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There are interesting geometric applications of Ramsey’s famous combinatorial
theorem [17]. Among them the best known and most impressive application was
found many years ago by Erdös and Szekeres. Namely, it was demonstrated in
their joint paper [8] that in the Euclidean space Rd (d ≥ 2) any finite set, whose
all points are in general position and whose cardinality is sufficiently large, contains
a prescribed number of points in convex position. An extensive survey about the
above-mentioned Erdös-Szekeres result and its extensions is given in [14].

In this article we would like to present some other applications of Ramsey’s
theorem to questions of geometric flavor. Actually, the questions considered below
are concerned with certain combinatorial properties of point sets, lying either in a
finite-dimensional Euclidean space or in an infinite-dimensional Hilbert space.

First, let us recall the fairly standard notation which will be utilized throughout
the article.

As a rule, the symbol N denotes the set of all natural numbers. The cardinality
of N is denoted by ω (which is usually identified with N).

Z is the set of all integers.
Q is the set of all rational numbers.
R is the real line and, for any natural number d ≥ 1, the symbol Rd denotes the

d-dimensional Euclidean space (consequently, R = R1).
c is the cardinality of the continuum, i.e., c = card(R) = 2ω.
ω1 is the least uncountable ordinal (cardinal) number.
If X is an arbitrary set and k is a natural number, then the symbol [X]k denotes

the family of all k-element subsets of X.
Let us formulate the two standard versions of Ramsey’s theorem: finite and

countably infinite.

Some Geometric Consequences of Ramsey’s Combinatorial

Theorem
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Theorem 1 : Let n, m and k be three natural numbers such that k ≤ n. There
exists a natural number r = r(n, m, k) having the following property:
for any set X with card(X) ≥ r and for any partition {A1,A2, ...,Am} of [X]k,
there is a subset Y of X with card(Y ) ≥ n such that [Y ]k is entirely contained in
some member Ai of this partition.

Theorem 2 : Let m and k be two natural numbers, let X be an infinite set, and
let {A1,A2, ...,Am} be a partition of [X]k. Then there is an infinite subset Y of X
such that [Y ]k is entirely contained in some member Ai of this partition.

For the proofs of Theorems 1 and 2, see e.g. [10], [15], [17] or any other text-book
of combinatorics. Notice that, by using some weak form of the Axiom of Choice,
the finite version of Ramsey’s statement (i.e., Theorem 1) can be deduced from the
infinite version (i.e., from Theorem 2).

Now, let us consider several applications of the above-mentioned Theorems 1
and 2 to questions of somewhat geometric nature. We begin with a simple example
concerning mutual positions of straight lines in the ordinary three-dimensional
Euclidean space R3.

Example 1. Let n be a natural number. There exists a natural number r having
the following property:

If L is a family of straight lines in R3 such that card(L) ≥ r and no two distinct
lines from L are parallel, then there is a subfamily L′ of L such that card(L′) ≥ n
and the disjunction of these two relations holds true:

(a) all lines from L′ lie in one plane or all of them pass through one point;
(b) no two distinct lines from L′ lie in a plane (or, in other words, any two distinct

lines from L′ are skew).
Indeed, take m = 2 and k = 2. Let r = r(n, m, k) be as in the formulation of

Theorem 1. Consider any family L of straight lines in R3 such that card(L) ≥ r
and no two distinct lines from L are parallel. Define a partition {A1,A2} of [L]2

as follows: if two distinct lines l1 ∈ L and l2 ∈ L have a common point, then put
{l1, l2} ∈ A1, otherwise put {l1, l2} ∈ A2. According to Theorem 1, L contains
some subfamily L′ such that card(L′) ≥ n and [L′]2 is entirely contained either
in A1 or in A2. It can easily be seen that this L′ satisfies the disjunction of the
relations (a) and (b).

Notice that the number r of this example can be roughly estimated from above.
Namely, r can be taken to be equal to (2(n−1))!

((n−1)!)2 .
In a similar manner, utilizing Theorem 2, we obtain that if M is an infinite

family of straight lines in the space R3 such that no two distinct lines from M are
parallel, then there exists an infinite subfamily M′ of M satisfying the disjunction
of these two relations:

(c) all lines from M′ lie in one plane or all of them pass through one point;
(d) any two distinct lines from M′ are skew.

The next example is very similar to the Erdös-Szekeres result [8] mentioned at
the beginning of this paper.

Example 2. Recall that a point set X in the plane R2 is in general position if no
three distinct points of X are collinear (i.e., no three distinct points of X belong
to a straight line). It is easy to see that among any five points in R2, which are
in general position, there always exist three points which form an obtuse-angled
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triangle. Let us fix natural numbers n ≥ 5, m = 2 and k = 3, and take the
number r = r(n, m, k) as in Theorem 1. Consider any set X ⊂ R2 of points in
general position such that card(X) ≥ r. We may assert that there is a set Y ⊂ X
satisfying the following relations:

(a) card(Y ) ≥ n;
(b) every three-element subset of Y forms an obtuse-angled triangle.
To see this, define the partition {A1,A2} of [X]3 as follows: if V ∈ [X]3 is the set

of vertices of an acute-angled or right-angled triangle, then put V ∈ A1, otherwise
put V ∈ A2.

According to Theorem 1, there exists a set Y ⊂ X with card(Y ) ≥ n, all three-
element subsets of which lie in exactly one member of {A1,A2}. Since n ≥ 5,
that member cannot be A1. So we get [Y ]3 ⊂ A2, which obviously means that all
three-element subsets of Y form obtuse-angled triangles.

Now, let X ⊂ R2 be an infinite set of points in general position. Then there
exists an infinite set Y ⊂ X such that every V ∈ [Y ]3 forms an obtuse-angled
triangle.

Indeed, define the partition {A1,A2} of [X]3 in the same manner as above: if
V ∈ [X]3 is the set of vertices of an acute-angled or right-angled triangle, then put
V ∈ A1, otherwise put V ∈ A2. According to Theorem 2, there exists an infinite
set Y ⊂ X such that [Y ]3 ⊂ A1 or [Y ]3 ⊂ A2. But, as has already been shown, the
relation [Y ]3 ⊂ A1 is impossible, so [Y ]3 ⊂ A2 and we obtain the desired result.

Remark 1 : Example 2 admits a natural generalizations to the case of the d-
dimensional Euclidean space Rd, where d ≥ 2. Let Z be a subset of Rd such that
any three points from Z form either acute-angled or right-angled triangle. Then
card(Z) ≤ 2d (see [1], [2], [4]). By starting with this fact and applying Theorem
1, it can be demonstrated that, for any natural number n, there exists a natural
number r having the following property:

if X ⊂ Rd and card(X) ≥ r, then a set Y ⊂ X can be found such that card(Y ) ≥
n and all three-element subsets of Y form obtuse-angled triangles.

Here, for the sake of convenience, the angle whose measure is equal to π is
assumed to be obtuse.

In a similar way, applying Theorem 2, we readily get that if X ⊂ Rd is an infinite
set, then there exists an infinite set Y ⊂ X such that all three-element subsets of
Y form obtuse-angled triangles.

In this connection, it should also be noticed that the uncountable version of
Example 2 fails to be true (cf. Example 11 below).

Remark 2 : In the Euclidean space Rd, where d ≥ 2, consider the curve given by
the formula

t → (t, t2, ..., td) (t ∈ [0, 1]).

It is not hard to check that the range of this curve is a set in Rd, all whose points
are in general position (i.e., no d+1 of them lie in an affine hyperplane of Rd) and
every three-element subset of which forms an obtuse-angled triangle.

The above-mentioned curve plays an important role in the theory of convex poly-
hedra, because for d ≥ 4 it provides various examples of so-called Carathéodory-
Gale polyhedra (see, for instance, [9]).

Example 3. Let H be a Hilbert (more generally, pre-Hilbert) space over R and let
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a set X ⊂ H be such that any three-point subset of X forms either right-angled or
obtuse-angled triangle. Then one can assert that X is separable and, consequently,
card(X) ≤ c.

Indeed, suppose otherwise, i.e., the given set X is not separable. Then there
exists a real ε > 0 such that X contains an uncountable ε-discrete subset Y . This
means that ||y − y′|| ≥ ε for any two distinct points y and y′ from Y . Since Y is
uncountable, we may assume without loss of generality that Y is also bounded in
H. Furthermore, we may suppose that ε = 1 and the diameter of Y is strictly less
than 2m/2, where m > 0 is some sufficiently great natural number.

Now, define the partition {A1,A2, ...,Am} of [Y ]2 as follows: {y, y′} ∈ Ai if and
only if ||y − y′|| ∈ [2(i−1)/2, 2i/2[.

According to Theorem 2, there are an index i ∈ {1, 2, ..., m} and an infinite
set Y ′ ⊂ Y such that [Y ′]2 ⊂ Ai. Now, it follows from the definition of Ai that
any three-point subset of Y ′ is an acute-angled triangle, which is impossible. The
obtained contradiction yields the desired result.

Remark 3 : Let E be a metric space, ε > 0, and let {x, y, z} ⊂ E be a triangle
in E whose side lengths are a1, a2, a3. We shall say that {x, y, z} is an equilateral
triangle with exactness to ε if the inequalities

1− ε < ai/aj < 1 + ε

are valid for all indices i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.
Generalizing Example 3, one can show that if E is a nonseparable metric space,

then for every ε > 0, there exists an infinite set Z ⊂ E such that all three-element
subsets of Z form equilateral triangles with exactness to ε.

Remark 4 : Let H be an infinite-dimensional separable Hilbert space (over R).
The following assertions are true:

(a) there exists a set X ⊂ H such that the cardinality of X is equal to c and any
three distinct points of X form an acute-angled triangle;

(b) there exists a set W ⊂ H homeomorphic to the line segment [0, 1] such that
any three distinct points of W form a right-angled triangle (this is the so-called
Wiener curve);

(c) there exists a set Y ⊂ H such that Y is homeomorphic to the line segment
[0, 1], all points of Y are in general and convex position, and any three distinct
points of Y form an obtuse-angled triangle.

Now, we would like to recall one elementary geometric problem concerning equi-
lateral triangles. Let n be a natural number and let X be a subset of R2 with
card(X) = n2. Then there exists a set Y ⊂ X with card(Y ) ≥ n such that no three
distinct points of Y form an equilateral triangle. To demonstrate this, consider a
maximal (with respect to inclusion) subset Y of X no three points of which form
an equilateral triangle, and denote k = card(Y ). According to the definition of Y ,
for any point x ∈ X \ Y , there are two points y and z in Y such that the triangle
[x, y, z] is equilateral. Since the number of all possible line segments [y, z] does not
exceed k(k − 1)/2 and there are at most two equilateral triangles for which [y, z]
is a side, we easily infer the inequality

n2 − k ≤ 2(k(k − 1)/2) = k2 − k,
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whence the inequality n ≤ k immediately follows, showing that Y is as required.
However, this very simple argument does not work in the case where X is a

subset of R3. So the argument must be changed by another reasoning based on
Theorem 1.

Example 4. Let 4 be a fixed triangle in the space R3 and let n ≥ 5 be a natural
number. There exists a natural number r satisfying the following condition:

for any set X ⊂ R3 with card(X) ≥ r, there is a set Y ⊂ X with card(Y ) ≥ n
no three-element subset of which forms a triangle similar to 4.

To demonstrate this fact, first observe that there is no five-point set in R3, all
three-element subsets of which form triangles similar to 4. Keeping in mind this
circumstance, take as earlier m = 2, k = 3, r = r(n, m, k) and produce the partition
{A1,A2} of [X]3 as follows: V ∈ A1 if V is the set of vertices of a triangle similar
to 4, otherwise V ∈ A2. Applying Theorem 1 to this partition, we readily get the
required result.

An analogous application of Theorem 2 yields that if a set X ⊂ R3 is infinite,
then there exists an infinite set Y ⊂ X, no three-element subset of which forms a
triangle similar to 4.

Remark 5 : The previous example also can be extended to the case of Rd, where
d ≥ 2. Let some triangle 4 be given in Rd and let n be a natural number. There
exists a natural number r satisfying the following condition:

for any set X ⊂ Rd with card(X) ≥ r, there is a set Y ⊂ X with card(Y ) ≥ n
such that no three-element subset of Y forms a triangle similar to 4.

To demonstrate this statement, it suffices to keep in mind the following two
simple geometric facts:

(a) if 4 is not an equilateral triangle and a set Z ⊂ Rd is such that all three-
element subsets of Z form triangles similar to 4, then card(Z) ≤ 4;

(b) if 4 is an equilateral triangle and a set Z ⊂ Rd is such that all three-element
subsets of Z form triangles similar to 4, then card(Z) ≤ d + 1.

Now, applying Theorem 1, we obtain the desired result.
Analogously, applying Theorem 2, one can show that if a set X ⊂ Rd is infinite,

then there exists an infinite set Y ⊂ X such that no three-element subset of Y
forms a triangle similar to 4.

Example 5. It is easy to see that the vertices of a regular pentagon in R2 with its
center constitute a six-point set, all three-element subsets of which form isosceles
triangles. Also, it is not difficult to show that there is no seven-point set in R2,
all three-element subsets of which form isosceles triangles. Now, let n ≥ 7 be a
natural number. We may assert that there exists a natural number r satisfying the
following condition:

for any set X ⊂ R2 with card(X) ≥ r, there is a set Y ⊂ X with card(Y ) ≥ n
no three-element subset of which forms an isosceles triangle.

To demonstrate this, let us take again m = 2, k = 3, r = r(n, m, k) and produce
the partition {A1,A2} of [X]3 as follows: V ∈ A1 if V is the set of vertices of
an isosceles triangle, otherwise V ∈ A2. Applying Theorem 1 to this partition, we
come to the required result.

In a similar way, using Theorem 2, we infer that if a set X ⊂ R2 is infinite, then
there exists an infinite set Y ⊂ X such that no three-element subset of Y forms an
isosceles triangle.
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Remark 6 : In the space R3 there exists a set X with card(X) = 8 all three-
element subsets of which form isosceles triangles, and 8 is the maximal cardinality
of a set in R3 with the above-mentioned property (see, e.g., [3], [12]). In R4 it is
not hard to indicate a point set of cardinality 11, having the same property. We
do not know whether 11 is the maximum value for this property in R4.

Remark 7 : By using induction on d, it is possible to prove that there exists a
natural number i(d) satisfying the following condition:

if a set X ⊂ Rd is such that all three-element subsets of X form isosceles triangles,
then card(X) ≤ i(d).

Indeed, denote by h(d) the maximum number of points in the unit sphere Sd−1 ⊂
Rd, all nonzero distances between which are greater than or equal to 1. Then we
have the inequality

i(d + 1) ≤ i(d) + 2h(d + 1) + 2 (d ≥ 1).

By taking into account this inequality and Theorem 1, Example 5 can be trivially
generalized to the case of Rd.

Now, for any set X lying in Rd (or in a pre-Hilbert space H), let us introduce
the notation:

D(X) = {||x− x′|| : x ∈ X, x′ ∈ X, x 6= x′}.

Utilizing this notation, we may consider the next example.

Example 6. Let n ≥ 6 be a natural number. There exists a natural number r
satisfying the following condition:

if X ⊂ R2 and card(X) ≥ r, then card(D(X)) ≥ n.
To see this, take n′ = n + 1, m = 2, k = 3 and r = r(n′, m, k). By virtue of

Example 5, if X ⊂ R2 and card(X) ≥ r, then there exists a set Y ⊂ X with
card(Y ) ≥ n′ such that no three-element subset of Y forms an isosceles triangle.
Fix a point y0 ∈ Y and consider the real numbers

||y − y0|| (y ∈ Y \ {y0}).

All these numbers are distinct, so card(D(Y )) ≥ n′ − 1 = n, which yields the
desired result.

Example 7. Let X be an infinite subset of the plane R2. It follows from Example
6 that the set D(X) is infinite. Moreover, one may assert that if X is uncountable,
then D(X) is also uncountable. Indeed, suppose to the contrary that card(X) > ω
but card(D(X)) = ω. Fix a point x0 ∈ X. Then all other points of X belong
to the union of countably many circles. Consequently, one of those circles, say T ,
contains uncountably many points of X. But it is easy to see that the set D(T ∩X)
is uncountable, which contradicts our assumption.

Remark 8 : To obtain the corresponding analogues of Examples 6 and 7 for the
space Rd, let us introduce one auxiliary notion.

We shall say that a four-element set {x, y, z, t} ⊂ Rd is admissible if at least two
numbers from ||x − y||, ||x − z||, ||x − t||, ||y − z||, ||y − t||, ||z − t|| are equal to
each other.
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It turns out that, for every natural number d ≥ 1, there exists a natural number
p(d) having the following property: if Z ⊂ Rd is such that all four-element subsets
of Z are admissible, then card(Z) ≤ p(d).

The fact just formulated can be proved by induction on d. By virtue of this fact
and Theorem 1, we readily deduce the next statement:

Let d ≥ 1 and n be two natural numbers. There is a natural number r possessing
the following property: if X ⊂ Rd is such that card(X) ≥ r, then there exists a
set Y ⊂ X with card(Y ) ≥ n, all nonzero distances between points of which differ
from each other.

Indeed, assume without loss of generality that n > p(d) and put m = 2, k = 4,
r = r(n, m, k). Let X ⊂ Rd and card(X) ≥ r. Consider the partition {A1,A2} of
[X]4 defined as follows: a set V ∈ [X]4 belongs to A1 if and only if V is admissible.
Applying to this partition Theorem 1 and taking into account the above-mentioned
fact, we come to the required result.

Example 8. Let X be an infinite (respectively, uncountable) set in the space Rd.
Then there exists an infinite (respectively, uncountable) set Y ⊂ X such that all
nonzero distances between the points of Y differ from each other.

The proof can be obtained by induction on d.

Remark 9 : Consider a separable infinite-dimensional Hilbert space H and iden-
tify it with the standard space

l2 = {t ∈ RN :
∑

{(t(n))2 : n ∈ N} < +∞}.

Let {Nj : j ∈ J} be an almost disjoint family of infinite subsets of N such that
card(J) = c. The almost disjointness of this family means that

card(Ni ∩Nj) < ω

whenever i ∈ J , j ∈ J and i 6= j. For any index j ∈ J , let xj be an element of l2
satisfying the following conditions:

(a) the norm of xj is equal to 1;
(b) xj(n) ∈ Q for all n ∈ N;
(c) if n 6∈ Nj , then xj(n) = 0.
Putting X = {xj : j ∈ J}, it is easy to verify that card(X) = c and

card(D(X)) = ω. Thus, the analogue of Example 8 does not hold in H.

Example 9. Let D be an infinite (respectively, uncountable) family of line-
segments on R (some of these segments may be degenerate, i.e. may be single-
tons). One can assert that there exists an infinite (respectively, uncountable) family
D′ ⊂ D satisfying the disjunction of the following two assertions:

(a) all segments from D′ are pairwise disjoint;
(b) all segments from D′ have a common point.
To see this, first consider the case when the family D is countably infinite. In

this case, define the partition {A1,A2} of [D]2 as follows: {x, y} ∈ A1 if and only if
x∩y = ∅. According to Theorem 2, there exists an infinite D′ ⊂ D such that either
[D′]2 ⊂ A1 or [D′]2 ⊂ A2. If [D′]2 ⊂ A1, then D′ satisfies (a). If [D′]2 ⊂ A2, then
any two segments from D′ have nonempty intersection and it easily follows that
any finite subfamily of D′ has nonempty intersection, too. Taking into account the
compactness of line segments, we get (b).
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Now, consider the case when the family D is uncountable. We may assume, with-
out loss of generality, that all segments from D are non-degenerate and, moreover,
we may assume that the length of each segment from D is greater than δ, where
δ is a fixed strictly positive real number. Let us put T = {nδ : n ∈ Z}. Obviously,
the set T is countable and any member of D has a common point with T . So there
exists a point t ∈ T belonging to uncountably many segments from D. Denoting
by D′ the family of all those segments from D which contain t, we conclude that
D′ satisfies (b).

Example 10. Recall that a linearly ordered set (E,≤) is Dedekind complete if,
for any nonempty and bounded from above subset X of E, there exists sup(X).
In such (E,≤) consider any infinite family D of segments. Then, similarly to the
previous example, one can deduce from Theorem 2 that there exists an infinite
family D′ ⊂ D satisfying the disjunction of the following two assertions:

(a) all segments from D′ are pairwise disjoint;
(b) all segments from D′ have a common point.
Unfortunately, the uncountable variant of the previous example is not provable

for (E,≤) in contemporary set theory. Indeed, it is consistent with the standard
axioms of set theory that there exists a linearly ordered set (S,≤) such that:

(i) (S,≤) is Dedekind complete, dense, nonseparable, and has neither least nor
greatest elements;

(ii) S satisfies the countable chain condition, i.e., any disjoint family of nonempty
open subintervals of S is at most countable.

Actually, S is the so-called Suslin line (see, e.g., [11]). Recall that the existence of
S is valid in the Gödel Universe L, where the Continuum Hypothesis c = ω1 holds
true, too. Notice that card(S) = ω1, so S can be represented as an ω1-sequence of
points {sξ : ξ < ω1}. Now, by using the method of transfinite recursion up to ω1,
one can readily construct a family D = {dξ : ξ < ω1} of non-degenerate segments
in S such that, for any ordinal ξ < ω1, the segment dξ does not intersect the closure
of {sζ : ζ < ξ} (it suffices to use the fact that S itself is nonseparable while the
closure of {sζ : ζ < ξ} is separable). It directly follows from the construction of
D that every point of S belongs to at most countably many segments from D, so
D does not contain an uncountable subfamily D′ satisfying the disjunction of the
assertions (a) and (b).

Example 11. In 1914, by assuming the Continuum Hypothesis, Luzin constructed
an uncountable set in R whose intersection with every nowhere dense subset of R
is at most countable. Luzin’s construction is considered in detail in the widely
known text-book by Oxtoby [16] and some applications of Luzin’s sets to certain
questions of measure theory and general topology are also presented therein. By
utilizing an argument similar to Luzin’s one, it is possible to show that, under the
same Continuum Hypothesis, there exists an uncountable set L ⊂ R2 of points in
general position, such that every nowhere dense subset of R2 has at most countably
many common points with L. These properties of L allow to infer that if L′ is any
uncountable subset of L, then:

(a) there are three points in L′ which form an acute-angled triangle;
(b) there are three points in L′ which form an obtuse-angled triangle.
We thus conclude that, within the standard ZFC set theory, there is no uncount-

able analogue of Example 2.

Example12. Let (E,≤) be a Dedekind complete linearly ordered set and let L
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be an uncountable family of segments in E. Then the disjunction of these two
statements holds true:

(a) there exists an uncountable subfamily of D, all segments from which are
pairwise disjoint;

(b) there exists an infinite subfamily of D, all segments from which have a com-
mon point.

Also, the disjunction of these two statements holds true:
(a’) there exists an uncountable subfamily of D, all segments from which have a

common point;
(b’) there exists an infinite subfamily of D, all segments from which are pairwise

disjoint.
To establish the validity of both indicated disjunctions, one needs to utilize a

Ramsey type theorem due to Dushnik and Miller [5].

Example 13. According to the result of Erdos and Szekeres [8], every infinite set
of points in general position in Rd, where d ≥ 2, contains an infinite convexly
independent subset. It is natural to ask whether every uncountable set of points
in general position in Rd contains an uncountable convexly independent subset. It
turns out that the negative answer to this question does not contradict the axioms
of contemporary ZFC set theory. More precisely, by assuming the Continuum
Hypothesis, it can be demonstrated that there exists an uncountable set X ⊂ Rd

of points in general position, such that no uncountable subset of X is convexly
independent. For d = 2, a detailed proof of this fact is given in [13].
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