This implies K ≈ Sind A quite analogously to the proof of
K ≈ Ind A in case K is finitely accessible (see e.g. [AR1], Theorem 2.26).

(2) Recall that among complete or cocomplete categories, finitely accessible ones are
precisely the locally finitely presentable categories of Gabriel and Ulmer. This has a direct
analogy:

3.10. Theorem. A cocomplete category is a generalized variety iff it is equivalent to a
variety.

Remark. In fact, every generalized variety with finite coproducts is a variety: from the
existence of sifted colimits follow all coproducts (=filtered colimits of finite coproducts)
and reflexive coequalizers – thus, cocompleteness.

Proof. Any variety is a cocomplete generalized variety. Let K be a cocomplete gener-
alized variety. Then the full subcategory K0 representing all strongly finitely presentable
objects of K has finite coproducts (following Remark 3.5(i)). Using Remark 3.9 and
Corollary 2.8, we get that

K ≈ SindK0 ≈ [Kop
0 ,Set]fp

and K is therefore equivalent to a variety.

4. Multialgebraic categories

4.1. Since the dissertation of F.W.Lawvere [La] it is well known that varieties are precisely
categories sketchable by FP-sketches. That is, given an FP-sketch S, i.e., a small category
A with chosen finite discrete cones, we form the category

ModS ⊆ SetA

of all functors turning the given cones into (finite) products in Set. Then
(1) ModS is equivalent to a variety

and
(2) every variety is equivalent to some ModS.

(In [La] the case of one-sorted varieties and FP-sketches generated by a single object is
treated. See [AR1] for the many-sorted case.)

Y. Diers presented in [D] a generalization to sketches using finite multiproducts, and
called the categories of models multialgebraic categories . In [AR2] we have shown that
instead of the (non-standard) multiproducts the following standard concept can be used:
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by an FPC-sketch (for “finite products and [arbitrary] coproducts”) S is meant a small
category A with chosen

(a) discrete finite cones

and

(b) discrete cocones.

We denote by

ModS ⊆ SetA

the category of all models of S, i.e., the full subcategory of SetA of all functors turning
the given cones into (finite) products and the given cocones to coproducts. The following
concept is then identical with that of Y. Diers:

Definition. A category is called multialgebraic if it is FPC-sketchable, i.e., equivalent
to the category of models of an FPC-sketch.

Characterization Theorem (Y. Diers, [D]). A category is multialgebraic iff it has

(i) multicolimits,

(ii) filtered colimits,

(iii) effective equivalence relations,

(iv) a regular generator formed by finitely presentable regular projectives.

Remark. Y. Diers has another condition, viz, the existence of kernel pairs, but it follows
from (i)-(iii) that all connected limits exist (see [AR1], 4.30).

4.2. Remark. Multialgebraic categories have, in contrast to varieties, no kind of “equa-
tional presentation”. In [AR2] we have introduced multivarieties: these are classes of
algebras presented by exclusive-or’s of equations. Every multivariety with effective equiv-
alence relations is multialgebraic, and vice versa. An example of a multivariety which is
not multialgebraic is the category of unary algebras on one injective operations.

The following examples demonstrate how natural the syntax via FPC-sketches is for
important multialgebraic theories.

4.3. Examples. (1) Fields.

Let S0 be the usual FP-sketch for rings. We thus have, among others, morphisms

+, ∗ : X ×X → X

π1, π2 : X ×X → X

0 : 1→ X

and others needed to express the ring equations. We now add a new object Y (representing
all non-zero elements of X) and morphisms

e : Y → X (embedding)

i : Y → X (multiplication inverse)
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and denote by 〈e, i〉 : Y → X×X the corresponding pair. Next we put one commutativity
condition

Y
〈e,i〉 //

e

""E
EEEEEEEEEEEEE X ×X

∗

��
X

and one cocone

1

0

��?
??

??
??

??
??

? Y

e

~~~~
~~

~~
~~

~~
~~

X

The resulting sketch S has the category of fields and field homomorphisms as ModS.
(3) Linearly ordered sets (see [AR1], 2.57).
Let S0 be the usual FP-sketch for sup-semilattices. We thus have, among others,

morphisms

∨ : X ×X → X

π1, π2 : X ×X → X

∆ : X → X ×X

and others expressing the commutativity, associativity, and idempotency of ∨. We now
add to S0 two new objects E and Ē and morphisms

e : E → X ×X and ē : Ē → X ×X

subject to
π1e = π2ē and π2e = π1ē

as well as
π2e = σe.

Finally, we add a cocone

E

e

""E
EEEEEEEEEEEEE X

∆

��

Ē

ē

||yyyyyyyyyyyyyy

X ×X

In a model M , we have a relation ME on MX whose inverse relation MĒ fulfills: MX×
MX = ME ∪MĒ ∪ ∆MX and which, due to π2e = σe, is just the strict order relation
of the semilattice (MX,M∨). Thus, we obtain a sketch S whose category ModS is the
category of linearly ordered sets and order-preserving mappings.
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(5) Sets and injective functions.
Let S be the sketch with objects

X, X ×X, Y (= complement of the diagonal)

and morphisms

π1, π2 : X ×X → X ,

∆ : X → X ×X

and

y : Y → X ×X

subject to

π1∆ = π2∆ = id .

There is one product specification

X ×X

π1

||xx
xx

xx
xx

xx
xx

xx

π2

""F
FF

FF
FF

FF
FF

FF
F

X X

and one coproduct specification

X

∆

""F
FF

FF
FF

FF
FF

FF
F Y

y

||yyyy
yy

yy
yyy

yy
y

X ×X

It is obvious that ModS is equivalent to the category of all sets and injective functions.

4.4. Theorem. A category with multicolimits is a generalized variety iff it is multialge-
braic.

Proof. This is completely analogous to that of Theorem 3.10 (we use 3.5(iii) and 2.9
instead of 3.5(i) and 2.8).

4.5. Remark. Thus, we see that in the presence of multicolimits, generalized varieties
are precisely the categories which are (finite product, coproduct)-sketchable. For general-
ized varieties without completeness assumptions we know at least one implication in case
coproducts are substituted by colimits:

4.6. Proposition. Every generalized variety can be sketched by a (finite product, colimit)-
sketch.
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Proof. Let K = Sind A be a generalized variety. By 2.7 and Remark 2.6, Sind A
consists of those functors F ∈ SetA

op

such that LanY F preserves finite products of hom-
functors. Denote by B a small full subcategory of SetA

op

representing finite products
of hom-functors. Let S be the sketch on B whose cones are the finite products of hom-
functors, and whose cocones represent every finite product of hom-functors as a colimit of
hom-functors. Since LanY F preserves all colimits, it immediately follows from 2.6 (iv)∗

that

ModS ≈ Sind A.

4.7. Example. The converse to 4.6 does not hold. For example, consider the sketch S
with one object and one endomorphism specified to be epi. This is a (∅, colimit)-sketch
whose category of models is the category of unary algebras on one surjective operation.
This category is not a generalized variety.

4.8. Remarks. (1) Following Proposition 4.6, any generalized variety K is accessible.
Hence K is complete iff it is cocomplete and K has connected limits iff it has multicolimits
(cf. [AR1], 2.47 and 4.30). This may be added to the characterization theorems 3.10 and
4.4.

(2) In fact, every generalized variety is ω1-accessible: by 3.8 (1) it has the form K =
Sind A, A small, i.e., K is the closure of hom-functors under sifted colimits in SetA

op

(see 2.7). For every sifted category D it is clear that D is an ω1-directed union of its
full, countable, sifted subcategories (see 1.6), thus, objects of K are ω1-directed colimits
of ω1-presentable objects (since a countable colimit of hom-functors is ω1-presentable in
SetA

op

, thus, in K too).

4.9 Open problems. (1) Is every generalized variety finitely accessible?
(2) Is there a full description of generalized varieties by means of sketches?
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[MP] M. Makkai and R. Paré, Accessible categories: the foundations of categorical
model theory, Contemp. Math. 104, Amer. Math. Soc., Providence 1989.

[P] H.-E. Porst, Minimal generators in varieties, preprint 1997.

[PW] M. C. Pedicchio and R. J. Wood, A simple characterization of theories of vari-
eties, Journal of Algebra 233 (2000), 483–501.

Technical University Braunschweig
Postfach 3329
38023 Braunschweig, Germany
and
Masaryk University
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