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1. Introduction

Statistics of random processes is used in various fields of science and technology (for
example, in theoretical physics, genetics, economics, radio physics, ...). When using
random processes as models of real phenomena, the question of determining the
probabilistic characteristics of the process arises. To determine these characteristics
statistical methods should be used. Among the problems of statistics, a class of
problems is distinguished in which the number of observations is unique.
Despite the uniqueness of observation, in many cases, one can authentically de-

termine the values of unknown distribution parameters or reliably choose one of
an infinite number of competing hypotheses about the exact form of the distribu-
tion. In the case when a parameter or hypothesis is determined by one observation
reliably, it is said that for it there exists a consistent estimate of parameter or a
consistent criterion for hypothesis testing. This article is devoted to the question
of the existence of consistent criteria for hypothesis testing and the method of
their finding. Previously, our work focused on the property of strong separability
of statistical structures, introduced by A. Skorokhod, which was associated with
the existence of consistent criteria for hypothesis testing. Recall that a statistical
criterion is any measurable mapping from the set of all possible sample values to
the set of hypotheses. It is said that an error of the h-th type of the δ criterion
occurs, if the criterion rejected the main hypothesis of Hh. The following probabil-
ity {αh(δ) = µh({x : δ(x) = h})} is called the probability of an error of the h-th
kind for a given criterion δ. Examples 1.1 and 1.2 show a general trend - when we
decrease one of the probabilities of an error, the other, as a rule, increases.
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Example 1.1 Consider the case when there are two simple hypotheses h1 and
h2 about the distribution of population and criterion δ : Rn → {h1, h2} such that
δ(x) ≡ h1, then the probability of an error of the first kind is zero α1 = µh1

({x :
δ(x) ̸= h1}) = 0, and the probability of an error of the second kind is equal to one
α2 = µh2

({x : δ(x) ̸= h2}) = 1.

Example 1.2 There are observations from the normal distribution in R with
variation one and different means a ∈ R and two simple hypotheses H1 = {a = 0}
and H2 = {a = 1}. Consider the following criteria:

δ(x) =

{
H1, if x ≤ c;
H2, if x > c,

for some c ∈ R. It is obvious that with the increase of the number c the probability
of an error of the first type decreases, and the probability of an error of the second
kind increases.

Remark 1 : Let the statistical structure {E,S, µh, h ∈ H} admit a consistent
criterion δ for hypothesis testing, then the probability of an error of all types is
equal to zero for the criterion δ.
The purpose of this work is the further study of statistical structures that allow

consistent criteria for hypothesis testing and obtaining their characteristic proper-
ties.
By (ZFC) we denote the formal system of Zermelo-Fraenkel with the addition

of axiom of choice (AC), i.e. (ZFC)=(ZF)&(AC). By (ZFC)&(CH) we denote the
theory with the addition of a continuum hypothesis (CH): 2χ0 = χ1, where χ1

denotes the first uncountable cardinal number, and by (ZFC)&(MA) we denote
the theory with the addition of Martin’s axiom (MA). It is known that in the
theory (ZFC)&(CH) Martin’s axiom (MA) is automatically satisfied. It is well
known that Martin’s axiom (MA) is much weaker than the continuum hypothesis
(CH). Moreover, the negation of the continuum hypothesis (¬CH) is compatible
with Martin’s axiom (see [4], [5]).
In the general theory of hypotheses testing there often arises a problem of transi-

tion from orthogonal statistical structure to the corresponding strongly statistical
structure. A. Skorokhod (see [2]) proved that if the continuum hypothesis is true,
then an arbitrary weakly separable statistical structure, whose cardinality is not
greater than the cardinality of the continuum, is strongly separable. The validity
of the inverse relation was established in [7], [8]. In particular, it was shown there
that if an arbitrary weakly separable statistical structure, whose cardinality is less
or equal than the cardinality of the continuum, is strongly separable. Z. Zerakidze
(see [11], [12], [14]) proved: 1) In (ZF) theory for the countable statistical structure
the notions of weak separability, separability, strong separability and orthogonal-
ity are equivalent; 2) In (ZFC)&(MA) theory Borel weakly separable statistical
structure, whose cardinality is not greater than the cardinality of the continuum,
is strongly separable; 3) In (ZFC) theory orthogonal statistical structure, whose
cardinality is 22

c

, is weakly separable.
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2. The consistent criteria for hypotheses testing

Let (E,S) be a measurable space with a given family of probability measures:
{µi, i ∈ I}.
The following definitions are taken from [1] - [19].

Definition 2.1: An object {E,S, µi, i ∈ I} is called a statistical structure.

Definition 2.2: A statistical structure {E,S, µi, i ∈ I} is called orthogonal (sin-
gular) (O) if a family of probability measures {µi, i ∈ I} constists of pairwise
singular measures (i.e. µi ⊥ µj , ∀i ̸= j).

Example 2.3 Let E = [0, 1], S be a Borel σ-algebra of subsets of [0, 1]. Let
µ1(B) = 2l(B ∩ [0, 12 ]), B ∈ S; µ2(B) = 2l(B ∩ [12 , 1]), B ∈ S and µ3(B) =

3l(B ∩ [0, 13 ]), B ∈ S, where l is Lebesgue measure on S. Then µ1 ⊥ µ2 and
µ2 ⊥ µ3, but µ1 is not orthogonal to µ3.

Example 2.4 A statistical structure {E,S, µi, i ∈ I} is called weakly separable
(WS) if there exists a family of S-measurable sets {Xi, i ∈ I} such that the reala-
tions are fulfilled:

µi(Xj) =

{
1, if i = j;

0, if i ̸= j
(i, j ∈ I).

Definition 2.5: A statistical structure {E,S, µi, i ∈ I} is called separable (S) if
there exists a family of S-measurable sets {Xi, i ∈ I} such that the realations are
fulfilled:

1) µi(Xj) =

{
1, if i = j;

0, if i ̸= j
(i, j ∈ I);

2) ∀i, j ∈ I : card(Xi ∩Xj) < c, if i ̸= j,

where c denotes the continuum power.

Definition 2.6: A statistical structure {E,S, µi, i ∈ I} is called strongly separa-
ble (SS) if there exist a disjoint family of S-measurable sets {Xi, i ∈ I} such that
the realations are fulfilled:

µi(Xi) = 1, ∀ i ∈ I.

Example 2.7 Let E = R×R (where R = (−∞,+∞) ) and let S = B(R×R) be
a Borel σ-algebra of subsets of R×R. Let’s take the S-measurable sets

Xh = {−∞ < x < +∞, y = h, h ∈ (0,+∞)}

and assume that

µh(A) =

∫
A

1√
2πh

e−
x2

2h2
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are linear Gaussian measures on Xh, h ∈ (0,+∞). Then the statistical structure
{R×R, S, µh, h ∈ (0,+∞)} is strongly separable.

Example 2.8 Let E = R × R and let S = B(R × R) be a Borel σ-algebra of
subsets of R×R. Let’s take the S-measurable sets

Xh =

{
−∞ < x < +∞, y = h, if h ∈ R;
x = h, −∞ < y < +∞, if h ∈ R

and assume that µh are linear Gaussian measures onXh, h ∈ R. Then the statistical
structure {R×R, S, µh, h ∈ R} is separable, but not strongly separable.

Example 2.9 Let E = R × R × R, let S be a Borel σ-algebra on E. Let’s take
the S-measurable sets

Xh =


−∞ < x < +∞, −∞ < y < +∞, z = h, if h ∈ R;
x = h, −∞ < y < +∞, −∞ < z < +∞, if h ∈ R;
−∞ < x < +∞, y = h, −∞ < z < +∞, if h ∈ R

and assume that µh are plane Gaussian measures on Xh. Then the statistical
structure {R×R×R, S, µh, h ∈ R} is weakly separable, but not separable.

Example 2.10 Let E = R×R, S be a Borel σ-algebra of subsets of R×R. Let’s
take the S-measurable sets

Xh =

{
−∞ < x < +∞, y = h, if h ∈ R \ {0};
−∞ < x < +∞, −∞ < y < +∞, if h = 0

and assume that µh, h ∈ R \ {0}, are linear Gaussian measures on Xh and µ0 is a
plane Gaussian measure on R×R. Then the statistical structure {R×R, S, µh, h ∈
R} is orthogonal, but not weakly separable.

Remark 2 : From strong separability there follows separability, from separability
there follows weak separability and from weak separability there follows orthogo-
nality but not vice versa, i.e.

(SS)⇒ (S)⇒ (WS)⇒ (0).

Remark 3 : On an arbitrary set E of continuum power one can define an orthog-
onal statistical structure having the maximal possible power equal to 22

c

, a weakly
separable statistical structure having the maximal possible power equal to 2c, and
a strongly separable statistical structure with the maximum possible power equal
to c, where c is continuum power (see [13] - [19]).

Lemma 2.11: If the statistical structure {E,S, µh, h ∈ H} is weakly separable
then it is orthogonal.

Proof : If the statistical structure {E,S, µh, h ∈ H} is weakly separable then there
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exist S-measurable sets {Xh, h ∈ H} such that

µh(Xh′ ) =

{
1, if h = h

′
;

0, if h ̸= h
′ (h, h

′ ∈ H).

Since µh(Xh) = 1 and µh′ (Xh) = 0 for h
′ ̸= h, we have µh(E \Xh) = 0. Hence, the

measures µh and µh′ , h ̸= h
′
, are orthogonal. �

The notion and corresponding construction of consistent criteria for hypotheses
testing was introduced and studied by Z. Zerakidze (see [14], [17]).

Definition 2.12: We consider the concept of the hypothesis as any assumption
that determines the form of the distribution of population.

Let H be the set of hypotheses and let B(H) be σ-algebra of subsets of H which
contains all finite subsets of H.

Definition 2.13: A statistical criterion is any measurable mapping δ : (E,S) −→
(H,B(H)).

Definition 2.14: We will say that the statistical structure {E,S, µh, h ∈ H}
admits a consistent criterion for hypothesis testing (CC) if there exists at least one
measurable mapping δ : (E,S) −→ (H,B(H)), such that

µh({x : δ(x) = h}) = 1, ∀ h ∈ H.

Definition 2.15: The probability αh(δ) = µh(x : {δ(x) ̸= h}) is called the
probability of error of the h-th type for a given criterion δ.

Definition 2.16: We will say that the statistical structure {E,S, µh, h ∈ H}
admits a consistent criterion for hypothesis testing of any parametric function
(PC) if for any real bounded measurable function g : (H,B(H)) −→ (R,B(R))
there exists at least one measurable function f : (E,S) −→ (R,B(R)) such that

µh({x : f(x) = g(h)}) = 1, ∀ h ∈ H.

Definition 2.17: We will say that the statistical structure {E,S, µh, h ∈ H}
admits an unbiased criterion for hypothesis testing (UC) if for any real bounded
measurable function g : (H,B(H)) −→ (R,B(R)) there exists at least one measur-
able function f : (E,S) −→ (R,B(R)) such that∫

E

f(x)µh(dx) = g(h), ∀ h ∈ H.

In the example below, we give the construction of a strongly separable statistical
structure that does not admit a consistent criterion for hypotheses testing.

Example 2.18 Let E = [0, 1]× [0, 1], let B([0, 1]× [0, 1]) be a Borel σ-algebra of
subsets of E = [0, 1]×[0, 1]. As a set of hypotheses consider the setH = [0, 1]∪[2, 3].
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Let us take the B(E = [0, 1]× [0, 1])-measurable sets

Xh =

{
0 ≤ x ≤ 1, y = h, if h ∈ [0, 1];

x = h− 2, 0 ≤ y ≤ 1, if h ∈ [2, 3]

and denote by µh, h ∈ [0, 1] ∪ [2, 3], linear Lebesgue measures on Xh. Then the
statistical structure {[0, 1]×[0, 1], B([0, 1]×[0, 1]), µh, h ∈ [0, 1]∪[2, 3]} is a separable
statistical structure. Suppose that it admits a consistent criterion for hypotheses
testing

δ : ([0, 1]× [0, 1], B([0, 1]× [0, 1])) −→ (H,B(H)),

with µh({x : δ(x) = h}) = 1, ∀h ∈ [0, 1] ∪ [2, 3]. Let’s introduce sets A1 = {x :
δ(x) ∈ [0, 1]} and A2 = {x : δ(x) ∈ [2, 3]}. It is clear that A1 and A2 are B([0, 1]×
[0, 1])-measurable sets and we have µh(A1 ∩ {[0, 1] × {h}}) = 1, ∀h ∈ [0, 1] and
µh(A2∩{{h−2}×[0, 1]}) = 1, ∀h ∈ [2, 3]. Further, according to the Fubini theorem
we conclude that l(A1) = 1 and l(A2) = 1 (where l is the Lebesgue plane measure).
From here, taking into account that A1 ∩ A2 = ∅ and A1 ∪ A2 = [0, 1] × [0, 1], we
verify that l([0, 1]× [0, 1]) = 2, which contradicts the fact that l([0, 1]× [0, 1]) = 1.
Hence, this statistical structure does not admit a consistent criterion for hypotheses
testing.

3. The consistent criterion for hypotheses testing in the Hilbert space of
measures

Let {µh, h ∈ H} be probability measures defined on the measurable space (E,S).
For each h ∈ H denote by µh the completion of the measure µh, and denote by
dom(µh) the σ-algebra of all µh-measurable subsets of E. Let

S1 = ∩h∈Hdom(µh).

Definition 3.1: A statistical structure {E,S1, µh, h ∈ H} is called strongly sep-
arable if there exists the family of S1-measurable sets {Zh, h ∈ H} such that the
relations are fulfilled:
1) µh(Zh) = 1 ∀h ∈ H;
2) Zh1

∩ Zh2
= ∅ ∀h1 ̸= h2; h1, h2 ∈ H;

3) ∪h∈HZh = E.

Definition 3.2: We will say that the orthogonal statistical structure
{E,S1, µh, h ∈ H} admits a consistent criterion for hypothesis testing if there
exists at least one measurable mapping δ : (E,S1) −→ (H,B(H)), such that

µh({x : δ(x) = h}) = 1 ∀ h ∈ H.

Let Mσ be a real linear space of all alternating finite measures on S.

Definition 3.3: A linear subset MH ⊂Mσ is called a Hilbert space of measures
if:
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1) One can introduce on MH a scalar product (µ, ν) (µ, ν ∈ H so that MH is
a Hilbert space and for every mutually singular measures µ and ν (µ, ν ∈ H) the
scalar product (µ, ν) = 0;
2) If ν ∈MH and |f(x)| ≤ 1, then

νf (A) =

∫
A
f(x)ν(dx) ∈MH ,

where f is a S1-measurable real function and (νf , νf ) ≤ (ν, ν);
3) If νn ∈MH , νn ≥ 0, νn(E) <∞, n = 1, 2, ... and νn ↓ 0, then for any ν ∈MH :

lim
n→∞

(νn.ν) = 0.

Remark 4 : The notion and corresponding construction of the Hilbert space of
measures was introduced and studied by Z. Zerakidze (see [15]).
The following theorem has also been proved in this paper [15].

Theorem 3.4 : If MH is a Hilbert space of measures, then it is represented as a
direct sum of the Hilbert spaces H2(µh), that is

MH = ⊕h∈HH2(µh),

where H2(µh) is the family of measures

ν(A) =

∫
A
f(x)µh(dx), A ∈ S1,

such that ∫
E
|f(x)|2µh(dx) < +∞

and

||ν||H2(µh)
=

( ∫
E
|f(x)|2µh(dx)

)1/2
.

Denote by F = F (MH) the set of real functions f for which∫
E
f(x)µh(dx)

is defined for all µh ∈MH .

Theorem 3.5 : Let

MH = ⊕h∈HH2(µh)

be a Hilbert space of measures, let E be a complete metric space, whose topological
weights are not measurable in a wider sense. Let S1 be a Borel σ-algebra on E. In
order for the Borel orthogonal statistical structure {E,S1, µh, h ∈ H} to admit a
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consistent criterion for hypotheses testing in the theory of (ZFC) & (MA) it is
necessary and sufficient that the correspondence f ←→ ψfdefined by the equality∫

E
f(x)ν(dx) = (ψf , ν) ∀h ∈MH

was one-to-one (here lf is a linear continuous functional on MB, f ∈ F (MB)).

Proof : Sufficiency. Since for each f ∈ F (MH) and µh ∈MH the integral∫
E

f(x)µh(dx)

is defined, then there exists a countable subset Hf in H for which∫
E

f(x)µh(dx) = 0, if h /∈ Hf ;
∑
h∈Hf

∫
E

|f(x)|2µh(dx) <∞

and for any countable subset H̃ ⊂ H and for the measure

ν(C) =
∑
h∈H̃

∫
C

gh(x)µh(dx)

we have ∫
E

f(x)ν(dx) =
∑

h∈Hf∩H̃

∫
E

f(x)gh(x)µh(dx).

Since the correspondence f ←→ ψf is defined by the equality∫
E

f(x)ν(dx) = (ψf , ν), ν ∈MH

is one-to-one, according to Theorem 2 from [15], we conclude that the statistical
structure {E,S1, µh, h ∈ H} is weakly separable. Consequently, there is a family
of S1-measurable sets Xh, h ∈ H, for which the following condition is satisfied:

µh1
(Xh2

) =

{
1, if h1 = h2;

0, if h1 ̸= h2.

Recall now the following lemmas.

Lemma 3.6: (see [12]). Let (E, ϱ) be a complete separable metric space and let
µ be a Borel probability measure defined on (E,B(E)). Let {Xh}h∈H , cardH ≤ c,
be a family of B(E)-measurable sets and µ(Xh) = 0 ∀h ∈ H. Then in the theory
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(ZFC) & (MA):

µ∗(∪h∈HXh) = 0.

Lemma 3.7: (see [4]). Let (E, ϱ) be a complete metric space, whose topological
weights are not measurable in a wider sense than in the theory (ZFC) & (MA)
and let µ be an arbitrary Borel measure defined on (E,B(E)). Then there exists a
closed separable subspace E(µ) ⊂ E, such that µ(E(µ)) = 1 and µ(E \ E(µ)) = 0.

Then we easily ascertain that the following is true

(∀h) (∀{Xh}h∈H) ((cardH ≤ c)&∀h (h ∈ H =⇒ µ(Xh) = 0)) =⇒

=⇒ µ∗(∪h∈HXh) = µ∗[(∪h∈HXh) ∩ E(µ)] + µ∗[(∪h∈HXh) ∩ (E \ E(µ))] = 0.

Further, we represent {µh, h ∈ H}, as an inductive sequence {µh < ω1}, where
ω1 denotes the first ordinal number of the power of the set H.
We define ω1 sequence Zh of parts of the space E such that the following relations

hold:
1) Zh is a Borel subset of E ∀h < ω1;
2) Zh ⊂ Xh ∀h < ω1;
3) Zh ∩ Zh′ = ∅ for all h < ω1, h

′
< ω1, h ̸= h

′
;

4) µh(Zh) = 1 ∀h < ω1.
Suppose that Zh0

= Xh0
. Suppose further that the partial sequence {Zh′}h′<h is

already defined for h < ω1. It is clear that µ
∗(∪h′<hZh′ ) = 0 (see [11]). Thus there

exists a Borel subset Yh of the space E such that the following relations are valid:

∪h′<hZh′ ⊂ Yh and µ∗(Yh) = 0.

Assuming that Zh = Xh \ Yh, we construct the ω1 sequence {Zh}h<ω1
of dis-

junctive measurable subsets of the space E. Therefore µh(Zh) = 1 for all h < ω1

and the statistical structure {E,S1, µh, h ∈ H}, cardH = c, is strongly separable
because there exists a family of elements of the σ-algebra S1 = ∩h∈Hdom(µh) such
that:
1) µh(Zh) = 1 ∀h ∈ H;
2) Zh ∩ Zh′ = ∅ for all different h and h

′
from H;

3) ∪h∈HZh = E.
For x ∈ E, we put δ(x) = h, where h is the unique hypothesis from the set H for

which x ∈ Zh. The existence of such a unique hypothesis from H can be proved
using conditions 2), 3).
Now let Y ∈ B(H). Then {x : δ(x) ∈ Y } = ∪h∈Y Zh. We must show that
{x : δ(x) ∈ Y } ∈ dom(µh) for each h ∈ H.
If h0 ∈ Y, then

{x : δ(x) ∈ Y } = ∪h∈Y Zh = Zh0
∪ (∪h∈Y \{h0}Zh).

On the one hand, from the validity of the condition 1), 2), 3) it follows that

Zh0
∈ S1 = ∩h∈Hdom(µh) ⊆ dom(µh0

).



106 Bulletin of TICMI

On the other hand, the validity of the condition

∪h∈Y \{h0}Zh ⊆ (E \ Zh0
)

implies that

µh0
(∪h∈Y \{h0}Zh) = 0.

The last equality yields ∪h∈Y \{h0}Zh ∈ dom(µh0
).

Since dom(µh0
) is a σ-algebra, we deduce that

{x : δ(x) ∈ Y } = Zh0
∪ (∪h∈Y \{h0}Zh) ∈ dom(µh0

).

If h0 /∈ Y, then

{x : δ(x) ∈ Y } = ∪h∈Y Zh ⊆ (E \ Zh0
)

and we conclude that µh0
{x : δ(x) ∈ Y } = 0. The last relation implies that

{x : δ(x) ∈ Y } ∈ dom(µh0
).

Thus we have shown the validity of the relation

{x : δ(x) ∈ Y } ∈ dom(µh0
)

for an arbitrary h0 ∈ H. Hence,

{x : δ(x) ∈ Y } ∈ ∩h∈Hdom(µh) = S1.

We have shown that the map δ : (E,S1) −→ (H,B(H)) is a measurable map.
Since B(H) contains all singletons of H we ascertain that

µh({x : δ(x) = h}) = µh(Zh) = 1, ∀h ∈ H.

Necessity. The existence of a consistent criterion for hypotheses testing δ :
(E,S1) −→ (H,B(H)) implies that µh({x : δ(x) = h}) = 1 ∀h ∈ H. Setting
Xh = {x : δ(x) = h} for h ∈ H we get:
1) µh(Xh) = 1 ∀h ∈ H;
2) Xh1

∩Xh2
= ∅ for all different parameters h1 and h2 from H;

3) ∪h∈HXh = {x : δ(x) ∈ H} = E.
Therefore the statistical structure {E,S1, µh, h ∈ H} is strongly separable, hence,

there exist S1-measurable sets Xh (h ∈ H), such that

µh(Xh′ ) =

{
1, if h = h

′
;

0, if h ̸= h
′
.
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We associate the measure µhi
with the function IXhi

(x) ∈ F (MH). Then we have∫
E

IXhi
(x)µhi

(dx) =

∫
E

IXhi
(x)IXhi

(x)µhi
(dx) = (µhi

, µhi
).

If we associate now the measure µh1
∈ H2(µhi

) with the function fh1
(x) =

f1(x)IXh1
(x) ∈ F (MH) then for all µh2

∈MH(µhi
) we can write∫

E

fh1
(x)µh2

(dx) =

∫
E

f1(x)IXh1
(x)µh2

(dx) =

∫
E

f1(x)f2(x)IXh1
(x)µhi

(dx)

=

∫
E

fh1
(x)f2(x)µhi

(dx) = (µh1
, µh2

),

where f2(x) = µh2
(dx)/µhi

(dx)
Further, we associate the measure

ν(C) =
∑

i∈I1⊂H

∫
C

gi(x)µhi
(dx) ∈MH

with the function

f(x) =
∑
i∈I1

gi(x)IXhi
(x) ∈ F (MB).

Then for the measure

ν1(C) =
∑

i∈I2⊂H

∫
C

g1i (x)µhi
(dx) ∈MH

we have ∫
E

f(x)ν1(dx) =

∫
E

∑
i∈I1∩I2

gi(x)g
1
i (x)µhi

(dx)

=
∑

i∈I1∩I2

∫
E

gi(x)g
1
i (x)µhi

(dx) = (ν, ν1).

It follows from the proved theorem that the above correspondence connects some
function f ∈ F (MB) into correspondence with each linear continuous functional lf .
If in F (MB) we identify functions that coincide with respect to measures {µh, h ∈
H}, then the correspondence will be bijective. �
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