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A REMARK ON THE MOORE THEOREM

by Marcin Ziomek

Abstract. This paper contains a simple generalization of the classical
Moore theorem. In this generalization one considers the triods with one
�exotic� ray without changing the statement.

1. Introduction. The classical Moore theorem describes a certain nice
property of the plane R2. It was generalized by Young [7] to the case of Rn, but
in our paper we will consider the two-dimensional case only. Before recalling the
Moore theorem, we recall the de�nition of the triod. The de�nition presented
below is an exact copy of the original Moore de�nition [4].

Definition 1. If O, A1, A2 and A3 are four distinct points, and for each
n (1 ≤ n ≤ 3), rn is an irreducible continuum from An to O and no two of the
continua r1, r2 and r3 have any point in common except O, then the continuum
r1 ∪ r2 ∪ r3 is a triod, the point O is the emanation point, and the continua
r1, r2 and r3 are the rays of this triod.

Now we are in a position to formulate the Moore theorem ([3434]1, [5757]).

Theorem 2. In R2, each family of pairwise disjoint triods is at most
countable.

The proofs of this theorem can be found ([3457345734573457]).
In our paper, we present a slight and simple generalization of this theorem,

which in fact consists in a slight modi�cation of the de�nition of the triod. It
appears that the Moore theorem remains true if one understands the notion of
triod in a more general sense.

1In fact, the original version is a little more general.
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2. The main theorem. We start with a new de�nition of the triod.

Definition 3. Let O, A1, A2 be three distinct points, ti an irreducible
continua from Ai to O for i ∈ {1, 2}, t3 a connected set containing at least two
points and t1 ∩ t2 = t1 ∩ t3 = t2 ∩ t3 = {O}. A generalized triod is a the set
t = t1 ∪ t2 ∪ t3.

As in the original de�nition, the point O will be called the emanation point,
and the sets t1, t2, t3 will be said the rays of the generalized triod. The union
t1 ∪ t2 will be called the hat of the generalized triod.

We see that the only di�erence is that we do not require t3 to be compact.
It will be convenient to say that the rays t1 and t2 are simple rays and the

ray t3 is an exotic ray.
Now the following theorem holds.

Theorem 4. (The generalized Moore theorem) Each family of generalized
triods in R2 with pairwise disjoint hats is at most countable.

Before proving this theorem, let us observe that a generalized triod does
not have to be closed and the generalized triod does not have to be continuum
even after closure. The closure of a bounded generalized triod is a triod, but
the family of closures of pairwise disjoint bounded generalized triods does not
have to be the family of pairwise disjoint triods any longer (Example 5); hence,
one cannot apply the classical Moore theorem in order to prove the generalized
version (even for bounded generalized triods).

Example 5. t := [−1, 0]× {1} ∪ {0} × [1, 2]∪
{
(x, sin 1

x) : x ∈ (0, 1]
}
, s :=

[−1, 0]× {0} ∪ {0} × [−1
2 , 1

2 ]. We see that t ∩ s = ∅ and t ∩ s 6= ∅.

Proof of the generalized Moore theorem. In this proof, for con-
venience, we will use the term triod instead of generalized triod. Let us suppose
that there exists an uncountable family = of triods with pairwise disjoint hats.

For each triod there exists δ > 0 such that the ball with the center at
its emanation point and the radius δ does not contain any of the rays of the
triod. Then there exist a number d > 0 and an uncountable subfamily =1 of
the family = such that any triod in =1 any its rays is not contained in the ball
with the center at its emanation point and the radius d.

Since the hats of triods considered are pairwise disjoint, then the set of
emanation points of the triods in =1 is uncountable, hence there exists2 a ball
K with the radius d

3 in which there lies an uncountable subset of the set of
emanation points of the triods in =1.

With each triod t = t1 ∪ t2 ∪ t3 (where, as above, rays t1, t2 are simple
and t3 is exotic) in =1 and with the emmanation point in K, we associate a

2Since each uncountable set has a condensation point (see [2], p. 178).
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new triod q(t) = q1(t) ∪ q2(t) ∪ q3(t) contained in t, with the same emanation
point O, where q1(t) and q2(t) are the irreducible continua from O to ∂K 3 and
q3(t) = t3. We denote this new family of triods we denote by =2. For each
triod q in =2, each of the intersections q1∩∂K and q2∩∂K are not empty. Let
us select the points, say Aq and Bq, respectively from these sets.

Since Aq 6= Bq, then there exists e > 0 and an uncountable subfamily =3

of the family =2 such that

(1) ∀q ∈ =3 dist(Aq, Bq) > e.

Since Aq and Bq are not in q3, then there exists ε ∈ (o, e) and an uncount-
able subfamily =4 of the family =3 such that

(2) ∀q ∈ =4 min{dist(Aq, q3),dist(Bq, q3)} > ε.

It is obvious that on the boundary ∂K there exist an arc, say a, of a length
ε and an uncountable subfamily =5 of =4 such that for each triod q in =5 the
point Aq ∈ a. It follows from (1) that for each triod q in =5 the point Bq

/∈ a. Then there exist an arc b on ∂K of a length ε, disjoint with a, and an
uncountable subfamily =6 of =5 such that for each triod q ∈ =6 the point Bq

∈ b.
Now let us consider three triods: p = p1 ∪ p2 ∪ p3, r = r1 ∪ r2 ∪ r3,

s = s1 ∪ s2 ∪ s3 in the family =6. The points Ap, Ar, As are pairwise di�erent;
thus we may assume that Ap lies between Ar and As on the arc a.

Since the sets: arc ApArBp and p1 ∪ p2 are continua and their intersection
is not connected (since Ap and Bp are in this intersection but not Ar). Then
the second Janiszewski theorem4 implies that their union separates the plane.
There exists a ball Kr with the center at Ar, disjoint from p1 ∪ p2. Then there
exists a point A′

r which is in r1 and Kr. If Br is not in arc ApArBp, then
the irreducible continuum between the points A′

r and Br contained in r1 ∪ r2

intersects p1 ∪ p2. But this is impossible, since the hats of triods are pairwise
disjoint. Hence Br lies in arc ApArBp similarly as the point Bs lies on the arc
ApAsBp.

Let us observe now that the sets: ArApAs∪(s1∪s2) and BsBpBr∪(r1∪r2)
are continua. Their common part intersects disjoint arc a as well as b and is
contained in a∪b, hence is not connected. Then the second Janiszewski theorem
implies that their union, say M , separates the plane, and we see that the
emanation point of the triod p belongs to the bounded connected component,
say N , of R2\M . We can now take a ball K ′ ⊂ N with the center at the
emanation point of the triod p. Let us observe that there are points of the

3Their existence follows from the Brouwer Reduction Theorem (see [6], p. 43, or [2],
p. 172).

4See [1], or [2], p. 277.
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triod p3 both in the ball K ′ and outside K. Hence M separates these points in
p3. But this is impossible, since from our assumptions and from (2) it follows
that p3 is disjoint from M . This ends the proof of the theorem.

Let us remark that the generalization of the Moore theorem presented above
is not true if one considers the triods with two exotic rays. Indeed, let us
consider the following example.

Definition 6. Let O and A1 be two distinct points, t1 be an irreducible
continuum from A1 to O, let t2 and t3 be two connected and at least two point
sets such that, t1 ∩ t2 = t1 ∩ t3 = t2 ∩ t3 = {O}. The triod-like set is now the
set t = t1 ∪ t2 ∪ t3.

This de�nition admits an uncountable family of pairwise disjoint triod-like
sets.

Example 7. Let us set

t = [−1, 0]× {0} ∪
{

(x, sin
1
x

+ 1) : x ∈ (0, 1]
}
∪

{
(x, sin

1
x
− 1) : x ∈ (0, 1]

}
.

Then the set {t + (0, c) : c ∈ [0, 2)} is an uncountable family of pairwise disjoint
triod-like sets.
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