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The linear generation and intensification of internal gravity waves (IGW) in the ionosphere
with non-uniform zonal wind (shear flow) is studied. On the basis of non-modal approach,
the equations of dynamics and the energy transfer of IGW disturbances in the ionosphere
with a shear flow is obtained. The effectiveness of the linear amplification mechanism of IGW
at interaction with non-uniform zonal wind is analyzed. It is shown that at initial linear
stage of evolution IGW effectively temporarily draws energy from the shear flow significantly
increasing (by order of magnitude) own amplitude and energy.
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1. Introduction

Internal gravity waves (IGWs) play an important role in the formation of the gen-
eral circulation, thermal regime, and composition of the middle and upper atmo-
sphere. According to present knowledge, the main portion of IGW energy reaches
the middle and upper atmosphere from tropospheric sources. In the middle and
upper atmosphere the amplitudes of waves increase, they break and produce sub-
stantial amounts of heat and momentum [25]. Several parametrizations have been
developed for the turbulent viscosity, mean flow drag and heating rates produced
by dissipating IGWs [30], 1981; [34]; [25]; [15]; [33]; [36]; [24]. One of the main
problems for the development of such parametrizations is that of the inclusion of
atmospheric IGW sources. The most developed recent theories are those of IGW
generation by mountains [41]; [45]; [8]; [38]; [32]; [35]. In the case of other tropo-
spheric sources of IGWs, a good correlation is noticed between IGW intensity in
the atmosphere and the passage of atmospheric fronts [9]; [29]. IGWs may appear
at the upper edge of thunderstorms and heavy cumulus clouds [28]; [47]. Among
the IGW sources are also convection [49]), industrial explosions [51], and moving
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disturbances in the atmosphere [31], etc. Many of these mentioned sources are only
intermittently present in the atmosphere.
One of the important properties of IGW is their significant influence on the

distribution of the electromagnetic waves in atmospheric-ionosphere layers [43];
[16]. Consequently, ionosphere electric currents and electromagnetic fields may re-
influence the wave properties of IGW at ionosphere altitudes. In the ionosphere,
contrary to the lower layers of the atmosphere, investigating the dynamics of wave
processes non-uniform and non-stationary properties of the wind process, the tur-
bulent state of the lower ionosphere and the influence of non-uniform electromag-
netic forces should be taken into account. These factors, which are due to the
low density medium in the ionosphere and the relatively high conductivity of the
ionosphere gas, are strongly pronounced and they can sufficiently affect the prop-
agation characteristics of wave patterns. Consequently, the general circulation in
the ionosphere must have specific features that are absent in the troposphere.
The stationary problem of the existence of ionosphere wave disturbances in case

of rectilinear uniform medium flow (for large-scale Rossby type waves) has been
discussed for the first time in [13]. It has been revealed that in the theoretical study
and interpretation of the dynamics of the winds above 100 km it is necessary to
consider the possible deviations from the geostrophic winds associated with the
action of electromagnetic forces. Further, a number of other works have appeared
[26]; [6]; [5]; [4]; [1]; [12] and others, which studied the non-stationary evolution
of wind structure in the conducting ionosphere medium under the influence of the
spatially non-uniform geomagnetic field.
The action of the geomagnetic field, on the one hand, leads to the inductive

damping of the waves associated with Pedersen or transverse (with respect to the
geomagnetic field) conductivity, on the other hand–to the gyroscopic effect due
to the Hall conductivity of the ionosphere acting on the perturbation like the
Coriolis force. As a result of the joint action of spatially non-uniform Coriolis and
electrodynamic (related to the geomagnetic field) forces the new type waves with
different characteristics from the usual waves in the neutral medium may exist in
the ionosphere. These waves can be called magnetized. In this paper we study the
linear evolution of IGW in shear zonal flows (winds) in the ionosphere. At the linear
stage in the dynamic equations the perturbed hydrodynamic quantities are given
by SFH, which corresponds to non-modal analysis in a moving coordinate system
along the background wind. Non-modal mathematical analysis allows replacement
of the spatial non-uniform nature of the perturbed quantities, associated with the
basic zonal flow, by temporal one in the basic equations and trace the evolution of
SFH disturbances according to time.
The aim of this paper is theoretical investigation of the peculiarities of generation;

intensification and further evolution of IGW structures due to the presence of local
inhomogeneous zonal wind (shear flow). In section 2 we briefly outline the main
principles of non-modal mathematical analysis of the generation and intensification
of magnetized IGW in the linear stage based on the model of the medium and basic
hydrodynamic equations for the lower ionosphere, given in [1] and the stability of
the waves in shear flow and derive a necessary condition for instability. In Section
3 we study the characteristics of energy transfer by the IGW structures in the
dissipative ionosphere with the shear flow. Discussion of the results is carried out
in Section 4.
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2. Generation and intensification of IGW at linear stage of evolution

To study the linear stage of interaction of internal gravity waves with the local
non-uniform zonal wind and geomagnetic field, based on the model of the medium
and basic hydrodynamic equations for the lower ionosphere, given in [1], we will
have the following system of equations:

ρ0

( ∂

∂t
+ v0(z)

∂

∂x

)
Vx = −∂P

∂x
− ρ0v

′
0(z)Vz − σpB

2
0Vx + ρ0ν∆⊥Vx, (1)

ρ0

( ∂

∂t
+ v0(z)

∂

∂x

)
Vz = −∂P

∂z
− ρ0g − σpB

2
yVz + ρ0ν∆⊥Vz, (2)( ∂

∂t
+ v0(z)

∂

∂x

)
ρ = −dρ0

dz
Vz, (3)( ∂

∂t
+ v0(z)

∂

∂x

)
P = −dP0

dz
Vz, (4)

∂Vx

∂x
+

∂Vz

∂z
= 0. (5)

Here, V0(z) is a background of a plane zonal shear flow (wind) velocity, which
is non-uniform along the vertical,v = v0(z) + v(x, z, t), ρ = ρ0(z) + ρ(x, z, t),
P = P0(z) + P (x, z, t), v′0(z) = dv0(z)/dz. In this system of five equations (1)–(5)
any four of them creates a closed system. To facilitate further research, we choose
equation (1), (2), (3) and (4) as a closed system.

2.1. The local dispersion equation

The system of equations (1)–(5) presents partial differential equations with variable
coefficients, depending on the spatial coordinate z. For the existence of nontrivial
solutions a local approximation should be applied, due to which the coefficients
of equations (1)–(5) become locally homogeneous (constant). Then, for analyzes
of the spectral characteristics, expressed by these equations of the disturbances,
the Fourier expansion should be performed according to the spatial and temporal
variables [21]. In Consequence a solution of equations (1)–(5) can be sought in the
plane wave form [27]; [18]; [19]:

Vx,z(x, z, t) =

∫
Vx,z(kx, kz) exp

{
i
[
kxx+ (kz − i/2H)z − ωt

]}
dkxdkz,

(P, ρ)(x, z, t) =

∫
(P, p)(kx, kz) exp

{
i
[
kxx+ (kz + i/2H)z − ωt

]}
dkxdkz, (6)

where the spatial Fourier expansion of the wave disturbances is carried out;
k(kx, 0, kz) is the wave vector and ω(kx, kz) is the frequency of the waves. Inserting
(6) into equations (1)–(3) and (5), the following dispersion equation:
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2 − k2x

K2
ω2
g + i

(ω − kxv0)

K2

×
[
k2x

(σpB2
0y

ρ0
+ νK2

1

)
− kx

(
kz +

i

2H

)
v′0 +

(
k2z +

1

4H2

)(σPB2
0

ρ0
+ νK2

1

)]
=0. (7)

Here, ωg = (g/H)1/2 > 0 is frequency of Brunt-Vaisala for stably stratified
incompressible isothermal atmosphere; K2 = k2x+k2z+1/(4H2), K2

1 = K2
2−ikz/H,

K2
2 = k2x + k2z − 1/(4H2). Assuming the wave number K to be real and frequency

ω = ω0+ iγ, |γ| ≪ ω0-complex, from (7), the expressions for the spectrum of linear
fluctuations will be obtained:

ω0
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= v0 −

v′0
4K2H2
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√
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v′20
16K2H2ω2

g

, (8)

and decrement (increment) of the perturbations

γ = −
k2x

(σPB2
0y
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+ νK2

2
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4H2

)(σPB2
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− kxkzv

′
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2K2
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′
0
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] . (9)

In the absence of shear flow the formula (8) transforms into the expression for
the frequency of ordinary internal gravity waves [18]:

ω0 = ± kxωg

(k2x + k2z + 1/(4H2))1/2
. (10)

Formula (9) expresses the damping decrement of IGW due to induction (Peder-
sen) and viscous damping in the ionosphere medium: (11)

γ = −
k2x

(σPB2
0y

ρ0
+ νK2

2

)
+
(
k2z +

1

4H2

)(σPB2
0

ρ0
+ νK2

2

)
2K2

. (11)

According to (10), phase velocity of linear IGW is in the range:

−Vmax ≤ Vp ≤ Vmax, (12)

where Vmax = 2Hωg = 2(gH)1/2 in incompressible atmosphere. IGW is a low-
frequency branch of acoustic-gravity waves (AGW), occupying an intermediate
position between the frequency of inertial oscillations ωi = 2Ω0 and that of the
Brunt-Vaisala for stably stratified incompressible isothermal atmosphere ωg, ωi <
ω0 < ωg [16]; [19]). For the height of the uniform atmosphereH ≈ 4.5÷6km, we can
estimate the value of maximal phase velocity of linear IGW m/s, Vmax ≈ 440m/s,
the frequency ωg ≈ 1.7 × 10−2 and Ω0 ≈ 10−4. So, IGW disturbances cover the
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following range of low-frequency oscillations 10−4c−1 < ω < 1.7×10−2c−1–and can
be supersonic Vp ≥ cs ≈ 330m/s.
At the different levels of the ionosphere the values of the viscous and induction

damping of IG structures are different, and it should be considered in dynamic
problems involving IGW structures.
It should be noted, that according to (8), the non-uniform zonal wind greatly

expands the range of IGW in the ionosphere. Moreover, the shear flow feeds the
medium with energy (see formula (9)), which is responsible for the generation-swing
of IGW and development of linear shear instability with a characteristic growth
rate:

γA ∼ kxkz
K2

A. (13)

From (11) it is obvious, that the considered ionospheric shear flow can become
the source of the instability at the condition γA ≥ γν , γσ. According to (13), for
generation of the IGW structures it is necessary for the shear flow velocity to
have at least the first derivative according to the vertical coordinate, different
from zero (v′0(z) = A ̸= 0). As it was mentioned in [22]; [20], the typical value
of the dimensional parameter of the shear flow (A)s−1 for the ionosphere levels
equals A = v′0 ≈ (0.015 ÷ 0.15)s−1 as well. Taking it into account from (13) it
follows γA ≥ 10−1s−1. Thus, the condition of the generation and amplification of
IGW perturbations (inequality γA ≥ γν , γσ) at different levels of the ionosphere
(especially, in D and E-regions) can be satisfied and the shear instability can be
developed. This conclusion can be made by virtue of above used modal (local–
spectral) approach, which cannot give more information about the features of the
shear flow instability.

3. Non-modal analysis of shear instability of the waves in the ionosphere

Instabilities, discussed in the previous section do not always arise and remain in
a form, considered in the previous section. In shear flows the modal approach can
detect only possibility of instability. But for the investigation of instability gen-
eration conditions and its temporal development in the ionosphere an alternative
approach, namely, non-modal mathematical analysis is more appropriate. On the
basis of non-modal approximation, shear flows can become unstable transiently till
the condition of the strong relationship between the shear flows and wave pertur-
bations is satisfied [10]; [4], e. i. the perturbation falls into amplification region in
the wave number space. Leaving this region, e. i. when the perturbation passes to
the damping region in the wave vector space, it returns an energy to the shear flow
[2]. The experimental and observation data show the same [19]; [40]; [17].
Thus, non-uniform zonal wind or shear flow can generate and/or intensify the

internal gravity waves in the ionosphere and provoke transient growth of amplitude,
i.e. transient transport the medium into an unstable state. In the next subsection
we confirm this view by using a different, more self-consistent method for the shear
flow.
According to the above discussions, further analysis of the features of magnetized

IGW wave at the linear stage in the ionosphere should be conducted in accordance
with a non-modal approach. For this purpose, the moving coordinate system is
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more convenient with origin and the axis , which coincides with the same charac-
teristics of the equilibrium local system, the axis flowing along the unperturbed
(background) wind. In our problem, this transformation of the coordinate system
is equivalent to the following replacement of the variables:

x1 = x− azt, y1 = y, t1 = t, (14)

or

∂

∂t
=

∂

∂t1
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∂

∂x1
,

∂

∂x
=

∂

∂x1
,

∂

∂z
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∂

∂z1
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∂

∂x1
. (15)

With these new variables equation (1), (2), (3) and (5) take the form
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= − ∂P

∂x1
− ρ0v

′
0Vz − σPB

2
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∂Vx
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+
( ∂
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−At1

∂

∂x1

)
Vz = 0. (19)

Coefficients of the initial system of linear equations (1)–(4) depend on the spatial
coordinate. Such mathematical transformations replace this spatial non-uniform
property into temporal one. Thus, the initial-boundary problem is reduced to the
initial problem of Cauchy type. Since now the coefficients of (16)–(19) are inde-
pendent of spatial variables, the Fourier transformation of these equations with
respect to spatial variables is already possible without any local approximation,
the temporal evolution of these spatial Fourier harmonics (SFH) we consider inde-
pendently:

{
Vx, z(x1, z1, t1)
ρ, P (x1, z1, t1)

}
=

∫ ∫ ∞

−∞

∫
dkx1

dkz1

{
Ṽx,z(kx1

, kz1 , t1)

ρ̃, P̃ (kx1
, kz1 , t1)

}
(20)

× exp(ikx1
x1 + ikz1z1).

Here the factors with a tilde (for example Ṽx) indicate spatial Fourier harmonics
(SFH) of the relevant physical quantities. Inserting (20) into equations (16)–(19),
and passing to dimensionless variables,
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τ ⇒ ωgt1; Vx,z ⇒
Ṽx,z

ωgH
; ρ ⇒ ρ̃

ρ0
; P ⇒ −iP̃

ρ0ω2
gH

2
;

(x, z) ⇒ (x1, z1)

H
; S ⇒ A

ωg
; kx,z ⇒ kx1,z1H; kz = kz(0)− kxSτ ;

k2(τ) = (k2x + k2z(τ)); ν ⇒ ν

ωgH2
; b0 ⇒

σPB
2
0

ρ0ωg
; by ⇒

σPB
2
y

ρ0ωg
; (21)

for each SFH perturbed quantities, we obtain

∂Vx

∂τ
= −SVz + kxP −

[
b0 + νk2(τ)

]
Vx, (22)

∂Vz

∂τ
= kz(τ)P − ρ−

[
by + νk2(τ)

]
Vz, (23)

∂ρ

∂τ
= Vz, (24)

kxVx + kz(τ)Vz = 0. (25)

The closed system of equations (22)–(25) describes the linear interaction of IGW
with a shear flow and the evolution of the generated disturbances in the dissipative
ionosphere medium. We note once again that after these transformations the wave
vector k(kx, kz(τ)) of the perturbation became dependent on time: kz(τ) = kz(0)−
kxS · τ ; k2(τ) = (k2x + k2z(τ)). Variation of the wave vector according to time
(i.e. splitting of the disturbances scales in the linear stage) leads to significant
interaction in the medium even of such perturbations, the characteristic scale of
which are very different from each other at the initial time [4].
On the basis of (22)–(25) an equation of energy transfer of the considered wave

structures can be obtained, which gives possibility to identify the pattern of energy
density variation with time:

dE(τ)

dτ
= −S

2

(
V ∗
x (τ) · Vz(τ) + Vx(τ) · V ∗

z (τ)
)
− b1(τ)|Vx|2 − b2(τ)|Vz|2, (26)

Here the asterisk denotes the complex conjugate values of the perturbation,
b1(τ) = b0 + νk2(τ), b2(τ) = by + νk2(τ) and the density of the total dimen-
sionless energy of the wave perturbations E(τ) in the wave number space is given
by:

E[k(τ)] =
1

2

(
|Vx|2 + |Vz|2 + |ρ|2

)
. (27)

It’s obvious that the transient evolution of wave energy structures in the iono-
sphere is due to the shear flow (S ̸= 0, A ̸= 0), dissipative processes–induction decay
(b0 ̸= 0, by ̸= 0) and viscosity (ν ̸= 0). In the absence of shear flow (S = 0, A = 0),
and dissipative processes (ν = 0, σp = 0), the energy of the considered wave distur-
bances in the ionosphere conserves dE(τ)/dτ = 0. The total energy density of the
perturbations (27) consists of two parts: E[k] = Ek+Et, where the first term is the
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kinetic energy of perturbation Ek =
(∣∣|vx|2+|Vz|2

∣∣)/2, and the second–thermobaric
energy Et = |ρ|2/2, stipulated due to the elasticity of perturbations.
To emphasize the pure effect of shear flow on the evolution of IGW, for simplicity,

we consider non-dissipative ionosphere, i.e. we suppose that (ν = 0, σp = 0). Fur-
ther, we determine on the basis of equation (26) what actually leads the evolution
of the energy of the wave disturbance to does their energy increase or decrease?
To answer we must calculate the right-hand side part of equation (26). For this
purpose we must find the solutions of equations (22)–(25) at b1 = b2 = 0. Differ-
entiating (23) with respect to time and using (22) (24) and (25), we obtain the
second-order equation for the vertical velocity components:

d2Vz

dτ2
+R1(τ)

dVz

dτ
+R2(τ)Vz = 0, (28)

where

R1(τ) = −4Skx
kz(τ)

k2(τ)
, R2(τ) = (2S2 + 1)

k2x(τ)

k2(τ)
. (29)

Equation (28) can be simplified by introducing a new variable (Magnus, 1976).
Assuming

Vz = V exp[(−1/2)

∫
R1(τ

′)dτ ′]. (30)

Let’s transform (28) to the equation of a linear oscillator with time dependent
parameters:

V̈ +Ω2(τ)V = 0, (31)

where

V̈ =
d2V

dτ2
; Ω2(τ) = R2(τ)−

1

2
Ṙ1(τ)−

1

4
R2

1(τ) =
k2x

k2(τ)
. (32)

The equation (31) is well known in mathematical physics. This is an equation
of linear oscillations of a mathematical pendulum, length of which changes. The
value Ω(τ) determines the angular velocity of the pendulum.
We solve equation (31) in the adiabatic approximation [52], i.e. when dependence

of Ω(τ) on time is adiabatically slow:

|Ω̇(τ)| ≪ Ω2(τ). (33)

Taking into account the definition of the parameter equation (33) can be rewritten
as

S · |kz(τ)| ≪
[
k2x + k2z(τ)

]1/2
. (34)

For the real ionospheric shear flow S ≪ 1 (see definition (21)), it can be said
that condition (34) holds for a wide range of variations of wave numbers |kz(τ) =
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kz(0)−kxSτ |. In other words, when the temporary variation of |kz(τ) is due to the
linear drift of the wave vector in the space of wave numbers, condition (33) or (34)
is valid at all stages of the evolution of IGW. In this case, an approximate solution
of homogeneous equation (31) can be represented as:

V =
C√
Ω(τ)

exp[iφ(τ)], (35)

where C = const and

φ(τ) =

∫ τ

0
Ω(τ ′)dτ ′ =

1

S
ln
∣∣∣ kz(0) + k(0)

kz(τ) + k(τ)

∣∣∣.
Substituting (35) in (30), and then–into equations (22)–(25), we can finally con-

struct the solutions for physical quantities:

Vz(τ) =
Vz(0) · k2(0)
k
1/2
x · k3/2(τ)

exp[iφ(τ)], (36)

Vx(τ) = −Vx(0) · kz(τ) · k2(0)
k
3/2
x · k3/2(τ)

exp[iφ(τ)], (37)

ρ(τ) = −i
ρ(0) · k2(0)
k
3/2
x · k1/2(τ)

exp[iφ(τ)], (38)

P (τ) =
P (0) · k2(0)
k
3/2
x · k5/2(τ)

[2Sk(τ)− ikz(τ)] exp[iφ(τ)], (39)

kxVx(0) + kz(0)Vz(0) = 0 (40)

Here, in expressions (36)–(40) for the values of physical quantities are considered
the real parts. Substituting (49)–(51) into equations (39) and (40), we obtain an
expression for the normalized energy density of the Fourier harmonics:

Ē(τ) =
E(τ)

E(0)
=

(1 + k20)
2

[1 + (k0 − Sτ)2]1/2
, (41)

and for the IGW energy transport equation (at b1 = b2 = 0)

dĒ(τ)

dτ
=

(1 + k20)
2 · (k0 − Sτ)

[1 + (k0 − Sτ)2]3/2
, (42)

Here for the convenience of numerical analysis a new parameter k0 = kz(0)/kx
is introduced.
Using equations (54) and (55) we can determine an expression for the incre-

ment (decrement) of the shear instability Γ(τ) = (1/Ē(τ)) · dĒ(τ)/dτ in the non-
dissipative ionosphere:

Γ(τ) =
k0 − Sτ

1 + (k0 − Sτ)2
. (43)
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At the initial stage of evolution when k0 = kz(0)/kx > 0 (when kz(τ) > 0)
over time τ , 0 < τ < τ∗ = kz(0)/(Skx), the denominator (54) decreases and,
accordingly, the energy density of IGW increases monotonically and reaches its
maximum value (exceeding its initial value by an order) at the time τ = τ∗. Fur-
ther, at τ∗ < τ < ∞ the energy density begins to decrease (when kz(τ) < 0), and
monotonically returns to its initial approximately constant value. In other words,
at the early stages of evolution, temporarily, when kz(τ) > 0 and IGW perturba-
tions are in the intensification region in wave-number space, the disturbances draw
energy from the shear flow and increase own amplitude and energy by an order
during the period of time 0 < τ < τ∗ = kz(0)/(Skx) = 100. Then (if the nonlinear
processes and the self-organization of the wave structures are not turned on), when
kz(τ) < 0, IGW perturbation enters the damping region in wave number space and
the perturbation returns energy back to the shear flow over time τ∗ < τ < ∞ (Fig.
1, 2) and so on. Such transient redistribution of energy in the medium with the
shear flow is due to the fact that the wave vector of the perturbation becomes a
function of time k = k(τ), i.e. disturbances’ scale splitting takes place. The struc-
tures of comparable scales effectively interact and redistribute free energy between
them. Taking into account the induction and viscous damping (see equation (39))
the perturbation’s energy reduction in the time interval τ∗ < τ < ∞ is more inten-
sive than that shown on fig. 1, the decay curve in the region τ∗ < τ < ∞ becomes
more asymmetric (right-hand side curve becomes steeper), and part of the energy
of the shear flow passes to the medium in the form of heat.

Figure 1. Evolution of the non-dimensional

Thus, even in a stable stratified ionosphere (ω2
g > 0), temporarily, during the

time interval 0 < t∗ ≈ 100/(ωg) ∼ 5 · 103s ∼ 1.5 hour IGW-intensively draws
energy from the shear flow and increases own energy and amplitude by an order.
Accordingly, the wave activity will intensify in the given region of the ionosphere
due to the shear flow (inhomogeneous wind) energy.

4. Discussion and conclusion

In this article the linear stage of generation and further nonlinear evolution of IGW
structures in the dissipative stably stratified (ω2

g > 0) ionosphere in the presence of
shear flow (non-uniform zonal wind) is studied. A model system of dynamic nonlin-
ear equations describing the interaction of internal gravity structures with viscous

Figure 2. Increment of shear instability  Γ(τ)
                     energy density E(τ)
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ionosphere, non-uniform local zonal wind, and the geomagnetic field is obtained.
On the basis of analytical solutions and theoretical analysis of the correspond-
ing system of dynamic equations a new mechanism of linear transient pumping of
shear flow energy into that of the wave perturbation, wave amplification (multiple
times), self-organization of nonlinear wave perturbations into the solitary vortex
structures and the transformation of the perturbation energy into heat is revealed.
A necessary condition for shear instability of IGW at their interaction with local
non-uniform zonal wind, which is a generalization of the Rayleigh condition, is
obtained.
The equation of energy transfer by nonlinear wave structure in the dissipative

ionosphere is established. Based on the analysis of this equation it is revealed that
the IGW structure effectively interacts with the local background non-uniform
zonal wind and self-sustained by the shear flow energy in the ionosphere.
Linear amplification of IGW perturbation is not exponential as in the case of the

AGW in the inverse-unstably stratified (ω2
g < 0, when IGW cannot be generated)

atmosphere [2], but in algebraic-power law manner. Intensification of IGW is pos-
sible temporarily, for certain values of environmental parameters, shear and waves,
which form an unusual way of heating of the shear flow in the ionosphere: the
waves draw their energy from the shear flow through a linear drift of SFH in the
wave number space (fragmentation of disturbances due to scale) and pump energy
into the region of small-scale perturbations, i.e. in the damping region. Finally, the
dissipative processes convert this energy into heat. The process is permanent and
can lead to strong heating of the medium. Intensity of heating depends on the level
of the initial disturbance and the parameters of the shear flow.
A remarkable feature of the shear flow is the dependence of the frequency and

wave number of perturbations on time kz = kz(0)− kxSτ , k(τ) = (k2x + k2z(τ))
1/2.

In particular, frequency and wave number transient growth leads to a reduction of
scales of the wave disturbances due to time in the linear regime and, accordingly,
to energy transfer into a short scale region–the dissipation region. On the other
hand a significant change in the frequency range of the generated disturbances
stipulates in the environment the formation of a broad range of spectral lines of
the perturbations, which is linked to the linear interactions and not to the strong
turbulent effects. Moreover, amplification of the SFH perturbation and broadening
of wave modes’ spectra occur in a limited period of time (transient interval), yet
satisfied the relevant conditions of amplification and a strong enough interaction
between the modes.
It should be emphasized that the detection of the mechanism of the intensification

and broadening of the spectrum of perturbations became possible within the non-
modal mathematical analysis (these processes are overlooked by more traditional
modal approach). Thus, non-modal approach, taking into account the nonorthog-
onality of the eigenfunctions of the linear wave dynamics, proved to be more ap-
propriate mathematical language to study the linear stage of the wave processes
in shear flows.
The frequency of considered linear IGW perturbations varies in the interval of

10−4c−1 < ω0 < 1.7 × 10−2c−1 and includes low-frequency range of AGW. Wave-
length lies in the interval λ ∼ 100m ÷ 10km, the period from 5 minutes to–3
hours. Considering intermediate values of the IGW wavelengths (k ∼ 1/H,H ∼
10km;ω ∼ ωg ∼ 10−2s−1) we find that the group and phase velocities are of
the same order Vg ∼ Vp ∼ ωgH ∼ 10−2s−1 × 104m ∼ 102m/s. This estimation
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agrees with existing observations and they move with velocity (0, 1÷ 200)m/s in a
random direction along the horizontal lines, depending on daytime and nighttime
conditions. IGW is characterized by an exponential growth of the amplitude of
the perturbed velocity at the vertical propagation in an environment with expo-
nentially decaying vertical equilibrium density and pressure [27]; [19]). According
to observational data, IGW disturbances manifest themselves in a wide range of
heights–from the troposphere to the upper ionosphere heights z ≤ 600km [19]; [14];
[44]; [23]. At ionospheric altitudes (above 90 km) the conductive medium strongly
impacts on the IGW, causing its remarkable damping due to local Pedersen cur-
rents.
IGW structures are eigen degrees of freedom of the ionospheric resonator. There-

fore, influence of external sources on the ionosphere above or below (magnetic
storms, earthquakes, artificial explosions, etc.) will excite these modes (or inten-
sified) in the first, [7]. For a certain type of pulsed energy source the nonlinear
solitary vortical structures will be generated [4]; [4], which is confirmed by experi-
mental observations [42]; [11]; [39]; [46]; [48]). Thus, these wave structures can also
be the ionospheric response to natural and artificial activity.
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