SHORT COMMUNICATIONS

On Projective Functions with Bad Measurability Properties

Alexander Kharazishvili*

I. Javakhishvili Tbilisi State University I. Vekua Institute of Applied Mathematics 2 University St., 0186, Tbilisi, Georgia (Received March 28, 2019; Revised May 20, 2019; Accepted June 11, 2019)

Under Martin's Axiom, we show the consistency of the existence of a projective function acting from \mathbf{R} into itself, which has an extremely bad measurability property with respect to a wide class of measures on \mathbf{R} .

Keywords: Martin's axiom, Projective set, Absolutely nonmeasurable function, Well-ordering.

AMS Subject Classification: 28A05, 28A20, 28D05.

One of Ulam's problems posed by him in the Sottish Book [6] is formulated as follows:

Does there exist a measure on the real line \mathbf{R} , extending the classical Lebesgue measure λ on \mathbf{R} and containing in its domain the family of all projective subsets of \mathbf{R} ?

Nowadays it is clear that this problem cannot be resolved within the framework of the standard **ZFC** set theory. Indeed, assuming the Axiom of Projective Determinacy (see, for instance, [1]), one immediately gets that the algebra of all projective subsets of **R** is entirely contained in the domain of λ .

On the other hand, in [5] the following assumption (H) was considered:

There exists a well-ordering of \mathbf{R} which is isomorphic to the standard wellordering of ω_1 and, simultaneously, is a projective subset of the Euclidean plane \mathbf{R}^2 .

Notice that the assumption (H) trivially holds in Gödel's Constructible Universe (see [1]).

It was shown in [5] that if (H) is fulfilled, then no extension of λ can make all projective sets in **R** be measurable.

Let us say a few words about the method presented in [5] for solving Ulam's above-mentioned problem. This method essentially relies on the two facts which are consequences of the assumption (H):

(1) the cardinality of **R** is equal to ω_1 (i.e., the Continuum Hypothesis is valid);

(2) every projective set $Z \subset \mathbf{R}^2$ all vertical sections of which are at most count-

^{*} Email: kharaz2@yahoo.com

able admits a representation in the form

$$Z = \cup \{f_i : i \in I\},\$$

where $\{f_i : i \in I\}$ is a countable family of some functions whose graphs are projective subsets of \mathbb{R}^2 .

Actually, (1) and (2) imply that the method of [5] cannot be directly generalized to the case when the cardinality continuum \mathbf{c} is strictly greater than ω_1 .

In [2] a much stronger result was obtained. In order to formulate it, let us introduce several notions.

A measure μ defined on some σ -algebra of subsets of **R** is called diffused (continuous) if each singleton in **R** belongs to dom(μ) and μ vanishes at all of them.

Let E be an uncountable ground (base) set and let \mathcal{M} be a class of measures on E (in general, those measures are defined on different σ -algebras of subsets of E).

We shall say that a function $f : E \to \mathbf{R}$ is absolutely nonmeasurable with respect to \mathcal{M} if f is nonmeasurable with respect to every measure from \mathcal{M} .

Let us denote by $\mathcal{M}(E)$ the class of all nonzero σ -finite diffused measures on E.

Remark 1: Obviously, the class $\mathcal{M}(\mathbf{R})$ is substantially wider than the class of all those measures on \mathbf{R} which extend λ . In this context, it makes sense to recall that there exist many measures on \mathbf{R} which extend λ and, simultaneously, are invariant under the group of all translations of \mathbf{R} (see, e.g., [3], [9]). Moreover, as was demonstrated by Kakutani and Oxtoby in 1950, there exist nonseparable translation invariant measures on \mathbf{R} which are extensions of λ .

In [2] it was proved that, under the same hypothesis (H), there exists a function $f : \mathbf{R} \to \mathbf{R}$ which is absolutely nonmeasurable with respect to $\mathcal{M}(\mathbf{R})$ and whose graph is a projective subset of \mathbf{R}^2 .

It follows from this result that there exists a countable family $\{P_i : i \in I\}$ of projective sets in **R** such that no measure μ from $\mathcal{M}(\mathbf{R})$ satisfies the relation

$$\{P_i: i \in I\} \subset \operatorname{dom}(\mu).$$

Moreover, all sets P_i $(i \in I)$ belong to the projective class $\Sigma_k^1(\mathbf{R})$, where k only depends on the index of the projective class of a well-ordering of \mathbf{R} .

Remark 2: It should be noted that if $g : \mathbf{R} \to \mathbf{R}$ is any function absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$, the graph $\operatorname{Gr}(g)$ of g is an absolute null subset of \mathbf{R}^2 . The latter means that there exists no nonzero σ -finite diffused Borel measure on $\operatorname{Gr}(g)$.

The method of [2] essentially relies on properties of so-called Luzin subsets of **R**. An extensive information on Luzin sets can be found in many sources (see, e.g., [4], [7], [8]).

In this note, assuming Martin's Axiom (\mathbf{MA}) instead of the Continuum Hypothesis (\mathbf{CH}) , we would like to present a certain analogue of the just formulated result.

Recall that a set $X \subset \mathbf{R}$ is a generalized Luzin set if $\operatorname{card}(X) = \mathbf{c}$ and, for every first category subset Y of \mathbf{R} , the inequality $\operatorname{card}(Y \cap X) < \mathbf{c}$ is valid.

Under Martin's Axiom, there exist generalized Luzin sets in \mathbf{R} and all of them are absolute null. It follows from this fact that, under the same axiom, there exist

injective functions acting from \mathbf{R} into \mathbf{R} which are absolutely nonmeasurable with respect to the class $\mathcal{M}(\mathbf{R})$.

Denote by $\mathcal{I}(\mathbf{R})$ the σ -ideal of all those subsets of \mathbf{R} whose cardinalities are strictly less than \mathbf{c} .

Also, denote by $\mathcal{M}_0(\mathbf{R})$ the class of all those nonzero σ -finite measures μ on \mathbf{R} which satisfy the relation

$$(\forall Z \in \mathcal{I}(\mathbf{R}))(\mu_*(Z) = 0),$$

where $\mu_*(Z)$ stands, as usual, for the inner μ -measure of Z.

Clearly, under Martin's Axiom, $\mathcal{M}_0(\mathbf{R})$ properly contains the class of all those measures on \mathbf{R} which extend λ .

Remark 3: At present, models of **ZFC** theory are known in which there exists a measure ν on **R** extending λ and such that $\nu(\mathbf{R} \setminus Z) = 0$ for some set $Z \in \mathcal{I}(\mathbf{R})$. Moreover, the existence of such a measure ν can be deduced from the assumption that the cardinal **c** is real-valued measurable.

Remark 4: Let μ be an arbitrary measure from the class $\mathcal{M}_0(\mathbf{R})$. It is not hard to show that there exists a measure μ' on \mathbf{R} such that:

(a) μ' extends μ ;

(b) $\mathcal{I}(\mathbf{R}) \subset \operatorname{dom}(\mu')$ and $\mu'(Z) = 0$ for any set $Z \in \mathcal{I}(\mathbf{R})$.

Lemma 1: Suppose that there exists a well-ordering of \mathbf{R} which is a projective subset of \mathbf{R}^2 .

Then, for every projective set $Z \subset \mathbf{R}^2$, there is a projective uniformization of Z, i.e., there exists a function

$$h: \operatorname{pr}_1(Z) \to \mathbf{R}$$

whose graph Gr(h) is contained in Z and is also a projective subset of \mathbf{R}^2 .

This lemma is well known and its proof is not difficult (cf. [5]).

Lemma 2: Assume Martin's Axiom and let $f : \mathbf{R} \to \mathbf{R}$ be a function having the following two properties:

(1) the range ran(f) of f is a generalized Luzin set in **R**;

(2) for each point $t \in \mathbf{R}$, the cardinality of the set $f^{-1}(t)$ is strictly less than the cardinality of the continuum.

Then f is absolutely nonmeasurable with respect to the class $\mathcal{M}_0(\mathbf{R})$.

The proof of this lemma is completely analogous to the proof of Theorem 1 from Chapter 5 in [3].

Now, we are able to formulate and prove the main result of this note.

Theorem 1: Assume Martin's Axiom and suppose also that there is a projective well-ordering \leq of **R** isomorphic to the well-ordering of the least ordinal number of cardinality **c**.

Then there exists a function $f : \mathbf{R} \to \mathbf{R}$ which is absolutely nonmeasurable with respect to $\mathcal{M}_0(\mathbf{R})$ and whose graph is a projective subset of \mathbf{R}^2 .

Proof: We follow the method of [2]. Obviously, it suffices to demonstrate the existence of function

$$\phi: [0,1] \to [0,1]$$

which is absolutely nonmeasurable with respect to the analogous class $\mathcal{M}_0([0,1])$ and whose graph is a projective subset of the square $[0,1]^2$.

Let \leq be a projective well-ordering \leq of [0, 1] isomorphic to the well-ordering of the least ordinal number of cardinality **c**.

First, denote by E the compact metric space consisting of all nonempty closed subsets of [0, 1], and consider its subspace E' consisting of all nonempty nowhere dense closed subsets of [0, 1]. Observe that this E' is of type G_{δ} in E, so E' can be treated as a Polish topological space (see [4]).

Further, identify the Baire canonical space ω^{ω} with the set **I** of all irrational numbers in [0, 1] and introduce a continuous surjection

$$\Phi: \mathbf{I} \to E'.$$

The existence of Φ is well known (see again [4]). Then, for each point $x \in [0, 1]$, consider the set

$$Z(x) = \{ y \in [0,1] : x \leq y \& y \notin \bigcup \{ \Phi(i) : i \in \mathbf{I} \& i \leq x \} \}$$

and define the subset Z of the plane \mathbf{R}^2 by putting

$$Z = \cup \{ \{x\} \times Z(x) : x \in [0,1] \}.$$

It is not difficult to check that Z is a projective subset of the square $[0,1]^2$ and $pr_1(Z) = [0,1]$.

Taking into account the fact that Z admits a projective uniformization (see Lemma 1), we come to the existence of a function

$$\phi:[0,1]\to[0,1]$$

whose graph is a projective subset of $[0,1]^2$ and is entirely contained in Z.

Now, a straightforward verification shows that the range $ran(\phi)$ of ϕ is a generalized Luzin set in [0, 1] which simultaneously is a projective subset of [0, 1]. In addition to this,

$$\operatorname{card}(\phi^{-1}(t)) < \mathbf{c}$$

for every point $t \in [0, 1]$. Keeping in mind Lemma 2, we can conclude that ϕ is absolutely nonmeasurable with respect to the class $\mathcal{M}_0([0, 1])$.

This completes the proof of Theorem 1.

As a consequence of the above theorem, we have the following statement.

Theorem 2: Assume Martin's Axiom and suppose that there is a projective well-ordering \leq of **R** isomorphic to the well-ordering of the least ordinal number of cardinality **c**.

Then there exists a countable family $\{P_j : j \in J\}$ of projective subsets of \mathbf{R} such that no measure $\mu \in \mathcal{M}_0(\mathbf{R})$ satisfies the relation

$$\{P_j : j \in J\} \subset \operatorname{dom}(\mu).$$

Proof: Let $f : \mathbf{R} \to \mathbf{R}$ be a function of Theorem 1, which is absolutely nonmeasurable with respect to the class $\mathcal{M}_0(\mathbf{R})$. Take some countable base $\{U_k : k < \omega\}$ of open sets in \mathbf{R} and some countable base $\{V_k : k < \omega\}$ of open sets in the space $\operatorname{ran}(f)$. Denote

$$\{P_j : j \in J\} = \{U_k : k < \omega\} \cup \{f^{-1}(V_k) : k < \omega\}.$$

By virtue of the absolute nonmeasurability of f with respect to $\mathcal{M}_0(\mathbf{R})$, it is not hard to demonstrate that the family $\{P_j : j \in J\}$ is as required.

Moreover, if \leq belongs to the projective class $\Sigma_n^1(\mathbf{R}^2)$, then all sets P_j $(j \in J)$ belong to the projective class $\Sigma_{m(n)}^1(\mathbf{R})$, where the index m(n) depends on n. \Box

Remark 5: The following question naturally arises: under the assumptions of Theorem 1, does there exist a projective function $g : \mathbf{R} \to \mathbf{R}$ absolutely nonmeasurable with respect to the whole class $\mathcal{M}(\mathbf{R})$? At present, we do not know the answer to this question.

Acknowledgement. This work was partially supported by Shota Rustaveli National Science Foundation, Grant FR-18-6190.

References

- [1] T. Jech, Set Theory, Springer-Verlag, Berlin-Heidelberg, 2003
- [2] A. Kharazishvili, To the existence of projective absolutely nonmeasurable functions, Proceedings of A. Razmadze Mathematical Institute, **166** (2014), 95-102.
- [3] A. Kharazishvili, Topics in Measure Theory and Real Analysis, Atlantis Press, Amsterdam-Paris, 2009
 [4] K. Kuratowski, Topology, Academic Press, London-New York, 1 (1966)
- [5] R.D. Mauldin, Projective well-orderings and extensions of Lebesgue measure, Coll. Math., XLVI, 2 (1982), 185-188
- [6] R.D. Mauldin (editor), The Scottish Book, Birkhauser-Boston, Inc., Boston, Mass., 1982
- [7] J.C. Morgan II, Point Set Theory, Marcel Dekker, Inc., Basel-New York, 1990
- [8] J.C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971
- [9] Sh.S. Pkhakadze, The theory of Lebesgue measure (Russian), Proc. A. Razmadze Math. Institute, 25 (1958), 3-272