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MORE ON THE SHIFT DYNAMICS–INDECOMPOSABLE

CONTINUA CONNECTION

by Judy Kennedy

Abstract. If X is a compact, locally connected metric space, f : X → X
is a homeomorphism, and Q is a closed neighborhood of X, then Z = {p ∈
Q : fn(p) ∈ Q for all integers n} is the permanent set for f on Q, and
E = {p ∈ Q : there is some positive integer Np such that if n ≥ Np, then
f−n(p) ∈ Q} is the entrainment set. In a previous paper, we began a study
of the entrainment sets of topological horseshoes, and showed that, under
mild conditions, the closure of the entrainment set for a topological horse-
shoe is “indecomposable–like” in that it admits a continuous map onto an
indecomposable continuum. Furthermore, if f denotes the map associated
with the topological horseshoe and K denotes the closure of the entrain-
ment set for the horseshoe, then there is a map f̃ on the indecomposable
continuum, denoted K̃, and a map h : K → K̃ such that h ◦ f̃ = f ◦ h,
i.e., the dynamics of f on K factors over the dynamics of f̃ on K̃. Here
we continue this study of the structure of entrainment sets of topological
horseshoes and investigate the presence of invariant indecomposable con-
tinua contained in the closure of entrainment sets.

1. Introduction. In a previous paper [5], we began a study of the entrain-
ment sets of topological horseshoes, and showed that, under mild conditions,
the closure of the entrainment set for a topological horseshoe is “indecompo-
sable–like” in that it admits a continuous map onto an indecomposable con-
tinuum. Furthermore, if f denotes the map associated with the topological
horseshoe and K denotes the closure of the entrainment set for the horseshoe,
then there is a map f̃ on the indecomposable continuum, denoted K̃, and a
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map h : K → K̃ such that h ◦ f̃ = f ◦ h, i.e., the dynamics of f on K factors
over the dynamics of f̃ on K̃. Here we continue this study of the structure
of entrainment sets of topological horseshoes and investigate the presence of
invariant indecomposable continua contained in the closure of entrainment sets.

A picture such as Figure 1 is often called a topological horseshoe. The figure
shows the image of the quadrilateral Q under the action of a diffeomorphism
F on the plane, with F being the Poincaré return map obtained from a system
of differential equations modelling a fluid flow. Fluid flows (mostly) from left
to right in the picture, with a sequence of cylinder obstructions causing the
development of topological horseshoes between each pair of cylinders. The term
“topological horseshoe” is often used rather loosely in the literature. Here, to
make the term mathematically precise, we define it as follows: Suppose X is
a metric space, f : X → X is continuous, Q is a compact subset of X, and A
is a closed subset of Q such that f(A) = A, and f | A factors over the shift on
M symbols (with M ≥ 2). Then we say that f admits a topological horseshoe.

We might ask what can be rigorously concluded from a situation such as
that depicted in Figure 1 about the points Z := {p ∈ Q : Fn(p) ∈ Q for all
integers n}, and the points E := {p ∈ Q : there is some positive integer Np

such that if n ≥ Np, then F−n(p) ∈ Q}. We call the set Z the permanent set of
F on Q, and E the entrainment set. (See Figures 2, 3, and 4. Figure 2 shows
the permanent set for F , Figure 3 shows the second stage in the development
of the entrainment set, and Figure 4 shows the fully developed entrainment
set.) The presence of a permanent set Z having the property that the F |Q
factors over the shift on M symbols (i.e., F admits a topological horseshoe)
occurs frequently when the image of the set Q “crosses Q” more than once in
a certain way. The set Z has been extensively studied by many authors. Here,
as in [5], we focus on the entrainment set E. In the literature it is usually
assumed that F is a diffeomorphism and that F is hyperbolic on Q, and in
this case we say the example is a Smale horseshoe. It is often easy to verify
that F is a diffeomorphism, but it is far more difficult to verify hyperbolicity
in a situation such as we have here. Often hyperbolicity is not present.

We are interested in entrainment sets of topological horseshoes for several
reasons:

(i) The dynamics on the permanent set in a neighborhood of the topolog-
ical horseshoe are described “in the large” at least by the dynamics of
the shift on M symbols. (See [15], [16], [11], [9], [10], [8], [2], [3], [13],
and [18].) In particular, although we know there are periodic sets of all
periods in the permanent set, we don’t know, without further informa-
tion about the space and the homeomorphism involved, if there are any
periodic orbits in those sets. In addition to the usual M–shift dynamics
inside the set, interesting behavior and topology can happen outside Q
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in the entrainment set associated with Q as well. For the Smale horse-
shoe map the entrainment set consists entirely of points attracted to a
fixed point outside Q, but for other examples (even those arising natu-
rally as a result of a model) the entrainment set is much more interesting
and complicated, and can contain infinitely many more horseshoes. (See
Figure 4.)

(ii) The entrainment sets for a topological horseshoe are physically observ-
able in real experiments in the sense that they can be observed forming.
(See [17].) Of course, no experiment can reveal the infinitely fine struc-
ture of an entrainment set. Nonetheless, the entrainment set can be
thought of as the result of pouring dye into a region and then watching
it evolve. The entrainment set is the limit as time goes to ∞ of the theo-
retical position of the dye. Thus, it may well be possible in experiments
to measure and compute the entrainment set’s fractal dimension, Lya-
punov exponents, Hausdorff dimension, etc. (See [4].) Cantor sets, or
quotient Cantor sets and periodic points, on the other hand, are nearly
impossible to observe forming in a real, as opposed to a simulated, flow.

(iii) Similar indecomposable sets often appear as the “strange” sets asso-
ciated with nonlinear dynamics (e.g., strange attractors, fractal basin
boundaries, and closures of unstable and stable manifolds of chaotic
saddles, as well as entrainment sets), and, when present, they provide a
useful characterization of these phenomena. (See [16].)

Why would we say that a continuum that has continuous image an inde-
composable continuum is “indecomposable–like”? (Definitions of terms used
are given in the next section.) If X is a locally connected continuum, its
image must also be locally connected. Thus, a continuum with an indecom-
posable image cannot be locally connected; in fact, the local connectedness
must somehow be “squeezed out” by the associated continuous map. The
locally connected part of the topology on X is information lost by the contin-
uous map. This, however, means that it is possible to squeeze out the local
connectedness via a continuous map. However, while squeezing out the the
local connectedness, some of the interesting topology of the entrainment set
may also be squeezed out. The boundary of the entrainment set is likely to
retain more of the interesting topology of the entrainment set. Thus, having
the boundary of the entrainment set, or even an invariant closed subset of that
boundary, in a space be indecomposable is an even greater indicator of the
presence of a “certain amount of indecomposability” in the set; in particular,
it means that the boundary of the entrainment set is quite “fractal” in nature.
If the boundary of the entrainment set is indecomposable, then any open set
about a boundary point whose closure does not contain the entrainment set
would intersect the boundary in an uncountable number of components.
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Marcy Barge proved the following theorem in [1]. (It is slightly re-worded
here.)

Theorem 1.1. Barge’s Theorem. Let F be a C1 diffeomorphism on
an m–manifold M with p a saddle fixed point of F , one-dimensional unstable
manifold W u(p), and stable manifold W s(p). In addition, suppose that

(A1) the closure K of a branch W ′ of the unstable manifold W u(p) is
compact;

(A2) there is an arc α in W ′ such that α ∩ W s(p) 6= ∅ but α is not
contained in W s(p);

(A3) there is an essential m− 1 sphere, denoted by S, contained in
W s(p)\{p} such that S ∩W ′ = ∅.

Then K is an indecomposable continuum.

The results in this paper are related to Barge’s Theorem. When the stable
and unstable manifolds of a saddle point intersect transversely, there must be,
for some n, an invariant Cantor set C for Fn containing the saddle point p on
which the dynamics are those of the two–shift. (See [14] for why this is so.)
Barge requires hyperbolicity for the fixed point p and a smooth diffeomorphism
on a manifold for his results, but he does not require the lockout property
for any neighborhood of his Cantor set, nor that any neighborhood of C be
isolated. Our results hold for compact locally connected metric spaces and
require no differentiability assumptions, but do require the lockout property
and an isolated set.

An example of a dynamical system to which both Barge’s Theorem and
results given here apply is the classical Smale horseshoe. (See [14] for a com-
plete discussion.) The rectangle associated with the Smale horseshoe contains
the invariant Cantor set Λ in its interior, has the lockout property, and also
isolates Λ. Hence, by our results, the closure of the entrainment set of Λ is an
indecomposable continuum. (This particular continuum, by the way, is well
known to continuum theorists, and has been studied since 1920 or so. It is
often called a Knaster bucket handle.) On the other hand, one branch of the
unstable manifold of p intersects the stable manifold of p in a point q 6= p. The
other assumptions of Barge’s Theorem are also satisfied. Thus, it follows from
Barge’s theorem that the closure of this branch of the unstable manifold of p is
an indecomposable continuum. Since the closure of this branch of the unstable
manifold contains the entire unstable manifold of p and also contains the entire
unstable set of Λ, Barge’s theorem also yields the fact that the closure of the
entrainment set of Λ is an indecomposable continuum.

2. Notation, terminology, and background. If X is a metric space,
and A is a subset of X, then we use the notation A◦, A, and ∂A to denote
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Figure 1. The figure, from a study of a model of fluid flow past
a sequence of cylinders [15], shows a carefully chosen quadrilat-
eral Q, and a horseshoe. The model is studied via its Poincaré
map F , a plane diffeomorphism. Numerical evidence strongly
suggests that F is hyperbolic on Q, but this would be difficult
to verify rigorously. The cylinder obstacles are shaded in the
figure. The “horseshoe” is the image of the quadrilateral Q;
vertices of the quadrilateral Q are mapped to the crosses indi-
cated.

the interior, closure, and boundary of A in X, respectively. If Y is a sub-
space of X (with the inherited topology), A ⊂ Y , and we wish to discuss
the interior, closure, and boundary of A in the subspace Y , we use the no-
tation IntY (A), ClY (A), and BdyY (A), respectively, to avoid confusion. The
symbols Z, N, and Ñ are used to denote the integers, the positive integers,
and the nonnegative integers, respectively. We use d to denote a metric on
X (which is compatible with its topology), unless this leads to confusion.
If ε > 0 and x ∈ X, let Dε(x) = {y ∈ X : d(x, y) < ε}. If ε > 0 and
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Figure 2. The permanent set in the quadrilateral Q for the
fluid flow model is depicted.

A, B ⊂ X, let Dε(A) = {y ∈ X : d(x, y) < ε for some x ∈ A}, and let
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Suppose M is a positive integer greater than 1. Then
∑

M denotes the set
of all bi-infinite sequences s = (. . . s−1 • s0s1 . . .) such that si ∈ {1, 2, . . . ,M}.
If for s = (. . . s−1 • s0s1 . . .) and t = (. . . t−1 • t0t1 . . .) in

∑
M , we define

d(s, t) =
∞∑

i=−∞

|si−ti|
2|i|

, then d is a distance function on
∑

M . The topological

space
∑

M generated by the metric function d is a Cantor set. A natural
homeomorphism on the space

∑
M is the shift homeomorphism σ defined by

σ(s) = σ(. . . s−1•s0s1 . . .) = (. . . s−1s0•s1 . . .) = s′ for s = (. . . s−1•s0s1 . . .) ∈∑
M , i.e., σ(s) = s′, where s′i = si+1. More specifically, the map σ is called the

shift on M symbols.
A continuum is a compact, connected metric space. A subset of a contin-

uum which is itself a continuum is a subcontinuum. The continuum C ′ is a
proper subcontinuum of the continuum C if C ′ ⊂ C, but C ′ 6= C. A continuum
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Figure 3. The image of Q under the second iterate of the fluid
flow map is shown. Note that this image now wraps completely
around the downstream cylinder.

is indecomposable if it is not the union of two (necessarily overlapping) proper
subcontinua. Equivalently, a continuum is indecomposable if and only if every
proper subcontinuum has empty interior (relative to the continuum). If x is
a point of the continuum X, then the composant Cps(x) in X containing x
is the set of all points y in X such that there is a proper subcontinuum in
X that contains both x and y. The collection C(X) of all composants of an
indecomposable continuum X partitions X into c many mutually disjoint, first
category, connected Fσ–sets. (For more information and references concerning
indecomposable continua and how they arise in dynamical systems, see [6], [7],
and [12].)

A space is irreducible between the points p and q (closed sets A and B)
provided that it is connected and the points p and q (closed sets A and B)
cannot be joined by any closed connected set which is different from the whole
space. If X is a continuum possessing three distinct points x0, x1, and x2 such
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Figure 4. The figure shows the fully developed entrainment
set. This entrainment set is much more complicated than that
for the Smale horseshoe. Its closure contains an infinite col-
lection of nested indecomposable continua (when the plane is
compactified). Note how the entrainment set “wraps” around
downstream horseshoes and downstream cylinders, making a
quite topologically–complicated set.

that X is irreducible between each pair of those points, then X is indecom-
posable. In fact, if P is a subset of an indecomposable continuum with the
property that no two points of P are contained in a single composant of P,
then P must be irreducible between each pair of distinct points of P. Thus,
irreducibility and indecomposability are related concepts.

A different type of irreducibility plays a big role in our results here: Suppose
X and Y are continua, and f is a continuous map from X onto Y . If C is
a proper subcontinuum of X implies f(C) 6= Y , then X is irreducible with
respect to f . We need the following theorem from Kuratowski’s book:
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Theorem 2.1. [12, p.208] If X is a continuum and f is a continuous
mapping from X onto the indecomposable continuum Y , then X contains an
indecomposable continuum. If X is irreducible with respect to f , then X is
indecomposable.

If X is a space and A is a subset of X, then ∂A = A ∩ (X\A). If B ⊂ A,
then B is a boundary set in A if ClA(A\B) = A. Another needed theorem
from Kuratowski’s book follows. (The theorem in Kuratowski’s book is more
general; it is re-worded here to reflect our situation.)

Theorem 2.2. [12, p. 213] Every continuum containing a composant which
is a boundary set is indecomposable. Consequently, a continuum is indecom-
posable if and only if it contains a composant which is a boundary set.

Suppose X is a compact metric space, and F is a partition of X into
closed subsets having the property that if F1, F2, . . . is a sequence of members
of F , F ∈ F , x1, x2, . . . is a sequence of points with xi ∈ Fi converging to the
point x ∈ F , then whenever yp1 , yp2 , . . . is a sequence of points with ypi ∈ Fpi

converging to the point y, then y must also be an element of F . Then F is an
upper semicontinuous decomposition of X, and F is a compact metric space
when F is endowed with the quotient topology : a basis for this topology is
the collection B := {u : u is open in X and u is a union of members of F}.
The map p : X → F defined by p(x) = Cx for x ∈ X, where Cx denotes that
member of F that contains x is called the projection of X to F . The projection
map is continuous, closed and onto. If F is a Cantor set, we say X is a quotient
Cantor set ; if F is an indecomposable continuum, we say that X is a quotient
indecomposable continuum.

Another topology on the collection of closed subsets of a compact metric
space that we need is the Vietoris topology. For X a compact metric space,
2X = {C : C is a closed subset of X}. Define ν(A,B) = min{inf{ε : B ⊂
Dε(A)}, inf{ε : A ⊂ Dε(B)}} for A,B ∈ 2X . Then ν is a metric on 2X and
2X is a compact, metric space. The metric ν is called the Hausdorff metric
on 2X .

When two topological spaces X and Y are homeomorphic, they have the
same topological properties. If there is a continuous map from X onto Y ,
then, since some information may be lost, the topologies are related, but not
necessarily equivalent. Analogously, if f : X → X and g : Y → Y are two
dynamical systems, then

(i) f is conjugate to g if there is a homeomorphism h : X → Y such that
g ◦ h = h ◦ f ; and

(ii) f factors over g if there is a continuous map h : X → Y such that
g ◦ h = h ◦ f .
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If f and g are conjugate, then the dynamics on the two systems are equivalent.
If f factors over g, then information may be lost because h is only continuous,
and the dynamics on the two systems are not necessarily equivalent, although
they are related.

If F : X → X is a homeomorphism, the closed set B satisfies the lockout
property if when q ∈ B and F k(q) /∈ B for some k > 0, then further iterates
of q remain outside B, i.e., Fn(q) /∈ B if n ≥ k. A closed, invariant set A is
isolated if there exists a neighborhood Q of A in X such that for each x ∈ Q\A,
there is some integer n such that Fn(x) /∈ Q.

We defined permanent sets and entrainment sets for systems defined on the
plane (or a 2–manifold) in the introduction, but those notions can be extended
to any dynamical system. If f : X → X is a continuous map on a metric space
X and Q is a closed subset of X, then the set Z := {p ∈ Q : fn(p) ∈ Q for
all integers n} is the permanent set of f on Q, and the set E := {p ∈ Q :
there is some positive integer Np such that if n ≥ Np, then f−n(p) ∈ Q} is the
entrainment set of f on Q.

3. Needed prior results. Proofs of the following lemmas and theorems
are given in [5]. Some of the lemmas leading up to the two main theorems
are included here because they reveal important aspects of the structure of the
entrainment set, aspects needed for the next section. Note, in particular, that
the entrainment set of Q does not depend on the choice of Q. It is necessary
to choose a Q that is an isolating neighborhood of A, that has the lockout
property, and satisfies the technical condition that F (Q) ∩ F−1(Q) ⊂ Q◦, but
any such Q will do.

Definition. Suppose B is a closed subset of the compact metric space X,
and F : X → X is a homeomorphism. Let Bj = ∪i≥jF

i(B), Bj = ∩i≥jF
i(B),

B∞ = ∩∞j=0B
j , and B∞ = ∪∞j=0Bj .

Lemma 3.1. Suppose X̃ is a compact, locally connected metric space, F̃ :
X̃ → X̃ is a homeomorphism, Ã is a closed invariant subset of X̃ such that
F̃ |Ã is conjugate to the shift on M symbols, the closed neighborhood Q̃ of
Ã has the lockout property, and Ã is isolated in Q̃. Then the closure L of
the entrainment set for the permanent set Ã in Q̃ is an invariant continuum
in X̃ which contains Ã. If U is an open subset of Q̃ that contains Ã, then
the entrainment set EU of U is the entrainment set Ẽ of Q̃. Furthermore,
L = Q̃∞ = U

∞ = U∞ = Q̃∞, and the sequence U, F̃ (U), F̃ 2(U), . . . converges
(in the Hausdorff metric) on 2X to L.
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Notation. For i ∈ Ñ and x ∈ ∩∞j=iF̃
j(Q̃), let PRx,i denote the component

of ∩∞j=iF̃
j(Q̃) that contains x, and let PRx,∞ = ∪∞j=0PRx,j . Since PRx,m ⊂

PRx,m+1 ⊂ · · · , PRx,∞ is connected. Moreover, if x ∈ Q̃0, F̃ (PRx,0) =
PRF̃ (x),1, or more generally, for x ∈ Q̃j , F̃n(PRx,j) = PRF̃ n(x),n+j for n > j.

Let PR = {PRx,∞ : x ∈ Q̃0}. The collection PR partitions the entrainment
set of Q̃ into an uncountable collection of mutually disjoint connected sets,
and F̃ respects the partition. Hence, PRx,∞ is the member of the equivalence
class PR that contains x. Since each z ∈ Ẽ is contained in some PRz′,∞,
∪PR = ∪∞i=0Q̃i = Ẽ.

Lemma 3.2. Suppose X̃ is a compact, locally connected metric space, F̃ :
X̃ → X̃ is a homeomorphism, Ã is a closed invariant subset of X̃ such that
F̃ |Ã is conjugate to the shift on M symbols, the closed neighborhood Q̃ of Ã

has the lockout property, and Ã is isolated in Q̃. If Ẽ denotes the entrainment
set of Ã in Q̃, then Ẽ is connected. If z and z′ are points of Ã, z′ ∈ PRz,∞. If
U is an open set such that Ã ⊂ U ⊂ U ⊂ Q̃ and x ∈ Ẽ∩U and z ∈ Ã, then the
component C of Ẽ ∩ U that contains x intersects PRz,∞ and the component
C ′ of Ẽ ∩ U that contains z intersects PRx,∞.

Theorem 3.3. Suppose X̃ is a compact, locally connected metric space,
F̃ : X̃ → X̃ is a homeomorphism, Ã is a closed invariant subset of X̃ such
that F̃ |Ã is conjugate to the shift on M symbols, the closed neighborhood Q̃ of
Ã has the lockout property, and Ã is isolated in Q̃. Suppose also that F (Q̃) ∩
F−1(Q̃) ⊂ Q̃◦. Then the closure L of the entrainment set for the permanent set
Ã in Q̃ is an invariant continuum, and there is an indecomposable continuum
L̃ containing

∑
M such that

(a) there is a homeomorphism g from L̃ onto L̃ extending the M–shift on∑
M ,

(b) there is a continuous map p̃ from L onto L̃ extending h̃ : Ã →
∑

M ,
and

(c) (F̃ |L) ◦ p̃ = p̃ ◦ g.

Remark 3.1. In Theorem 3.3, if PRz,∞ ∈ PR, p̃(PRz,∞) is dense in a
composant of L̃. If PRz,∞ and PRz′,∞ are different members of PR, PRz,∞
∩PRz′,∞ 6= ∅.

Up to this point, the prior results have addressed only the case where F̃ |Ã
is conjugate to the shift on M symbols. The next lemma shows that a version
of the previous theorem holds for the case where F |A factors over the shift on
M symbols.
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Lemma 3.4. Suppose X is a locally connected, compact metric space, A is
a quotient Cantor set in X, F : X → X is a homeomorphism with F (A) = A,
and F |A factors over the M–shift σ :

∑
M →

∑
M via the continuous map

h : A →
∑

M . There is an upper semicontinuous decomposition X̃ of X with
associated projection map π : X → X̃ such that

(1) X̃ is a locally connected, compact metric space,
(2) Ã := π(A) is a Cantor set in X̃, and
(3) F : X → X preserves the decomposition and therefore induces a home-

omorphism F̃ : X̃ → X̃ such that F̃ (Ã) = Ã, and F̃ |Ã is conjugate to
the M–shift σ :

∑
M →

∑
M .

Theorem 3.5. Suppose X is a compact, locally connected metric space,
F : X → X is a homeomorphism, A is a closed invariant subset of X such that
F |A factors over the shift on M symbols via the continuous map h : A →

∑
M ,

the closed neighborhood Q of A has the lockout property, and A is isolated
in Q. Suppose also that F (Q) ∩ F−1(Q) ⊂ Q◦. Then the closure K of the
entrainment set for the permanent set A in Q is an invariant closed set, and
there is an indecomposable continuum K̃ containing

∑
M such that

(a) there is a homeomorphism f̃ from K̃ onto K̃ extending the M–shift
on

∑
M ,

(b) there is a continuous map p from K onto K̃ extending h : A →
∑

M ,
and

(c) F |K ◦ p = p ◦ f̃ .

Notation. Now that F | A factors over the shift rather than being con-
jugate to the shift, the members of the equivalence class R which corresponds
to the equivalence class PR for the conjugate-to-the-shift case need not be
connected. We use the upper semicontinuous decomposition and projection
map π from Lemma 3.4 to define the new equivalence classes: For i ∈ Ñ and
x ∈ ∩∞j=iF

j(Q), let Rx,i = π−1(PRπ(x),i), and let Rx,∞ = π−1(PRπ(x),∞) =
∪∞j=0π

−1(PRπ(x),j). Note that Rx,m ⊂ Rx,m+1 ⊂ · · · . Moreover, if x ∈ Q0,
F (Rx,0) = RF (x),1, or more generally, for x ∈ Qj , Fn(Rx,j) = RF n(x),n+j for
n > j. Let R = {Rx,∞ : x ∈ Q0}. The collection R partitions the entrainment
set of Q into an uncountable collection of mutually disjoint sets, and F respects
the partition. Hence, Rx,∞ is the member of the equivalence class R that con-
tains x. Since each z ∈ E is contained in some Rz′,∞, ∪R = ∪∞i=0Qi = E.

Remark 3.2. In Theorem 3.5, if Rz,∞ ∈ R, p(Rz,∞) is dense in a com-
posant of K̃. If Rz,∞ and Rz′,∞ are different members of R, Rz,∞ ∩ Rz′,∞ 6= ∅.

4. The results. We use the notation and terminology of the previous
section. Theorem 3.5 guarantees that the closure of the entrainment set E of
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A is an invariant quotient indecomposable continuum. However, E need not
be a continuum.

The following results have been used implicitly, or proved for special cases,
in a number of papers of the author, including the one that precedes this one.
We prove them here for the general case. These results may appear elsewhere
in the literature, but we don’t know where. For completeness, we include them
here.

Lemma 4.1. Suppose X is a locally compact, separable, connected metric
space and X is indecomposable, but not compact. Then there is a sequence
Q0, Q1, . . . of compact subsets of X such that Qi ⊂ Q◦

i+1, X = ∪∞i=0Qi, and
X 6= ∪n

i=0Qi for any n.

Proof. Since X is second countable and locally compact, but not com-
pact, it has a countable basis B = {b1, b2, . . .} of open sets such that bi is
compact for each i, and no finite subcollection of B covers X. We may assume
that each bi is nonempty. Let Q0 = b1. Let B′1 denote the collection of all
members of B \{b1} that intersect b1. Since Q0 is compact, some finite sub-
collection B1 of B′1 covers Q0. Let Q1 = {b2} ∪ (∪B1). Then Q0 ⊂ Q◦

1. We
continue this process: Since Q1 is compact, some finite subcollection B2 of B′2,
the collection of all members of B\({b1, b2} ∪B1) that intersect Q1, covers Q1.
Let Q2 = {b3} ∪ (∪B2). Then, by construction, Q2 ⊂ Q◦

1.
At each step, the set Qn will be chosen so that Qn ⊂ Q◦

n−1. Also, bn+1 ⊂
Qn. Then X = ∪∞i=0Qi, and X 6= ∪n

i=0Qi for any n.

Suppose X is a space. If x ∈ X, the continuum component of x is the
union of all continua contained in X that contain x. in Qj .

Theorem 4.2. Suppose X is a locally compact, separable, connected metric
space and X is indecomposable, but not compact. Suppose further that each
continuum component of a point in X is dense in X. Then if X∗ is a metric
compactification of X, X∗ is an indecomposable continuum.

Proof. Suppose, to the contrary, that X∗ is not indecomposable. Then
there is a proper subcontinuum H of X∗ that has nonempty interior in X∗.
Since X∗\X is closed and nowhere dense in X∗, H must contain an open set
o such that o is compact, and o ⊂ IntX∗(H).

Suppose Q0, Q1, . . . is a sequence of compact subsets of X such that Qi ⊂
Q◦

i+1, X = ∪∞i=0Qi, and for each n, X 6= ∪n
i=0Qi. Note that Qi ∩ (X∗\X) = ∅

for each i. Choose x0 ∈ X such that x0 /∈ H. For some j1, x ∈ Qj1 and
o ⊂ Q◦

j1
. Since Cx0 is dense in X, there is some y ∈ Cx0 ∩ o. Then there is a

continuum C1 containing x0 and y and contained in Cx0 , and C1 is a subset of
Qj2 for some j2 > j1. Let C2 denote the component of Qj2 containing x0, and
let C3 denote the component of Qj2\o containing x0. Then C3 ⊂ C2 ⊂ Cx0 ,
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and C3 ∩ ∂o 6= ∅. Moreover, C2 is nowhere dense in Qj2 , so there is an open
set u contained in Q◦

j2
such that u ∩ (C2 ∪H) = ∅.

Again, since Cx0 is dense in X, there is some point z ∈ u such that z ∈ Cx0 .
Then there is a continuum C4 containing x0 and z in X. There is some j3 > j2

such that C4 ⊂ Qj3 . Then C4 ⊂ C5, the component of x0 in Qj3 , and if C6

denotes the component of Qj3\u that contains x0, then C6 must intersect ∂u.
Furthermore, C6 contains C2, and C6 is nowhere dense in Qj3 .

There is ε > 0 such that Dε(C6) does not contain o. For each w in
C6\u, there is ε/2 > εw > 0 such that D2εw(w) does not intersect u and
D2εw(w) ⊂ Qj3+1. Let D = ClX(∪{Dεw(w) : w ∈ C6\u}) ⊂ Qj3+1. Sup-
pose that D denotes the upper semicontinuous decomposition of D into its
components. That is, we are considering the space D whose points are the
components of D endowed with the quotient topology. Note that C6 is a
component of D, so C6 ∈ D. Because X is an indecomposable, connected,
completely metrizable space (although it is not complete in X∗), there must
be an uncountable number of continuum components comprising X, and each
of these continuum components is dense in X. Then D must be totally dis-
connected, and is a perfect, compact metric space. Then D is a Cantor set.
Let P : D → D denote the projection map associated with the decomposition.
The map P is continuous and onto. Also, D does not contain o but D∩o 6= ∅,
since C6 ∩ o 6= ∅. There is a closed and open set O of D that contains the
point C6 of D, and does not contain any point of D that is the image of a
component of D that intersects H ∩ ∂D. (Since C6 does not intersect H ∩ ∂D,
there cannot be members of D which do intersect H ∩ ∂D and also contain
points arbitrarily close to a point of C6. Since D is an upper semicontinuous
decomposition of D, this would mean that C6 also contained points of H∩∂D.)
Then P−1(O) is both open and closed relative to D, and C6 ⊂ P−1(O). But
then H = (H ∩ P−1(O)) ∪ (H\P−1(O)), neither of which is empty. Since
P−1(O) is closed in D, it is closed in X and X∗. Since P−1(O) is open in D
and does not intersect H ∩ ∂D, P−1(O) ∩H is open in H, and H\P−1(O) is
closed in H. Then H is not connected. This is a contradiction.

Next, we use the Smale horseshoe to construct several examples that illus-
trate possible properties of E. (See [14, p. 277–281] for a detailed discussion
of this example. Robinson calls the example a geometric horseshoe.) Suppose
D is a stadium-shaped region in the plane, and so that the space is compact,
consider the one-point compactification of the plane, which gives us S2. Let
f : S2 → S2 be a homeomorphism such that f |D is a Smale horseshoe map
(with two or more crossings). Let Λ = ∩∞i=−∞f i(D), let D′ denote the rectangle
contained in the stadium that contains Λ in its interior, and let S = ∩∞i=0f

i(D).
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Then Λ is the Cantor set with M–shift dynamics, and S is the invariant inde-
composable continuum associated with a Smale horseshoe. We refer to it as
the Smale horseshoe continuum.

Example 4.1. For some k > 1, let T = {t1, t2, . . . tk} denote a finite
space endowed with the discrete topology and let β : T → T denote the
homeomorphism defined by β(ti) = ti+1 for 1 ≤ i < k, β(tk) = t1. Then
f × β : S2 × T → S2 × T is a homeomorphism. Furthermore, Λ × T is an
invariant subset of D × T under the action of f × β, and there is a map
h : Λ × T →

∑
M such that h ◦ ((f | Λ) × β) = σ ◦ h. Thus, this dynamical

system satisfies the conditions of Theorem 3.5 (with “X” being S2 × T and
“Q” being D′ × T ). However, the closure of the entrainment set of D′ × T is
S × T , which is disconnected.

Example 4.2. Now consider the previous example, and make one mod-
ification: Choose a fixed point p from Λ, and identify the points (p, ti) for
1 ≤ i ≤ k. Since f × β takes the set {(p, ti)} to itself, a new dynamical system
arises, which again satisfies the conditions of Theorem 3.5. In this case the
closure of the entrainment set is a continuum, but it is not indecomposable.
It is the union of k distinct indecomposable continua intersecting at the point
{(p, ti)}.

Example 4.3. For some k > 1, let T = {t1, t2, . . . tk} denote a finite space
endowed with the discrete topology and let id : T → T denote the identity
homeomorphism on T . For x ∈ Λ, let Ψx = {(x, ti)}. Then M := {Ψx :
x ∈ Λ} ∪ {{z} : z ∈ (S2\Λ) × T} is an upper semicontinuous decomposition
of S2 × T . Furthermore, the homeomorphism f × id on S2 × T respects the
decomposition, so it induces a homeomorphism f̃ on the quotient space M,
which is a compact, locally connected metric space. Let π0 denote the natural
projection from S2 × T onto M. Since π0(Λ × T ) is a copy of Λ, this system
satisfies the conditions of Theorem 3.3 (with “Q” being π0(D′ × T ) and “K”
being π0(S × T )). The closure of the entrainment set here is connected, but
it is not an indecomposable continuum. Again, it is the union of k distinct
indecomposable continua. Each equivalence class Rz,∞ is connected and dense
in K = E = π0(S × T ).

Note that if β : T → T denotes the homeomorphism defined by β(ti) = ti+1 for
1 ≤ i < k, β(tk) = t1, then f×β : S2×T → S2×T is a homeomorphism which
also respects the members of the decomposition M. Thus, f × β also induces
a homeomorphism g : M→M which satisfies the conditions of Theorem 3.3.

Example 4.4. This example is from a talk given by Marcy Barge several
years ago: Choose a composant C from the Smale horseshoe continuum that
contains a fixed point and is not accessible from D\S2. This composant is
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either a folded ray or a folded line. Then “split” along the folded line or folded
ray and insert a canal. If this is done carefully (the canal must get very thin as
one travels down the line in either direction or down the ray, and the resulting
space should still be S2). Denote the modified stadium region (D with the
inserted canal) as D̂, and the modified contained rectangular region (D′ with
the inserted canal) as D̂′. Each x in C has now been replaced by a line segment
lx extending from one side of the canal to the other. The homeomorphism f
can be modified so that a homeomorphism f̂ results and f̂(lx) = f(ly) when
f(x) = y for x ∈ C. Then f̂(D̂) ⊂ D̂, and Λ̂ = ∩∞i=−∞f̂ i(D̂) is an invariant
closed set which factors over

∑
M . (Note that the components of Λ̂ are either

line segments or points.) In this case, the closure of the entrainment set will
have interior in S2.

Example 4.5. Choose a family C of countably many composants from
the Smale horseshoe continuum such that no member of C is accessible from
D\S2, and choose the family C so that f(∪C) = ∪C. Each member of C is
either a folded ray or a folded line. Again split carefully along each composant
of C and insert a canal, doing this so that the resulting new space is still S2.
Modify the example as in the previous example, with modifications necessary
along each split apart composant. The result is a dynamical system satisfying
the conditions of Theorem 3.5. The boundary of each “canal” is equal to the
boundary of any other “canal” in this example is equal to the boundary of all
the canals in this example. Moreover, this boundary is invariant and is a Lakes
of Wada continuum, and it is indecomposable. In this case countably many
members of R have interior relative to S2.

Example 4.6. Let rot : S1 → S1be an irrational rotation of the unit circle.
Then f×rot : S2×S1 → S2×S1 is a homeomorphism. Furthermore, Λ×S1 is
an invariant subset of D′ × S1 under the action of f × rot, and there is a map
h : Λ× S1 →

∑
M such that h ◦ ((f | Λ)× rot) = σ ◦ h. Thus, this dynamical

system satisfies the conditions of Theorem 3.5 (with “X” being S2 × S1 and
“Q” being D′ × S1). Here the closure of the entrainment set of D′ × S1 is
S × S1, which is the product of an indecomposable continuum and the unit
circle. Note that there are no fixed points or other periodic points in this
example, and no invariant indecomposable continua. (Since the product of an
indecomposable continuum (S) with another continuum (S1) is decomposable,
the entrainment set here fails to be indecomposable.)

The closure E of the entrainment set must however contain an indecom-
posable continuum whose image is K̃:

Theorem 4.3. Suppose X is a compact, locally connected metric space,
F : X → X is a homeomorphism, A is a closed invariant subset of X such that
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F |A factors over the shift on M symbols via the continuous map h : A →
∑

M ,
the closed neighborhood Q of A has the lockout property, and A is isolated in
Q. Then the closure K of the entrainment set for the permanent set A in
Q is an invariant closed set and K contains an indecomposable continuum K ′

such that p(K ′) = K̃. (Recall that p is the extension of h : A →
∑

M , and
p : K → K̃.)

Proof. Choose a fixed point q in
∑

M . Then h−1(q) is a closed subset of
A, and there is some component Q′ of Q intersecting h−1(q) such that h(Q′∩A)
contains an open subset of

∑
M . Consider the sequence Q′, F (Q′), F 2(Q′), . . .

of continua in X. Since X is compact, some subsequence Fn1(Q′), Fn2(Q′), . . .
converges (in the Hausdorff metric) to a continuum Q̂ ⊂ K.

Suppose q ∈ o, which is open, and o ⊂ h(Q′∩A) ⊂
∑

M . If ε > 0, there is an
integer N such that if n ≥ N , each point x of

∑
M is less than ε in distance from

σn(o). Then σn1(o), σn2(o), . . . is a sequence of closed sets that converges to∑
M (in the Hausdorff metric). Since h◦Fni(Q′∩A) = σni ◦h(Q′∩A) ⊃ σni(o),

h(Q̂ ∩ A) =
∑

M . It follows that p(Q̂) = K̃ (because not all of the points of∑
m are in the same composant of

∑
m).

Thus, K contains a continuum Q̂ which maps onto K̃. Then it contains a
continuum C irreducible with respect to this property, i.e., C has the property
that F (C) = K̃, but if C ′ is a proper subcontinuum of C, then F (C ′) 6= K̃.
Then by Theorem 2.1, C is an indecomposable continuum.

Note that the indecomposable continuum C in K need not be invariant. (It
is not invariant in Example 4.1.) However, if we add some fairly natural condi-
tions involving irreducibility, there is an invariant indecomposable continuum
in ∂E.

We need to go back to the structure of K first, though. Consider the
collection R = {Rx,∞ : x ∈ Q}, which partitions the entrainment set E.
Each Rx,∞ maps into a composant of K̃ under p, and p(Rx,∞) is dense in
that composant. The collection R is uncountable, and more importantly, so
is PR. The members of R may not be connected, as is the case in Example
4.1, but the members of PR are connected. Form a subcollection R′ of R
as follows: Choose a basis B = {b0, b1, . . .} for K. Let B′ = {bγ1, bγ2, . . .}
denote the subcollection of B that has the property that each bγi intersects
only countably many members of R. (It is possible that B′ = ∅.) For each
bγi ∈ B′, let Rγi = {Rx,∞ : Rx,∞ ∩ bγi 6= ∅}. Then each Rγi is a countable
collection of members ofR. LetR′ = R\(∪∞i=1Rγi). ThenR′ is an uncountable
subcollection of R. Note that it follows from results in the previous section
that ∪R′ must be an invariant closed set, and ∪R′ ⊂ ∂E = ∂K.
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Theorem 4.4. Suppose X is a compact, locally connected metric space,
F : X → X is a homeomorphism, A is a closed invariant subset of X such that
F |A factors over the shift on M symbols via the continuous map h : A →

∑
M ,

the closed neighborhood Q of A has the lockout property, and A is isolated in
Q. (Again, p : K → K̃ is the extension of h : A →

∑
M whose existence is

guaranteed in Theorem 3.5.)

(a) If some member Rz,∞ of R′ is dense in ∪R′, and is connected, then
p(Rz,∞) = K̃ and K ′ := ∪R′ is an invariant indecomposable continuum
in ∂K.

(b) If some member Rz,∞ of R′ is a composant of ∪R′, then K ′ := ∪R′

is an invariant indecomposable continuum in ∂K.
(c) If ∂K is a continuum such that no proper subcontinuum maps onto K̃

under p, then ∂K is an invariant indecomposable continuum.
(d) If h−1(x) is connected for each x ∈

∑
M , then K is a continuum. If,

in addition, no proper subcontinuum of K maps onto K̃, then K is an
indecomposable continuum.

Proof. (a) Note that by the construction of R′, K ′ = K ′\Rz,∞. Hence
Rz,∞ is a boundary set in K ′. Also, Rz,∞ = K ′, which is therefore an invariant
continuum. Also, Rz,∞∩Rx,∞ 6= ∅ for any Rx,∞ ∈ R′. Then p(Rz,∞) intersects
more than one composant of K̃, and p(Rz,∞) = K. Furthermore, since by
construction, no subcontinuum of Rz,∞ maps onto K̃, Rz,∞ is an irreducible
continuum (i.e., no proper subcontinuum of Rz,∞ maps onto K̃). Then by
Theorem 2.1, K ′ is an indecomposable continuum, and it is invariant, and
contained in ∂K.

(b) If Rz,∞ of R′ is a composant of ∪R′, then it is dense in K ′ and con-
nected. The result follows from part (a).

(c) Since F (∂K) = ∂K, it is an invariant continuum. Since it is also
irreducible with respect to p, it follows from Theorem 2.1 that ∂K is indecom-
posable.

(d) If h−1(x) is connected for each x ∈
∑

M , h must be a homeomorphism
from A onto

∑
m, and it follows from the results in Section 3 that K is a

continuum. Since K is irreducible with respect to p, Theorem 2.1 again implies
that K is indecomposable.

5. Questions. Does Marcy Barge’s Theorem hold in higher dimensions?
(Recall that his theorem required a one–dimensional unstable manifold.) Might
it be true that if X is a compact, smooth manifold, F : X → X is a hyperbolic
diffeomorphism, A is a closed invariant subset of X such that F |A is conjugate
to the shift on M symbols, the closed neighborhood Q of A has the lockout
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property, and A is isolated in Q, then the closure of the entrainment set of Q
is an indecomposable continuum?

These questions are interesting, but they will have to wait for a later paper.
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