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A CONSTRUCTION OF TRANSVERSE SUBMANIFOLDS

by J. Szenthe

Abstract. In case of Riemannian manifolds isometric actions admitting
submanifolds which intersect each orbit orthogonally have nice geometric
properties which generalize those of adjoint actions of compact semi-simple
Lie groups as given by their Cartan–Weyl theory [1], [4], [5]. In case of
isometric actions on Lorentz manifolds degenerate orbits may occur and
this fact renders the very definition of orthogonally transverse submani-
folds problematic, since orthogonality then does not imply transversality.
Furthermore, simple examples show that it would be too restrictive to re-
quire that all orbits of an action should be intersected orthogonally by a
single submanifold as in the Riemannian case. For the above reasons, it
seems justified to reconsider the problem in more general affine settings. A
construction is proposed below which in the case of an affine action under
some assumptions yields a set of submanifolds intersecting generic orbits
of the highest dimension transversally. The results thus obtained are then
applied to isometric actions on Lorentz manifolds.

1. Some general facts.
Definitions. Let M be a smooth manifold and Φ : G×M → M effective

smooth action of a connected Lie group G. Elements of the Lie algebra g
of G will be identified with the corresponding infinitesimal generators of Φ.
Accordingly, if X ∈ g, then

Z(X) = { z ∈ M | X(z) = 0z }
is called the zero set of X. Moreover, if h < g is an arbitrary subalgebra, then
the closed set

Z(h) = ∩{ Z(X) | X ∈ h }
is called the zero set of the subalgebra. If z ∈ M , then by the isotropy subalgebra
of the action at z the subalgebra

gz = { X ∈ g | X(z) = 0z }
is meant. Accordingly, if h < g is an arbitrary subalgebra, then

I(h) = { z ∈ M | gz = h }
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is called the isotropy set of the subalgebra h, which is non-empty if and only if h
is an isotropy subalgebra. The inclusion I(h) ⊂ Z(h) is an obvious consequence
of the preceding definitions.

Proposition 1.1. If h < g is a subalgebra, then I(h) is open in the closed
set Z(h).

Proof. A vector space homomorphism Φz : g → TzM is given for any
z ∈ M by

Φz : g 3 X 7→ X(z) ∈ TzM.

Thus z ∈ I(h) is valid if and only if the kernel of Φz is the subalgebra h. Assume
now that I(h) is not empty, fix a subspace m ⊂ g which is a complement of the
subalgebra h, and fix also a base (X1, . . . , Xk) of the subspace m. If z ∈ I(h),
then (X1(z), . . . , Xk(z)) is a base of of the subspace TzG(z) ⊂ TzM which is
the tangent space of the orbit G(z). But then there is a neighbourhood U of
z in M such that the system (X1(x), . . . , Xk(x)) is independent if x ∈ U and
consequently

dim TzG(z) ≤ dim TxG(x), x ∈ U.

On the other hand, x ∈ U ∩ Z(h) implies that gz < gx holds and therefore

dim TxG(x) ≤ dim TzG(z).

The preceding inequalities imply that the equality

dim TzG(z) = dim TxG(x), x ∈ U ∩ Z(h)

holds. But then the inclusion gz < gx implies that gx = gz for x ∈ U ∩ Z(h).
Therefore U ∩ Z(h) ⊂ I(h).

Definitions. An isotropy subalgebra h < g of the smooth effective action
Φ is said to be minimal if there is no isotropy subalgebra h′ < g of Φ such that

h′
<

6=
h.

An isotropy subalgebra h < g of Φ is said to be of minimal dimension if there
is no isotropy subalgebra h′ < g of Φ with

dim h′ < dim h.

An isotropy subalgebra of minimal dimension is obviously a minimal one.
Isotropy subalgebras h, h′ < g of the action Φ are said to be of the same type
if they are conjugate, i.e. if h′ = Ad(g)h holds with some g ∈ G. If h is an
isotropy subalgebra of Φ, then by its stratum the set S(h) ⊂ M of those points
of M is meant which have isotropy subalgebras of the same type as the given
one h. If G(z) ⊂ M is an orbit of Φ and x = Φ(g, z), then gx = Ad(g)gz,
which means that gz and gx are of the same type. Therefore, the isotropy



299

subalgebras corresponding to points of G(z) form a complete conjugacy class
of subalgebras in g. Consequently,

S(h) = G(I(h)).

For the above reason, two orbits of Φ are said to have the same type if they
yield the same conjugacy class of subalgebras. Therefore the union of those
orbits which have the same type as a given one G(z) is called the stratum of
the orbit G(z) and denoted by S(G(z)). Therefore, if h < g is an isotropy
subalgebra and gz = h for some z ∈ M , then S(h) = S(G(z)).

Proposition 1.2. Let M be a smooth manifold and Φ : G × M → M
effective smooth action of a connected Lie group G. Then the following hold:

1. The union of the strata of minimal dimensional isotropy subalgebras of
Φ is an open set.

2. If all the minimal isotropy subalgebras of Φ are of minimal dimension,
then any orbit of Φ is intersected by the zero set of a minimal dimensional
isotropy subalgebra of Φ.

Proof. Let M ′ be the union of the strata of minimal dimensional isotropy
subalgebras of Φ. Consider h < g an isotropy subalgebra of minimal dimension,
fix a subspace m ⊂ g, which is a complement of h, and also a base (X1, . . . , Xk)
of m. Let now z ∈ S(h), then (X1(z), . . . , Xk(z)) is a base of TzG(z). Moreover,
there is a neighbourhood U ⊂ M of z such that the system (X1(x), . . . , Xk(x))
is independent for x ∈ U and consequently,

dim G(x) ≥ dim G(z)

for x ∈ U . But then dim gx ≤ dim gz for x ∈ U and therefore x ∈ M ′. Thus
U ⊂ S(h) is obtained.

Consider now an arbitrary point x ∈ M and its isotropy subalgebra gx < g.
Then there is a minimal isotropy subalgebra h of Φ with

h < gx.

But then x ∈ Z(h). On the other hand, by assumption 2 above, h is of minimal
dimension.

2. Transverse submanifolds of affine actions.

Definition. Let (M,∇) be an affine manifold where M is a smooth man-
ifold and ∇ a covariant derivation defined on M and

Φ : G×M → M

an affine action on M , i.e. a smooth effective action such that the diffeomor-
phisms Φg : M → M defined by

Φg(z) = Φ(g, z), z ∈ M

are affine transformations with respect to the covariant derivation ∇.
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The following facts play the fundametal role in a subsequent construction:
Let (M,∇) be an affine manifold and Φ : G×M → M an affine action, if h < g
is a subalgebra, then the connected components of the zero set Z(h) are closed
totally geodesic submanifolds of the affine manifold ([2, II. p 61]). Consider
now the isotropy set I(h) ⊂ Z(h); since it is open in Z(h) by Proposition 1.1, it
is also a totally geodesic submanifold of M and therefore it carries a canonical
smooth manifold structure.

Lemma 2.1. If (M,∇) is an affine manifold, Φ : G×M → M affine action
of a connected Lie group G, and h < g an isotropy subalgebra of minimal
dimension, then let

{ hi | i ∈ I }
be the set of those isotropy subalgebras which satisfy the following conditions:

1. h<
6=hi

<
6=g.

2. There is no isotropy subalgebra h′ with h<
6=h′<6=hi for any fixed i ∈ I.

Then the following is true:

Z(h)− I(h) = ∪{ Z(hi) | i ∈ I }.

Proof. If x ∈ Z(h)−I(h) is an arbitrary point, then for the corresponding
isotropy subalgebra gx the following hold:

h
<

6=
gx, Z(gx)

⊂
6=
Z(h).

Then the set of those isotropy subalgebras h̃ which satisfy the condition

h
<

6=
h̃ < gx

is not empty. Let now hi be any minimal element of the above set. Then

x ∈ Z(gx) ⊂ Z(hi)

obviously holds and thus the assertion of the lemma follows.

Corollary. Let Φ : G×M → M be an affine action such that the set of its
isotropy algebra types is countable and the number of the connected components
of the zero set of every isotropy subalgebra is also countable. If h < g is an
isotropy subalgebra of minimal dimension, then the set Z(h) − I(h) has an
empty interior.

Proof. In order to prove the corollary by an indirect argument assume
Z(h)− I(h) has a non-empty interior. Then by the preceding lemma the set

∪{ Z(hi) | i ∈ I }

has a non-empty interior in Z(h). But the set I is countable by assump-
tions above therefore by Baire’s theorem at least one of the sets Z(hi) has
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a non-empty interior in Z(h). But then as the zero sets are totally geodesic
submanifolds, the equality

Z(hi) = Z(h)
follows which yields a contradiction with the definition of hi.

Theorem 2.2. Let (M,∇) be an affine manifold, Φ : G×M → M effective
affine action of a connected Lie group G such that all the minimal isotropy
subalgebras of Φ are of minimal dimension. Then the following holds:

1. Each orbit of Φ is intersected by the zero set Z(h) of some minimal
dimensional isotropy subalgebra h.

2. If the set of isotropy algebra types of Φ is countable and the number of
the connected components of the zero set of every isotropy subalgebra is also
countable, then M ′ the union of maximal dimensional orbits is dense in M .

Proof. The first assertion of the theorem that each orbit is intersected
by the zero set of a minimal dimensional isotropy subalgebra is a direct con-
sequence of Proposition 1.2. Let now H be the set of the minimal dimensional
isotropy subalgebras of Φ. Then by the preceding assertion

M = ∪{G(Z(h)) | h ∈ H } = ∪{ Z(h) | h ∈ H };

in fact, Φ(g,Z(h)) = Z(Ad(g)h) for g ∈ G, h ∈ H and obviously Ad(g)h ∈ H.
In order to prove the second assertion by an indirect argument assume that

M ′ is not dense in M , in other words the open set

M� = M −M ′

is not empty. Then by the equality above there is an h ∈ H such that

M� ∩ Z(h) = (M −M ′) ∩ Z(h)

is a non-empty open subset of the totally geodesic submanifold Z(h). On the
other hand

(M −M ′) ∩ Z(h) ⊂ (M −M ′) ∩ Z(h) = ∪{ Z(hi) | i ∈ I }

holds by Lemma 2.1. But by the preceding corollary the above set has an
empty interior in Z(h) which yields a contradiction.

Proposition 2.3. Let (M,∇) be an affine manifold, Φ : G×M → M affine
action of a connected Lie group G and h an isotropy subalgebra of minimal
dimension such that the following holds:

1. The stratum S(h) ⊂ M of h is an open set.
2. TzI(h) ∩ TzG(z) = {0z} for z ∈ I(h).
Then the following direct sum decomposition

TzM = TzI(h)⊕ TzG(z)

is true at any point z of the isotropy set I(h).
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Proof. For a fixed z ∈ I(h), let H = G0
z < G be the identity component of

the isotropy subgroup Gz. Since gx = gz for x ∈ I(h), therefore G0
x = H for the

identity component of the correponding isotropy subgroup Gx. Consequently,
there is a smooth covering map

ωx : G/H 3 gH 7→ gGx ∈ G/Gx

of the corresponding smooth quotient manifolds. Moreover, there is a canonical
map

χx : G/Gx → G(x) ⊂ M

which is an equivariant bijection onto G(x) and a smooth injective immersion
into M for x ∈ I(h).

Consider now the smooth product manifold I(h)×G/H and also its map
Θ given by

Θ : I(h)×G/H 3 (x, gH) 7→ χx ◦ ωx(gH) ∈ G(I(h)) = S(h) ⊂ M.

The map Θ is related to the action Φ by the following obviously valid equality

Θ(x, gH) = χx(gGx) = Φ(g, x), (x, gH) ∈ I(h)×G/H,

which implies that the image of Θ is the open set S(h). Moreover, the above
equality implies the smoothness of Θ as well: Let π : G → G/H be the
canonical projection and U ⊂ G/H a neighbourhood of gH, then there is a
smooth submanifold Ũ ⊂ G such that g ∈ Ũ and πdŨ is a diffeomorphism
onto U . Then

(x, g′H) 7→ Φ(π−1(g′H), x) = Θ(x, g′H), (x, g′H) ∈ I(h)× U

holds and shows that Θ is smooth.
By the usual decomposition of the tangent space of the product manifold

the definition of Θ yields that

T(x,gH)Θ(T(x,gH)(I(h)×G/H))

= T(x,gH)Θ(T(x,gH)(I(h)× {gH})⊕ T(x,gH)({x} ×G/H))

= T(x,gH)Θ(T(x,gH)(I(h)× {gH}) + T(x,gH)Θ(T(x,gH)({x} ×G/H)

= Tx′I(Ad(g)h) + Tx′G(x),

where x′ = Φ(g, x). Moreover, the restrictions of T(x,gH)Θ to T(x,gH)(I(h) ×
{gH} and T(x,gH)({x}×G/H), respectively, are injective, therefore by assump-
tion 2, the map T(x,gH)Θ is injective as well. Consequently Θ is a smooth im-
mersion. But the image of Θ is S(h) which is open by assumption 1. Therefore
T(x,gH)Θ has to be an isomorphism onto TΘ(x,gH)M at each point. Thus

TzM = TzI(h)⊕ TzG(z)

at every point z ∈ I(h).
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The preceding proposition yields the motivation for the following definition
which is essential for subsequent considerations.

Definition. Let (M,∇) be an affine manifold, Φ : G × M → M affine
action of a connected Lie group G and h an isotropy subalgebra of minimal
dimension such that

TxZ(h) ∩ TxG(x) = {0x}
for x ∈ Z(h). Then the closed totally geodesic submanifold Z(h) is said to be
transverse to the action Φ.

3. The causal character of transverse submanifolds in Lorentz
manifolds.

Definitions. If (M,<,>) is a Lorentz manifold, a smooth submanifold
L ⊂ M is said to be spacelike, timelike or lightlike provided that all its tangents
spaces TxL, x ∈ L, are respectively spacelike, timelike or lightlike. In such
cases the submanifold L is said to have a causal character. Spacelike and
timelike submanifolds are also called semi-Riemann submanifolds ([3, pp 141–
143]).

A slight modification of the standard light cone concept will prove useful
subsequently. Namely, by the light cone Λz at z ∈ M the set

{ v ∈ TzM | < v, v >= 0, v 6= 0z }

is meant ([3, p 56]). By the completed light cone the set

Λc
z = { 0z } ∪ Λz

will be meant subsequently.

Proposition 3.1. Let (M,<,>) be a Lorentz manifold, then any totally
geodesic submanifold L ⊂ M has a causal character.

Proof. The tangent space TxL at a point x ∈ L is spacelike, or timelike
or lightlike according as its intersection TxL∩Λc

x with the completed lightcone
at x is { 0x } or a set including more than one 1–dimensional subspace or
equal to a single 1–dimensional subspace. If z is an arbitrary point of L and
C a piecewise smooth curve in L from x to z, then the parallel translation
along C maps TxL onto TzL since L is totally geodesic; on the other hand, this
parallel translation being an isometry of TxM to TzM maps Λc

x onto Λc
z. But

then TxL ∩ Λc
x is mapped onto TzL ∩ Λc

z by this parallel translation along C.
Consequently, TzL has the same causal character as TxL.

Corollary. If L is a lightlike totally geodesic submanifold of a Lorentz
manifold, then there is a lightlike 1–dimensional distribution on L which is
invariant under parallel translations; consequently, it yields a 1–dimensional
foliation of L by lightlike geodesics.
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Proposition 3.2. Let (M,∇) be a Lorentz manifold and Φ : G×M → M
isometric action of a connected Lie group G. Then an orbit G(z) ⊂ M of Φ
has a causal character.

Proof. An obvious modification of the preceding argument yields the
proof.

Definition. Let (M,<,>) be a Lorentz manifold, ∇ its Levi–Cività co-
variant derivation and Φ : G × M → M an isometric action. Then Φ is an
affine action with respect to ∇ and accordingly the isometric action Φ is said
to admit a transverse submanifold if it admits one as an affine action.

Theorem 3.3. Let (M,<,>) be a Lorentz manifold, Φ : G × M → M
isometric action admitting a transverse submanifold Z(h) and z ∈ I(h) ⊂
Z(h). Then the orbit G(z) is a semi-Riemannian submanifold if and only if
Z(h) is semi-Riemannian.

Proof. Assume first that the subspace TzZ(h) is not lightlike, but TzG(z)
is lightlike. Then the set

Ez = Λc
z ∩ TzG(z)

is a 1–dimensional subspace. Moreover, for any h ∈ Gz, the equality

TzΦhEz = TzΦh(Λc
z) ∩ TzΦh(TzG(z)) = Λc

z ∩ TzG(z) = Ez

holds. Consequently, if v ∈ Ez − {0z}, then

TzΦhv = λ(h)v, h ∈ Gz,

where λ is a function λ : Gz → R. Since the subspace TzZ(h) ⊂ TzM is not
lightlike, the orthogonal decomposition

TzM = TzZ(h)⊕ (TzZ(h))⊥

exists and yields the corresponding decomposition v = v′ + v′′. But then

TzΦhv′ + TzΦhv′′ = TzΦ(v′ + v′′) = λ(h)(v + v′′) = λ(h)v′ + λ(h)v′′, h ∈ Gz

implies that TzΦhv′′ = λ(h)v′′, and then λ(h) = 1 as TzΦh is an isometry and
v′′ is not lightlike. Therefore

Λc
z ∩ TzG(z) = Ez ⊂ TzZ(h)

follows, since h = gz. But the above inclusion is in contradiction with the
assumption that Z(h) is transverse to the action.

Assume secondly that the subspace TzZ(h) is lightlike and TzG(z) is not.
Then the orthogonal decomposition

TzM = TzG(z)⊕ (TzG(z))⊥

exists and a 1–dimensional subspace is given by the set

Fz = Λc
z ∩ TzZ(h).
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If w ∈ Fz−{ 0z }, then the above orthogonal decomposition yields w = w′+w′′

and for h ∈ Gz the following holds

TzΦhw′ + TzΦhw′′ = TzΦhw = κ(h)w = κ(h)w′ + κ(h)w′′.

But then κ(h) = 1 and therefore w′ ∈ TzZ(h) follows in contradiction with the
assumption that Z(h) is a transverse submanifold.

Definition. Let M be a smooth manifold and Φ : G×M → M effective
smooth action of a connected Lie group G. If H < G is a Lie subgroup, h < g
its Lie subalgebra, then the zero set Z(h) is equal to the fixed point set of H.
Moreover, simple calculations yield that

Φg(Z(h)) = Z(h)

for g ∈ G if and only if g is element of N(h), the normalizer of h in G. Therefore
a maximal restricted action

Φd(N(h)×Z(h))

exists, which in turn induces an effective action

Σ : (N(h)/H)×Z(h) → Z(h),

which is called the restricted action subsequently.

Proposition 3.4. Let (M,<,>) be a Lorentz manifold, Φ : G×M → M
an isometric action and h an isotropy subalgebra of minimal dimension such
that its zero set Z(h) is transverse to the action. If the restricted action

Σ : (N(h)/H)×Z(h) → Z(h)

does not leave any 1–dimensional parallel distribution invariant, then Z(h) is
a semi-Riemannian submanifold.

Proof. In order to prove by an indirect argument assume that Z(h) is
lightlike. Then there is a 1–dimensional lightlike parallel distribution on Z(h)
by the Corollary of Proposition 2.1. But this distribution should be invariant
under the restricted action Σ which is obviously isometric.

A simple example is presented at last in order to give the motivation of the
definitions proposed above.

Example. Consider the Lorentz manifold (M,<,>) which is obtained
from the 4–dimensional Minkowski space M4. Let (e1, e2, e3, e4) be the canon-
ical orthonormal base of M4 and (x1, x2, x3, x4) the corresponding coordinate
system, then the coordinate expression of the semi-euclidean inner product ( , )
on M4 is given by

(v, w) = −v1w1 +
4∑

i=2

viwi,
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where v =
∑4

i=1 viei, w =
∑4

j=1 wjej . Consider also the Lorentz group O(1, 3)
and its canonical semi-orthogonal action

O(1,m− 1)×M4 → M4.

As the Lorentz group has 4 connected components, let G < O(1, 3) be its
identity component and consider the restricted action

Φ : G×M4 → M4.

The quadratic form q(v) = (v, v), v ∈ M4, for % ∈ R has the level set

S% = { v ∈ M | q(v) = % }.
If % > 0, then S% is a connected hypersurface, which is timelike and it is an
orbit of Φ. If % = 0, then S% − {0} has 2 connected components, which are
lightlike hypersurfaces and also orbits of Φ. If % < 0, then S% has 2 connected
components, which are spacelike and are orbits of Φ as well.

If z ∈ M4 − {0}, then the corresponding isotropy subalgebra gz < g of
Φ is of minimal dimension. In fact, if z = a = (1, 0, 0, 0), then ga can be
identified with o(3), which has dimension 3; if z = b = (0, 1, 0, 0), then gb can
be identified with o(1, 2), which has also dimension 3; if z = c = (1, 1, 0, 0),
then gc as an obvious simple calculation shows has dimension 3 as well.

Now Z(ga) is the 1–dimensional timelike subspace spanned by the vector
(1, 0, 0, 0), which is transverse to Φ. Furthermore, Z(gb) is the spacelike 1–
dimensional subspace spanned by the vector (0, 1, 0, 0), which is also transverse
to Φ. On the other hand, Z(gc) is the lightlike 1–dimensional subspace spanned
by the vector (1, 1, 0, 0), which is not transverse to Φ.

Each orbit of Φ is obviously intersected by one of the zero sets Z(ga),
Z(gb), Z(gc).
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