
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLII

2004

STRUCTURE OF ONE-DIMENSIONAL CHAIN-RECURRENT

SETS OF FLOWS ON THE 2–SPHERE AND ON THE PLANE

by Piotr Oprocha

Abstract. The main subject of this paper is the topological structure of
connected components of the set of all chain-recurrent points of flows in
the 2–sphere and the plane. Such components for flows with finitely many
stationary points on the 2–sphere are topologically finite graphs. We will
extend this property onto a class of flows in the plane.

1. Introduction. Consider a flow in the sphere S2. It is known that any
limit set on the sphere is connected, compact, invariant and the flow restricted
to it is chain-recurrent. If such a set consists of at least one nonstationary
point, then it is one-dimensional. However, a chain-recurrent set on S2 may
not be locally an arc at its nonstationary points, while a limit set always is.
From the topological point of view, limit sets and chain-recurrent sets may
differ considerably.

It was proved in [1] that any one-dimensional chain-recurrent set of the flow
in S2 with finitely many stationary points is locally an arc at its nonstationary
points. Moreover, it consists of finitely many orbits, and it is topologically a
finite graph. In [1], there was also an example to the effect that assumption
of finiteness of the set of stationary points is essential.

In the plane, it is possible to give an infinite set which does not focus to any
point. So it is possible that some properties of chain-recurrent set obtained on
S2 may be (in some way) true for flows in the plane.

The main aim of this paper is to show that one-dimensional chain-recurrent
components of the set CR(ϕ) may be topologically viewed, in some cases, as
infinite graphs [Theorem 13 in Section 4]. For the completeness of this paper,
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we also present the case of the 2–sphere using a different and, in our opinion
simpler approach [Section 3].

2. Preliminaries. Let X be a metric space. By a Jordan arc (resp., a
Jordan curve) we mean a homeomorphic image of the the closed interval [a, b]
(resp., the unit circle). A corresponding homeomorphism α : I −→ Γ ⊂ X will
be called a parameterization of an arc Γ.

Let J be a Jordan arc with a parameterization α, and let x, y ∈ J , x 6= y.
Let us denote t1 = min(α−1(x), α−1(y)) and t2 = max(α−1(x), α−1(y)). By
the part of J between points x, y we mean the set [x, y] = α([t1, t2]);

Let L1, L2, L3 be Jordan arcs with end-points a and b. If Li ∩Lj = {a, b}
for i 6= j, then the set T = L1 ∪ L2 ∪ L3 is said to be a Θ–curve.

A set A is locally an arc if for any point x ∈ A there exists a closed ball
B(x, r) ⊂ X such that A ∩B is a Jordan arc.

Let X = R2 or X = S2. A subset A of X is one-dimensional if intA = ∅
and A has no isolated points.

Let X be a metric space. We say that a continuous function ϕ : R×X −→
X is a flow (dynamical system) if ϕ(0, x) = x and ϕ(s, ϕ(t, x)) = ϕ(s + t, x)
for any s, t, x.

Through the rest of this paper, a pair (X, ϕ) will denote a dynamical system
ϕ on some metric space (X, d), where d is the metric.

A point x is said to be
− stationary if ϕ(t, x) = x for every t;
− periodic if there exists a t > 0 such that ϕ(t, x) = x and x is not a

stationary point.
By the positive semiorbit (semitrajectory) we mean the set o+(x)={ϕ(t, x) :

t ≥ 0} and by negative semiorbit we mean the set o−(x) = {ϕ(t, x) : t ≤ 0}
The set o(x) = o+(x) ∪ o−(x) is an orbit (trajectory) of the point x.

For a given point x, we define the positive limit set of x as L+(x) =
{y | ∃tn → +∞ : ϕ(tn, x) → y} and negative limit set as L−(x) = {y | ∃tn →
−∞ : ϕ(tn, x) → y}. The limit set of x is the set L(x) = L+(x) ∪ L−(x).

A set A is said to be positively (negatively) invariant if o+(x) ⊂ A (o−(x) ⊂
A) for every x ∈ A. If A is both positively and negatively invariant then we
call it invariant.

Let (X, ϕ) be a flow and let x, y ∈ X. Given ε > 0 and T > 0, an (ε, T )–
chain from x to y is a pair of finite sets of points {x0, . . . , xp+1} and {t0, . . . , tp}
such that x = x0, y = xp+1, tj > T and d(ϕ(tj , xj), xj+1) < ε for j = 0, . . . , p.

If for any ε > 0 and T > 0 there exists an (ε, T )–chain from x to y, then
we write xPy.

The set Ω+(x) = {y | xPy} is called the positive chain limit set of x and
the set Ω−(x) = {y | yPx} negative chain limit set of x.
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A point x is chain-recurrent if xPx. The set CR(ϕ) = {x | xPx} is closed
and invariant.

A closed set S containing x is called an ε–section through x if the set
U = ϕ((−ε, ε), S) is a neighborhood of x and ϕ(t1, S) ∩ ϕ(t2, S) = ∅ for −ε <
t1 < t2 < ε. We say that a set S is a section through x if there exists ε > 0
such that S is an ε–section through x. In the case of S2 and R2, there always
exists a section through any nonstationary point and this section is a Jordan
arc (see [4, thm. 3.1]).

A closed set S is called a section if it is section through some x ∈ S.
If for any given section S containing y there exists a real number t > 0

such that ϕ(t, y) ∈ S, then t0 = inf{t > 0 | ϕ(t, y) ∈ S} 6= ∅ is said to be the
time of first return of the point y to S. If such t does not exist, we say that y
does not return to S.

Let S be a section and let y ∈ S be a point such that the set o(y) ∩ S is
nonempty but finite (i.e. ϕ(ti, x) ∈ S for times t1 < t2 < · · · < tn, n ≥ 1,
and ϕ(t, x) /∈ S for t 6= ti). In this case, the time t1 is called time of the first
intersection of the orbit of y with S and the time tn is called time of the last
intersection of the orbit of y with S.

Observation 1. Let X = R2, S ⊂ X be both a Jordan arc and a section
and let y ∈ S be a point returning to S. Let ty denote the time of the first
return of y and let [y, ϕ(t, y)] be the part of S between y and ϕ(t, y). In this
case, the set Γ = [y;ϕ(t, y)] ∪ ϕ([0; t], y) is a Jordan curve dividing X into
two connected open sets D and E with the common boundary Γ. The set D is
positively invariant, set E is negatively invariant and one of the sets is compact
(compare Fig. 1).

x
y

j(t,x)

Figure 1. Setting of Observation 1.
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Observation 2. Let X = R2, S ⊂ X be both Jordan arc and a section,
and let y, z ∈ S be points such that L+(y) = {p0},L+(z) = {p1} and p0 6= p1. If
there exists an invariant Jordan arc α disjoint with S and connecting p0 with p1,
while points y, z do not return to S, then the set Γ = [y; z]∪ o+(y)∪ o+(z)∪α
is a Jordan curve dividing X into two connected open sets D and E with
boundary Γ. The set D is positively invariant, set E is negatively invariant
and one of the sets is compact (compare Fig. 2 (a)).

Remark 3. We may make observations analogous to Observation 2, re-
placing L+(y) with L−(y) or L+(z) with L+(y) (in this case, we need to as-
sume that o−(y) ∩ S = {y} and o−(z) ∩ S = {z}). A similar situation arises
if α is stationary point (and then p0 = p1 = α). If for points y, z there is
L+(y) = L+(z) = ∅, then point in infinity plays the role of α (see Fig. 2 (b)
and (c)).

y

z

p0

(b)

y

z

p0

(c)

y

z

p0

p1

a

(a)

Figure 2. (a) L+(y) = {p0},L+(z) = {p1}
and p0 6= p1, (b) L+(y) = L+(z) = {p0}, (c)
L+(y) = L+(z) = ∅.

Observe that if X = S2, then both sets D and E are compact. Next, we
will state, without proofs, Observations 4, 5 and 6, which correspond to the
analogous theorems presented in [1] in the case of X = S2.

Observation 4. If x ∈ R2 is a nonperiodic but chain-recurrent point, then
L+(x) and L−(x) are empty or consist of stationary points only.

Observation 5. Let A ⊂ R2 be a one-dimensional closed, connected,
invariant and nonempty chain-recurrent set. If A contains a periodic orbit C,
then A = C.

Observation 6. Let ϕ be a flow on R2 and let A be a one-dimensional
compact, connected and nonempty chain-recurrent set. If A contains no sta-
tionary point, then A is a periodic orbit.



175

The following is a kind of a folklore theorem.

Observation 7. Let S ⊂ X be both a Jordan arc and a ε–section, and let
U denote the set ϕ([− ε

2 , ε
2 ], S). For every y ∈ U , let us set P (y) = ϕ(ty, y) ∈ S,

where ty ∈ [− ε
2 , ε

2 ]. Then P is continuous function.

3. One-dimensional chain-recurrent sets in the 2–sphere. The fol-
lowing theorem summarizes the main results of paper [1] concerning flows in
S2. Yet, our proof is quite different and shorter as it mostly uses properties of
Jordan curves.

Let ϕ be a dynamical system in S2 with finitely many stationary points.

Theorem 8. If Y is a one-dimensional connected component of CR(ϕ),
then Y consists of finitely many orbits.

Proof. When Y contains a periodic point, the theorem follows from Ob-
servation 5, so we may assume that there are no periodic points in Y .

Suppose that there exists a sequence {xn} ⊂ Y consisting of points with
disjoint orbits. There are finitely many stationary points, so in the case of S2,
by virtue of Observation 4, there is

L+(xn) = {p0} , L−(xn) = {p1} ∀ n ∈ N
where p0 and p1 are stationary points (not necessarily different). We may also
assume, that xn → x ∈ Y and x /∈ o(xn) for every n.

First suppose that p0 6= p1. We will make recursive construction (for
shortness, we will present the first three steps only):

1. Define two Jordan arcs Γ1,1 = o(y0) and Γ1,2 = o(y1), where y0 and y1

are any two elements of {xn}. Observe that these arcs together form a
Jordan curve Γ1, which by Schönflies theorem (see [10, p. 71]) is the
common boundary of two open discs D and E such that S2 = D∪E∪Γ1.
It is easy to see that these discs are invariant sets. By A1 we denote
this of the discs which does not contain x.

2. Take a point y2 ∈ {xn} lying outside A1 (e.g., y2 /∈ A1). Set Γ1,3 = o(y2)
and observe that the Jordan arcs Γ1,1 , Γ1,2 and Γ1,3 form a Θ–curve.
By the Θ–curve Theorem (see [2], C.22 and [9]), we get an open and
connected set A2 disjoint from A1. Moreover, ∂A1 ∪A2 = Γ1,1 ∪ Γ1,3,
or ∂A1 ∪A2 = Γ1,2 ∪ Γ1,3. If first condition is true, we set Γ2,1 = Γ1,1

and Γ2,2 = Γ1,3. Otherwise, Γ2,1 = Γ1,2 and Γ2,2 = Γ1,3.
3. Take a point y3 ∈ {xn} lying outside A2 and set Γ2,3 = o(y3). By

applying the Θ–curve Theorem to Γ2,1 , Γ2,2 and Γ2,3, we get open and
connected set A3 disjoint from A1 ∪ A2. Moreover, ∂(A1 ∪A2) ∪A3 =
Γ2,1 ∪ Γ2,3, or ∂(A1 ∪A2) ∪A3 = Γ2,2 ∪ Γ2,3. In the first case we set
Γ3,1 = Γ2,1 i Γ3,2 = Γ2,3. Otherwise, Γ3,1 = Γ2,2 and Γ3,2 = Γ2,3.
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By the recurrent use of this construction, we will get a family {An} of
open, invariant and pairwise disjoint sets. In the case p0 = p1 a construction
of such a family is similar. There are finitely many stationary points, so there
exists N such that the set AN does not contain a stationary point (when such
a set is constructed, we may stop the procedure). Observe that p0 and p1 are
the only stationary points in the set D = AN . There are no stationary points
inside D, so there are no periodic points either. If z ∈ D, then, its positive and
negative limit sets by the Poincaré–Bendixson theorem, must contain at least
one of the points p0 and p1, which implies that z is a chain-recurrent point.
The set D consists of chain-recurrent points only and is connected, so D ⊂ Y ,
which means that Y is not one-dimensional.

Remark 9. Every one-dimensional connected component of CR(ϕ), may
be seen, from topological point of view, as finite graph whose vertices are
stationary points, and edges are orbits of nonstationary points.

Example 10. Observe that when (S2, ϕ) has infinitely many stationary
points, then Theorem 8 is not true. As an example, we may consider the
dynamical system from Fig. 3, where points x, y, z1, z2, . . . and u1, u2, . . . are
stationary.

x

z3

z2

zn

y

z1

zn

zn+1

x

un

Figure 3. Connected one-dimensional chain-
recurrent set with infinitely many orbits.

For that system, there is CR(ϕ) =
⋃

n∈N[zn, x] ∪ S1 ∪ [x, y]. Observe that
this set is connected, compact, one-dimensional, but it consists of infinitely
many orbits. The dynamical system in Fig. 3 was described in [1].
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4. One-dimensional chain-recurrent sets on the plane. Through
out this section, we will consider a dynamical system ϕ in the plane with the
following conditions:
(W1) The stationary points are isolated from one another.
(W2) If a point x is stationary, then the set A = {y | ∃ z : {x, y} ⊂ L(z)}

contains a finite number of stationary points and periodic orbits.
(W3) If p0 and p1 are stationary points in the same connected component of

CR(ϕ), then there exists a Jordan arc α ⊂ CR(ϕ) with end-points p0

and p1.
(W4) If Y is a one-dimensional connected component of CR(ϕ) containing

point y with L(y) = ∅, then Y = o(y)

Figure 4. Dynamical system in the plane ful-
filling conditions (W1)–(W4).

Lemma 11. Let S be a section through x and let {xn} be a sequence of
points converging to x. Then there exist sequences of times {tn} and points
{yn} such that ϕ(xn, tn) = yn ∈ S and yn → x.

Proof. It is a consequence of Observation 7.

Theorem 12. If Y is a one-dimensional connected component of the set
CR(ϕ), then it is locally an arc in its nonstationary points.

Proof. We may assume that every y ∈ Y has the nonempty limit set;
otherwise, by condition (W4), there is nothing to prove. By Observation 5,
we may also assume that there are no periodic points in Y .



178

Let x ∈ Y be any nonstationary point. Then for some ε > 0 there exists
such an ε–section S through x which is a Jordan arc.

Suppose that Y is not locally an arc in x. There exists {xn | n ∈ N} ⊂
S ∩ Y converging monotonically to x on S. The point x is not periodic, so
by Observation 4 the sets L+(x) and L−(x) contain stationary points only or
are empty. The set L(x) is nonempty, and so are the sets L(xn). Suppose
that L+(x) 6= ∅ (when L+(x) = ∅, then L−(x) 6= ∅ and the proof is similar).
The set L+(x) consist of stationary points which are by (W1) isolated, so
L+(x) = {p0} for some stationary point p0.

Observe that the set o(xn)∩S is finite. Otherwise, L+(x)∩S 6= ∅ but there
are no stationary points in S. Thus we may assume that o(xm) ∩ o(xn) = ∅
for m 6= n.

Fix any N ∈ N and y ∈ L(xN ). The points y and p0 lie in the same
connected component of CR(ϕ), so by (W3) there exists a Jordan arc α ⊂ Y
with end-points p0 and y. The set Y is one-dimensional, so α is invariant.

S

x

xN

p0

y

S

x

xN
p0

y

a

a

x`

Figure 5. Case 1. and Case 2.

There are two cases possible (see Fig. 5).

1. α ∩ S 6= ∅.
Let x′ be the point from α ∩ S first to p0 and let α′ be a subarc of α
connecting p0 with x′. Observe that Γ = [x, x′] ∪ o+(x) ∪ α′ is a Jordan
curve, so by Schönflies theorem, Γ is the common boundary of two open
discs D and E, where D is positively invariant and E is negatively
invariant.
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2. α ∩ S = ∅.
If y = L+(x), then we take Γ = [x, xN ]∪o+(x)∪α∪o+(xN ). Otherwise,
Γ = [x, xN ]∪ o+(x)∪α∪ o−(xN ). Observe that Γ is a Jordan curve and
by Observation 2 it is the common boundary of the sets D and E, as in
(1).

Suppose that D is bounded (otherwise E is bounded and the proof is
similar). We may suppose that xn ∈ D for all n. The set D is compact so, as
by (W1) stationary points are isolated, it contains finitely many stationary
points. The set D is positively invariant and bounded, hence the sets L+(xn) 6=
∅ and by Observation 4 consist of stationary points. We may assume that
L+(xn) = {z1} for all n, where z1 ∈ D is some stationary point. As we said
before, the orbit o(xn) intersects with S a finite number of times. Let sn and
tn be the times of the first and last intersection of o(xn) with S. We may
assume that sequences {sn} and {tn} are monotonic. Let

Γn = [ϕ(tn, xn), ϕ(tn+1, xn+1)] ∪ o+(tnxn) ∪ o+(tn+1xn+1) ∪ {z1} ;

and observe that Γn is a Jordan curve contained in D. Let Dn ⊂ D be a
connected open set with the boundary Γn given by 2. The set Dn ⊂ D, so Dn

is compact and thus contains finitely many stationary points.
First we claim that Dm ∩ o(xn) = ∅. Suppose that Dm ∩ o(xn) 6= ∅. By

S ∩Dn = ∅, there is xn /∈ Dn, so there exists s > 0 such that ϕ(s, xn) ∈ ∂D.
If ϕ(s, xn) ∈ (ϕ(tm, xm), ϕ(tm+1, xm+1)) then s = tn and the sequence {tn} is
not monotonic. If xn ∈ o+(xm) then o(xn) = o(xm), but o(xm) ∩ Dm = ∅, a
contradiction. When xn ∈ o+(xm+1) the proof is analogous, which completes
the proof of the claim.

Observe that Dn ∩Dm = ∅. If we set B = Dm ∩Dn, then B is open and
closed. If it is also nonempty, then, as a subset of a connected set, it must be
equal to it and then m = n.

There are finitely many stationary points in D so we may suppose that
there are no stationary points in Dn for all n. This implies that there are
no periodic orbits in Dn. The point z1 is the only stationary point in Dn, so
L+(p) = {z1} for all p ∈ Dn. Taking a subsequence we may encounter the
following two situations.

1. L−(xn) = ∅ for all n.
In this case, the set

Γn = [ϕ(sn, xn), ϕ(sn+1, xn+1)] ∪ o−(ϕ(sn, xn)) ∪ o−(ϕ(sn+1, xn+1))

is a Jordan curve, so there exists a negatively invariant open set En such
that ∂En = Γn. As in the case of Dn one may show that En ∩ Em = ∅
for m 6= n.
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Sxn
xn+2

xn+1

o(xn) o(xn+1)
o(xn+2)

z1

j(T )0 n+1,x

En+1

En

Dn Dn+1

Figure 6. Situation when L−(xn) = ∅ for all n.

By (W2) we may assume, that if p lies in the arc (ϕ(sn, xn),
ϕ(sn+1, xn+1)), then L+(p) = ∅.

Take U = ϕ((−ε, ε), S) and observe that the set (En ∪ En+1 ∪
Dn ∪ Dn+1)\U contains two connected components, one of which is
compact. The distance between those components is 2δ > 0. Let us
take T0 <−2ε. The points xn+1 and ϕ(T0, xn+1) lie in the same con-
nected component of the set CR(ϕ), so for any λ ∈ (0, δ) and T > ε,
there exists a (λ, T )–chain from xn+1 to ϕ(T0, xn+1). Observe that
every such chain must have such point outside (En ∪ En+1 ∪ Dn ∪
Dn+1) and every following point of the chain does not lie in Dn ∪
Dn+1. Let At be a (1

t , t)–chain from xn+1 to ϕ(T0, xn+1) where t >

ε and 1
t < δ. We may assume that for every t there exist points

a1,t, a2,t ∈ At such that d(a1,t, o
−(xn)) < 1

t and d(a2,t, o
−(xn+1)) < 1

t

(d(a1,t, o
−(xn+1)) < 1

t and d(a2,t, o
−(xn+2)) < 1

t ), and points of At lying
between a1,t and a2,t are in En\U (in IntEn+1\U). Let p be any point
from (ϕ(sn, xn), ϕ(sn+1, xn+1)) (from (ϕ(sn+1, xn+1), ϕ(sn+2, xn+2)) in
the second case). The set L−(p) is empty, so o−(p) dissects En (En+1)
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into two open connected components. It implies that for every t there
exist at ∈ At and pt ∈ o−(p) such that d(ϕ(at, t), pt) < 1

t . We can
construct a (2

t , t)–chain from xn to p (for t large enough), so xnPp.
On the other hand L+(p) = {z1}, which implies pPz1. The points

z1 and xn lie in the same connected component of CR(ϕ), so z1Pxn and
then pPxn, which means that p is a chain-recurrent point.

The points p and z1 lie in the same connected component of CR(ϕ);
since p was an arbitrary point in the arc (ϕ(sn, xn), ϕ(sn+1, xn+1)), then
(ϕ(sn, xn), ϕ(sn+1, xn+1)) ⊂ Y (similarly in the second case), so the set
Y is not one-dimensional, which contradicts the assumptions concern-
ing Y .

2. L−(xn) 6= ∅ for all n. By Observation 4 and (W2), we may assume that
L−(xn) = {z2} for all n, where z2 is a stationary point. Observe that
the set

Γn = [ϕ(sn, xn), ϕ(sn+1, xn+1)] ∪ o−(ϕ(sn, xn)) ∪ o−(ϕ(sn+1, xn+1)) ∪ {z2}

is a Jordan curve, so there exists a negatively invariant open set En

with boundary Γn. We may show as before that En ∩ Em = ∅, when
n 6= m. By (W2) we may assume that, if p ∈ (snxn, sn+1xn+1), then
L+(p) = {z2} for every n. We may also assume that every En is compact
(at most one of the sets is unbounded). Taking a subsequence, we may
encounter following two situations.

(a) o(xn) ∩ S = {xn} for all n. In this case, for every n there is
tn = sn = 0 and

∀p ∈ [xn, xn+1] L+(p) = {z1} , L−(p) = {z2},

which implies

[xn, xn+1] ⊂ Ω+(z1) ∩ Ω−(z2) ⊂ Y.

The set Y is invariant and contains ϕ((−ε, ε), (xn, xn+1)), thus it
is not one-dimensional.

(b) o(xn) ∩ S ) {xn} for all n.
Let r be the Poincaré map on S. Observe that for every n there
must be the same number of intersection times of the orbit of
xn with S. Denote that number by k. By the definition of tn
and sn, there is rk−1(ϕ(sn, xn)) = ϕ(tn, xn) for all n. The map
r is continuous, so there exists a neighborhood I of ϕ(sn, xn) on
S mapped by rk into a neighborhood J of point ϕ(tn, xn) ⊂ S.
Then L+(p) = {z1} and L−(p) = {z1} for all p ∈ I, so Y is not
one-dimensional.

This completes the proof of Theorem 12.
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Theorem 13. Let Y be a one-dimensional connected component of CR(ϕ)
and let z ∈ Y be a stationary point. The set A(z) = {x ∈ Y \{z} : z ∈ L(x)}
is nonempty and consists of finitely many orbits.

Proof. As before, we will assume that Y does not contain a point with the
empty limit set or periodic orbit. If x ∈ Y \{z}, then the set L(x) consists of
stationary points. If z ∈ L(x), then A(z) 6= ∅; otherwise by (W3), there exists
a Jordan arc with end-points z and p ∈ L(x), which, by one-dimensionality of
Y , is invariant set. It implies that A(z) is nonempty.

To prove the remaining claim of Theorem 13, suppose that A contains
infinitely many orbits. Then there exists a sequence {xn | n ∈ N} ⊂ Y such
that z ∈ L(xn). Assume that z ∈ L+(xn) (in the other case the proof is
analogous).

By (W1) stationary points are isolated, so L+(xn) = {z}. Let B be closed
ball such that z is the only stationary point of the flow lying in B. Observe
that o(xn) intersects ∂B a finite number of times; otherwise ∂B ∩L+(xn) 6= ∅
which is a contradiction.

Let tn denote the time of the last intersection of o(xn) with ∂B, and let
yn = ϕ(tn, xn). We may assume that there exists y ∈ ∂B such that yn → y.
Point y is chain-recurrent and o+(y) ⊂ B. If there existed t > 0 such that
ϕ(t, y) /∈ B, then by continuity of ϕ, yN /∈ B either for some N large enough,
what contradict with o+yn ⊂ B.

There is no periodic point in B (otherwise z /∈ L+(yn)), thus by Poincaré–
Bendixson theorem, the set L+(y) must contain stationary points, which im-
plies that z ∈ B as it is the only stationary point in B. The point y ∈ Y , so
Y is not locally an arc in its nonstationary points, which contradicts the claim
of Theorem 12. This ends the proof.

Remark 14. Every connected component of CR(ϕ) is topologically an
infinite graph. For every vertex, there is a finite number of edges terminating
at this vertex. Some of the edges may go to the infinity.
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