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BETA-REGRESSION MODEL FOR PERIODIC DATA WITH

A TREND

by Jerzy P. Rydlewski

Abstract. In this paper, we prove that there exists exactly one maximum
likelihood estimator for the beta-regression model, where beta distributed
dependent variable is periodic with a trend. This is an important gener-
alization of the result obtained by Dawidowicz ([3]). The model is useful
when the dependent variable is continuous and restricted to a bounded in-
terval. In such a model the classical regression should not be applied. The
parameters are obtained by maximum likelihood estimation. We test a hy-
pothesis of periodicity against the trend. An AIC is used to decide whether
the hypothesis should be rejected or not. We analyze the goodness-of-fit
sensitivity. We consider diagnostic techniques that can be used to identify
departures from the postulated model and to identify influential observa-
tions.

1. Introduction. The linear regression model is widely used in applica-
tions to analyze data that is considered to be related to other variables. It
should, however, not be used, in models, where dependent data is restricted
to the interval [0, 1]. The dependence on time might be described as a combi-
nation of a cyclic and linear function. The term “beta regression” was defined
by Dawidowicz, Stanuch and Kawalec at the ISCB conference in Stockholm in
2001 [4]. The Generalized Linear Model applied to beta regression is widely
discussed in Ferrari, Cribari-Neto [6]. The application of small sample bias
adjustments to the maximum likelihood estimators of parameters is discussed
by Cribari-Neto and Vasconcellos [2].
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The aim of this article is to present a beta-regression model for periodic
data with a trend and to prove that there exists exactly one maximum like-
lihood estimator for the beta-regression model for periodic data with a linear
trend. This is an important generalization of the result obtained by Dawid-
owicz [3]. The paper is organised as follows. In Section 2, we present the
beta-regression model. In Section 3, we discuss maximum likelihood estima-
tion. Diagnostics measures are presented in Section 4.

2. Statement of the problem. The proposed model is based on the
assumption that the dependent data is beta distributed. The beta density is
given by

f(x, ϕ, r) =
Γ(r)

Γ(rϕ)Γ((1− ϕ)r)
xrϕ−1(1− x)(1−ϕ)r−1, 0 ≤ x ≤ 1,

where 0 < ϕ < 1, r > 0 and Γ(·) is the gamma function. There is E(x) = ϕ

and V ar(x) = ϕ(1−ϕ)
1+r .

Let x1, x2, . . . , xn be independent, beta distributed random variables. In
the model it is assumed that the mean of the dependant variable has the form

E(xj) = ϕ(tj), j = 1, 2, . . . , n,

where ϕ is the sum of cyclic function of period T and the monotonic function
θ. r is an unknown precision parameter. The tj ’s may be interpreted as time
points.
We can restrict data to the interval [0, 1], so we consider the model, where

0 ≤ xj ≤ 1 j = 1, 2, . . . , n,

and

E(xj) = ϕ(tj) = θ(tj) + β0 +
p∑

k=1

(
αk sin

2πk

T
tj + βk cos

2πk

T
tj

)
,

where 0 ≤ ϕ(tj) ≤ 1.
The θ(·) function is a strictly monotonic and differentiable function that

maps R into [0, 1]. Moreover, the θ function is twice continuously differentiable
with respect to parameters. The θ(·) function is responsible for modelling the
trend. There are several possible choices of θ(·) function. For instance, we
can use the inverse logit function θ(t) = exp(at)/(C + exp(at)), the inverse
probit function θ(t) = Φ(at + C), where Φ(·) is the cumulative distribution
function of a standard normal random variable, the inverse log-log functions
θ(t) = exp(− exp(at + C)) and θ(t) = 1 − exp(− exp(at + C)), where a > 0
and C ∈ R.
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In the paper we assume that a trend function is simpler, i.e., a linear
function that maps a bounded interval which contains all tj ’s from the model
into [0, 1], that is θ(t) = at.

Let b = (A,A1, A2, . . . , Ap, B0, B1, . . . , Bp) and let

T (b, t) = At + B0 +
p∑

k=1

(Ak sin kt + Bk cos kt) .

The likelihood function in the beta regression model has the form

L(t1, t2, . . . , tn, x1, x2, . . . , xn, b, r)

=
n∏

j=1

1
B(T (b, tj), r − T (b, tj))

x
T (b,tj)−1
j (1− xj)r−T (b,tj)−1,

(1)

where B(·, ·) denotes the beta function. The log-likelihood function in the beta
regression model has the form

lnL =
n∑

j=1

(
− lnB(T (b, tj), r − T (b, tj))

+ (T (b, tj)− 1) ln xj + (r − T (b, tj)− 1) ln(1− xj)
)

.

We shall rewrite discussed parameters. Let b = (a, α1, . . . , αp, β0,β1, . . . , βp) =
(ba, b1, . . . , b2p+1), where a = A

r , αk = Ak
r and βk = Bk

r . Let

ϕ(b, tj) =
T (b, tj)

r
= atj + β0 +

n∑
k=1

(αk sin ktj + βk cos ktj).

Now

l = ln L =
n∑

j=1

lj ,

where

lj = − lnB(rϕ(b, tj), r(1− ϕ(b, tj)))

+ (rϕ(b, tj)− 1) ln xj + (r(1− ϕ(b, tj))− 1) ln(1− xj).

3. The maximum likelihood estimation.

Lemma 3.1. The function lnB(x, y) is a convex function in x and y.
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Lemma 3.2. Let [c, d] be a closed and bounded interval. The set A of all
such (A,A1, A2, . . . , Ap, B0, B1, . . . , Bp, r) ∈ R2p+3 that for every x ∈ [c, d] ,

0 ≤ Ax + B0 +
p∑

k=1

(Ak sin kx + Bk cos kx) ≤ r

is closed and convex in R2p+3.

Proof of Lemma 3.1 is in Dawidowicz [3]. Proof of Lemma 3.2 is analogous
to the proof in Dawidowicz [3].

Lemma 3.3. The set A of all b = (a, α1, α2, . . . , αp, β0, β1, . . . , βp) ∈ R2p+2

satisfying the condition

(2) 0 ≤ ax + β0 +
p∑

k=1

(αk sin kx + βk cos kx) ≤ 1

for every x ∈ R is compact in R2p+2.

Proof. Let

fb(x) = ax + β0 +
p∑

k=1

(αk sin kx + βk cos kx) .

From inequality (2) it follows that for every x ∈ [−π, π]

−1 ≤ fb(x) sin kx ≤ 1 k = 1, 2, . . . , p

and
−1 ≤ fb(x) cos kx ≤ 1 k = 0, 1, . . . , p.

Integrating all these inequalities on the interval [−π, π], we obtain

(3) − 1 ≤ β0 ≤ 1 − 2 ≤ βk ≤ 2 k = 1, 2, . . . , p

and

(4) −2(1+ |a|) ≤ −2(1+
|a|
k

) ≤ αk ≤ 2(1+
|a|
k

) ≤ 2(1+ |a|) k = 1, 2, . . . , p.

Substituting x = π into (2) and using (3), we obtain

(5) − 2p + 2
π

≤ a ≤ 2p + 2
π

.

From inequalities (3), (4) and (5) there follows that the set A is bounded. The
closedness is a natural consequence of it being defined by weak inequalities.
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Lemma 3.4. Exactly one of the following two conditions holds true
1. For all j = 1, 2, . . . , n

xj = atj + β0 +
p∑

k=1

(αk sin ktj + βk cos ktj) .

2.

lim
r→∞

d

dr

n∑
j=1

(
− lnB

(
rϕ(b, tj), r(1− ϕ(b, tj))

)
+ (rϕ(b, tj)− 1) ln xj

+ (r(1− ϕ(b, tj))− 1) ln(1− xj)
)

= −∞.

Lemma 3.5. The function L as a function in (b, r) is concave.

Theorem 3.1. For given t1, t2, . . . , tn ∈ [c, d] and x1, x2, . . . , xn, exactly
one of the following two conditions holds true
1. There exist such a, α1, α2, . . . , αp, β0, β1, . . . , βp that for all j = 1, 2, . . . , n

xj = atj + β0 +
p∑

k=1

(αk sin ktj + βk cos ktj) .

2. There exists exactly one (̂b, r̂) ∈ A such that

L(̂b, r̂) = max
(b,r)∈A

L(b, r),

where L is a likelihood function defined in 1.

Proofs of Lemmas 3.4 and 3.5, as well as a proof of Theorem 3.1 are in
Dawidowicz [3]. To prove Theorem 3.1, we need Lemmas 3.1–3.5.
We shall then obtain an expression for Fisher’s information matrix.

Theorem 3.2. Let M denote Fisher’s information matrix. Then

M =
[

Mb,b Mb,r

Mr,b Mr,r

]
,

where

Mr,r = − ∂2l

∂r2
(b, r) =

n∑
j=1

(
−Ψ′(r) + ϕ2(b, tj)Ψ′(ϕ(b, rtj))

+ (1− ϕ(b, tj))2Ψ′((1− ϕ(b, tj))r)
)
,

MT
b,r =

 n∑
j=1

∂ϕ(b, tj)
∂ba

Z,

n∑
j=1

∂ϕ(b, tj)
∂b1

Z, . . . ,

n∑
j=1

∂ϕ(b, tj)
∂b2p+1

Z

 ,
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where

Z = Z(ϕ(b, tj), r) = r
[
ϕ(b, tj)Ψ′(ϕ(b, tj)r) + (1− ϕ(b, tj))Ψ′((1− ϕ(b, tj))r)

]
and

W (ϕ(b, tj), r) = Ψ((1− ϕ(b, tj))r)−Ψ(ϕ(b, tj)r) + ln
x(tj)

1− x(tj)
.

Mb,b matrix elements mu,w, u, w = a, 1, . . . , 2p + 1, are of the form

mu,w = −r2
n∑

j=1

∂ϕ(b, tj)
∂bu

∂ϕ(b, tj)
∂bw

G(ϕ(b, tj), r),

where G(ϕ(b, tj), r) = −Ψ′(ϕ(b, tj)r)−Ψ′((1− ϕ(b, tj))r) and Ψ(x) = d ln Γ(x)
dx .

Proof. Each ϕ(b, tj) is twice continuously differentiable with respect to
parameter b. Since

E

(
∂lj
∂bu

)
= rE (W (ϕ(b, tj), r)) = 0, u = a, 1, 2, . . . , 2p + 1,

and

E

(
∂2lj

∂bu∂bw

)
= rE

(
∂2ϕ(b, tj)
∂bu∂bw

W (ϕ(b, tj), r)
)

+ r2E

(
∂ϕ(b, tj)

∂bu

∂ϕ(b, tj)
∂bw

G(ϕ(b, tj), r)
)

,

then under our assumptions, we obtain

E

(
∂2lj

∂bu∂bw

)
= r2 ∂ϕ(b, tj)

∂bu

∂ϕ(b, tj)
∂bw

G(ϕ(b, tj), r).

Hence

mu,w = −r2
n∑

j=1

∂ϕ(b, tj)
∂bu

∂ϕ(b, tj)
∂bw

G(ϕ(b, tj), r).

Under our regularity assumptions, the matrix M is symmetric and

Mr,b = MT
b,r.

After simple computations, we obtain the formulas for Mr,r and MT
b,r.

Theorem 3.3. The inverse of Fisher’s information matrix is of the form

M−1 =

 M−1
b,b +

(
M−1

b,b Mb,r

)
E−1

(
M−1

b,b Mb,r

)T
−E−1M−1

b,b Mb,r

−E−1
(
M−1

b,b Mb,r

)T
E−1

 ,

where E = Mr,r −MT
b,rM

−1
b,b Mb,r ∈ R.
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One can prove the theorem using known facts of algebra, to be found, e.g.,
in Rao [8].

Under the same assumptions, we can find the matrix M−1
b,b using well-known

algebraic recurrence formulas.

Theorem 3.4. The MLE(b) and MLE(r) are (assumed to be unique)
maximum likelihood estimators of b and r, respectively. Their asymptotical
distribution is (

MLE(b)
MLE(r)

)
∼ N2p+3

( (
b
r

)
, M−1

)
,

where 2p + 3 is the number of estimated parameters.

Proof of this well known result can be found, e.g., in Stuart, Ord and
Arnold [9]. The assumed uniqueness is a consequence of Theorem 3.1.

4. Analysis and diagnostics for the model. It is well known that,
under some regularity assumptions, maximum likelihood estimators are con-
sistent and asymptotically efficient. Fitting of the model should be followed
by diagnostic analysis, which would check the goodness-of-fit of the evaluated
model. Ferrari and Cribari-Neto [6] considered the correlation between the
observed and predicted values as a basis for a measure of goodness-of-fit. Un-
fortunately, the statistic does not take into account the effect of dispersion
covariates.

Definition 4.1. Akaike’s information criterion is

AIC = −2 (l(b, r)− (2p + 3)) ,

where 2p + 3 is the number of estimated parameters.

The model with minimum AIC is studied more thoroughly than other
models (Akaike, [1]). Thus we obtain the set of AIC-optimal parameters.
Subsequently, we obtain the number of harmonics. Evaluating AIC is a method
of determining the best model when several models fit to the same data. When
we use AIC, we do not require the models compared to be nested.

Let ϕb denote the mean of beta-distributed random variables parametrized
with b and let bm, bn denote the set b with m and n parameters, respectively.
We want to test the hypothesis

H0 : ϕbm = ϕbn

versus
H1 : ϕbm 6= ϕbn .

The AIC is used to verify the hypothesis.
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Lemma 4.1. For every m > n, under the assumption of hypothesis H0, the
statistics

χ2
AIC = |AICm −AICn|

has asymptotically the chi-square distribution with 2(m−n) degrees of freedom.

A proof can be found in Akaike [1].
χ2 is a measure of the goodness-of-fit of the model. It measures the rela-

tive deviations between the observed and the fitted values. Large individual
components indicate observations not well accounted for by the model.
The discrepancy of fit can also be computed by residuals.

Definition 4.2. With the above notations, the residuals are

rj = xj − ϕ(MLE(b), tj), j = 1, . . . , n.

The observation with a large absolute value of rj may be considered dis-
crepant. We can also define the standardized residuals.

Definition 4.3. With the above notations, the standardized residuals are

rs
j =

xj − ϕ(MLE(b), tj)√
V ar(xj)

,

where

V ar(xj) =
ϕ(MLE(b), tj) (1− ϕ(MLE(b), tj))

1 + MLE(r)
, j = 1, . . . , n.

Generalized leverage can be used as a measure for assessing the importance
of individual observations. We will use the generalized leverage proposed by
Wei, Hu and Fung [10]. Let x = (x1, . . . , xn)T be a vector of observable
responses. The expectation of x is m = E(x) and can be expressed as m =
m(α). Let M(α) = M(α(x)) denote an estimator of α. Then M(x) = m(M(α))
is the predicted response vector.

Definition 4.4. With the above notations, the generalized leverage of
estimator M(α) is defined as

GL(M(α)) =
∂M(x)
∂xT

.

By the definition, the (i, j) element of the matrix GL(M(α)) is the in-
stantaneous rate of change of the i-th predicted value with respect to the j-th
response value. In other words, it measures the influence of observations on
the fit of the model under the estimator M(α). The observations with large

GL(i,i) =
∂M(xi)

∂xT
i

are called leverage points.
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Theorem 4.1. If l(b, x) has second order continuous derivatives with re-
spect to b and x and MLE(b) exists uniquely, then the generalized leverage of
maximum likelihood estimator of b in the beta regression model with known r
is

GL(b) = − ∂ϕ

∂bT
M−1

b,b

∂2l(b, r)
∂b∂xT

,

where ϕ = (ϕ(b, t1), . . . , ϕ(b, tn)) and (u, v)th element of matrix ∂2l(b,r)
∂b∂xT is(

∂2l(b, r)
∂b∂xT

)
(u,v)

= r

n∑
j=1

∂ϕ(b,tj)
∂bu

xv(1− xv)
, u = a, 1, 2, . . . , 2p+1 and v = 1, 2, . . . , n.

Let now r be unknown. The generalized leverage of maximum likelihood esti-
mator of b in the beta regression model is

GL(b, r) = − ∂ϕ

∂(b, r)T
M−1 ∂2l(b, r)

∂(b, r)∂xT
,

and the elements of the last row of the matrix ∂2l(b,r)
∂b∂xT are(

∂2l(b, r)
∂b∂xT

)
(2p+3,v)

=
n∑

j=1

ϕ(b, tj)− xv

xv(1− xv)
, v = 1, 2, . . . , n.

A proof is a consequence of a result obtained by Wei, Hu and Fung [10].
Let the null hypothesis for a given bm0 be H0 : bm = bm0 and the alternative
hypothesis be H1 : bm 6= bm0, where bm and bm0 are m-vectors and m < 2p+3.
In order to check the asymptotic inference, we can perform Rao’s score test.
Let Sm(b, r) denote the vector containing m out of the first 2p+3 coefficients of
score function S(b, r), and let M−1

m,b,b be the matrix formed of the corresponding
m rows and m columns of the matrix M−1

b,b .

Definition 4.5. Rao’s score statistic is

TR = (Sm(MLE0(b),MLE0(r)))
T M−1

m,b,bSm(MLE0(b),MLE0(r)),

where MLE0(b) and MLE0(r) are restricted maximum likelihood estimators,
computed under H0.

It is well known (see e.g. Stuart, Ord and Arnold, [9]) that under the reg-
ularity conditions and the assumption of hypothesis H0, the statistics asymp-
totically has the chi-square distribution with m degrees of freedom.

The hypothesis can also be tested with Wald’s test.

Definition 4.6. Wald’s statistic takes the form of

TW =
(
MLE(bm)− bm0

)T
M−1

m,b,b(MLE(b),MLE(r))
(
MLE(bm)− bm0

)
.
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Similarly, under the regularity conditions and the assumption of hypothesis
H0, the statistics asymptotically has the chi-square distribution with m degrees
of freedom (see e.g. Stuart, Ord and Arnold, [9]).

For testing the significance of the single parameter bu, u = a, 1, . . . , 2p + 1,
we may use the statistic TW = (MLE(bu))2m−1

u,u, where m−1
u,u is the (u, u)-

th element of the matrix M−1(MLE(b),MLE(r)). The square root of TW

asymptotically has standard normal distribution (see e.g. Stuart, Ord and
Arnold, [9]).

We can determine the appopriate confidence intervals (see e.g. Stuart, Ord
and Arnold, [9]).

Lemma 4.2. The (1−α)100% confidence interval for the single parameter
bu, where u = a, 1, . . . , 2p + 1, is(

MLE(bu)− Φ−1(1− α

2
)
√

m−1
u,u,MLE(bu) + Φ−1(1− α

2
)
√

m−1
u,u

)
.

The asymptotic (1− α)100% confidence interval for parameter r is(
MLE(r)− Φ−1(1− α

2
)
√

m−1
2p+3,2p+3,MLE(r) + Φ−1(1− α

2
)
√

m−1
2p+3,2p+3

)
,

where m−1
2p+3,2p+3 is equal to (2p+3, 2p+3)-th element of the inverse of Fisher

information matrix calculated at the maximum likelihood estimates of all pa-
rameters.

Similarly, we can evaluate approximate confidence regions for sets of pa-
rameters.
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