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The mapping class group of a genus two
surface is linear

Stephen J. Bigelow

Ryan D. Budney

Abstract In this paper we construct a faithful representation of the map-
ping class group of the genus two surface into a group of matrices over the
complex numbers. Our starting point is the Lawrence-Krammer represen-
tation of the braid group Bn , which was shown to be faithful by Bigelow
and Krammer. We obtain a faithful representation of the mapping class
group of the n-punctured sphere by using the close relationship between
this group and Bn−1 . We then extend this to a faithful representation
of the mapping class group of the genus two surface, using Birman and
Hilden’s result that this group is a Z2 central extension of the mapping
class group of the 6-punctured sphere. The resulting representation has
dimension sixty-four and will be described explicitly. In closing we will
remark on subgroups of mapping class groups which can be shown to be
linear using similar techniques.
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1 Introduction

Let Di�M denote the topological group of orientation preserving di�eomor-
phisms of an oriented manifold M which act as the identity on @M . The
mapping class group of M is the group �0Di�M . A representation of a group
is a homomorphism from the group into a multiplicative group of matrices over
some commutative ring. A representation is called faithful if it is one-to-one. A
group is called linear if it admits a faithful representation.

The aim of this paper is to construct a faithful representation of the mapping
class group of the genus two surface. In the process we construct faithful repre-
sentations of mapping class groups of punctured spheres, hyperelliptic mapping
class groups and, more generally, normalizers of certain covering transformation
groups of surfaces.
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700 Stephen J. Bigelow and Ryan D. Budney

We take as our starting point the Lawrence-Krammer representation of the
braid group Bn . Bigelow [Big] and Krammer [Kra2] have shown this to be
faithful. In Section 2, we show how to alter the Lawrence-Krammer representa-
tion to obtain a faithful representation of the mapping class group of an n-times
punctured sphere.

The genus two surface is a branched covering space of the sphere with six
branch points. Birman and Hilden [BH] have used this fact to establish a close
relationship between the mapping class group of the genus two surface and the
mapping class group of the six-times punctured sphere. In Section 3, we use
this relationship to obtain a faithful representation of the mapping class group
of the genus two surface.

Simultaneous with this result, Nathan Dun�eld and also Mustafa Korkmaz
[Kor] have individually produced faithful representations of the mapping class
group of the genus two surface. All of these constructions use the relationship
to the mapping class group of the six-times punctured sphere. However we have
taken a bit of extra care to keep the dimension reasonably low. Our faithful
representations of the mapping class groups of the n-times punctured sphere
and the genus two surface have dimensions n

(n−1
2

�
and 64 respectively, whereas

the representations in [Kor] have dimensions n
(n−1

2

�2
and 2103553 respectively.

The low rank of our representation makes it suitable for computer use, and we
explicitly compute the matrices for our representations in Section 4. In Section
5 we show how to generalize our construction to obtain faithful representations
normalizers of a class of �nite subgroups of mapping class groups. The simplest
such generalization gives a faithful representation of the hyperelliptic group of
the genus g surface. Korkmaz [Kor] also constructed a faithful representation
of the hyperelliptic group, but once again ours has a smaller dimension, namely
(2g + 2)

(2g+1
2

�
+ 2g as opposed to (2g + 2)

(2g+1
2

�2
3g

2 Qg
i=1(32i − 1).

Throughout this paper, D will denote a disk, �2 will denote a closed oriented
surface of genus two, and S2 will denote a sphere. If M is an oriented manifold
and n is a positive integer then let Di�(M;n) denote Di�(M; fp1; : : : ; png),
where p1; : : : ; pn are distinct points in the interior of M . This is the group of
di�eomorphisms of M that restrict to permutations of the set fp1; : : : ; png.
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2 The n-punctured Sphere

The aim of this section is to prove the following.

Theorem 2.1 There exists a faithful representation of the mapping class
group of the n-times punctured sphere.

The braid group Bn is the group �0Di�(D;n). Provided n � 3, the center of
Bn is isomorphic to Z and is generated by the full twist braid �2 . This is a
Dehn twist about a curve which is parallel to @D .

Let p1; : : : ; pn be distinct points in S2 .

Lemma 2.2 Provided n � 4, there is a short exact sequence

0! Z! Bn−1 ! Stab(pn)! 0;

where the image of Z in Bn−1 is the center of Bn−1 , and Stab(pn) is the
subgroup of �0Di�(S2; n) consisting of di�eomorphisms that �x the point pn .

Proof Let D+ and D− be the northern and southern hemispheres of S2 ,
that is, two disks in S2 such that D+ \ D− = @D+ = @D− . Assume that
p1; : : : ; pn−1 2 D+ and pn 2 D− . Then Bn−1 is �0Di�(D+; n − 1). We can
extend any f 2 Di�(D+; n − 1) to a di�eomorphism of the whole sphere by
setting it to be the identity on D− . Let � : Bn−1 ! �0Di�(S2; n) be the
homomorphism de�ned in this way. This will be the rightmost map in our
short exact sequence.

First we show that the image of � is Stab(pn). Let g be an element of
Di�(S2; n) which �xes the puncture pn . Note that gj(D−) is a closed tubu-
lar neighborhood of pn in S2 − fp1; � � � ; pn−1g. By the uniqueness of tubular
neighborhoods theorem, gj(D−) is isotopic to the identity relative to fpng. This
isotopy can be extended to an ambient isotopy of the n-times punctured sphere.
We can therefore assume, without loss of generality, that g acts as the identity
on @D− . Thus g = �(gj(D−)).

Now we show that the kernel of � is generated by �2 . Let f 2 Di�(D+; n− 1)
represent an element of the kernel of �. Let g = �(f) be its extension to S2

which is the identity on D− . Then there is an isotopy gt 2 Di�(S2; n) such that
g0 = g and g1 is the identity map. Now gt restricted to D− de�nes an element
of the fundamental group of the space of all tubular neighborhoods of pn .
The proof of the uniqueness of tubular neighborhoods theorem [Hir] naturally
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extends to a proof that there is a homotopy equivalence between the space
of tubular neighbourhoods of a point and GL(Tpn). Thus the fundamental
group of the space of tubular neighbourhoods of a �xed point in S2 is Z,
generated by a rigid rotation through an angle of 2� . Consequently our family
of di�eomorphisms gt can be isotoped relative to endpoints so that its restriction
to D− is a rigid rotations by some multiple of 2� . Therefore f is isotopic to
some power of �2 .

Let
Ln : Bn ! GL(

�
n

2

�
;Z[q�1; t�1])

denote the Lawrence-Krammer representation, which was shown to be faithful
in [Big] and [Kra2]. By assigning algebraically independent complex values to
q and t, we consider the image as lying in GL(

(
n
2

�
;C).

Now Ln(�2) is a scalar matrix �I . This can be seen by looking at the repre-
sentation as an action on the module of forks [Kra1]. (In fact, � = q2nt2 .) We
will now \rescale" the representation Ln so that �2 is mapped to the identity
matrix.

The abelianization of Bn is Z. Let ab: Bn ! Z denote the abelianization map.
Then ab(�2) 6= 0, as is easily veri�ed using the standard group presentation for
Bn . (In fact, ab(�2) = n(n−1).) Let exp: Z! C� be a group homomorphism
which takes ab(�2) to �−1 . We now de�ne a new representation L0n of Bn by

L0n(�) = (exp � ab(�))Ln(�):

We claim that the kernel of L0n is precisely the center of Bn , provided n � 3.
By design, L0n(�2) = I . Conversely, suppose L0n(�) = I . Then Ln(�) is a
scalar matrix, so lies in the center of the matrix group. Since Ln is faithful, it
follows that � lies in the center of the braid group.

We are now ready to prove Theorem 2.1. If n � 3 then Di�(S2; n) is simply
the full symmetric group on the puncture points, so the result is trivial. We
therefore assume n � 4. By Lemma 2.2, L0n−1 induces a faithful representation
of Stab(pn). Since Stab(pn) has �nite index in �0Di�(S2; n), L0n−1 can be
extended to a �nite dimensional representation Kn of �0Di�(S2; n). Extensions
of faithful representations are faithful (see for example [Lan]), giving the result.

Note that the faithful representation Kn has dimension n
(n−1

2

�
.
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3 The genus two surface

The aim of this section is to prove the following.

Theorem 3.1 There exists a faithful representation of the mapping class
group of the genus two surface.

s s s s s s

Figure 1: The action of Z2 on �2 .

The standard involution of �2 is the rotation through an angle of � as shown
in Figure 1. This de�nes an action of Z2 as a group of branched covering
transformations with quotient S2 and six branch points. Let Di�Z2�2 denote
the group of Z2 -equivariant di�eomorphisms of �2 , that is, the group of dif-
feomorphisms which strictly commute with the standard involution. We think
of Di�Z2�2 as a subspace of Di��2 .

Proposition 3.2 The inclusion map Di�Z2�2 ! Di��2 induces an isomor-
phism on �0 .

Proof That the induced map is epic follows from Lickorish’s theorem [Lic]
that that the genus two mapping class group is generated by �ve Dehn twists,
all of which happen to be Z2 equivariant. See Figure 2. This is the point where
the analogous theorem fails for higher genus surfaces. That the induced map is

Figure 2: Dehn twists generating the mapping class group of �2 .

one-to-one is more di�cult. A proof can be found in [BH].

Proposition 3.3 The quotient map Di�Z2�2 ! Di�(S2; 6) induces a short
exact sequence

0! Z2 ! �0Di�Z2�2 ! �0Di�(S2; 6)! 0;

where the generator of Z2 is mapped to the standard involution of �2 .
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Proof Onto is easy: Each of the �ve Dehn twists shown in Figure 2 is sent to
a half Dehn twist around a curve separating two puncture points from the rest.
Two examples are shown in Figure 3. The de�nition of a half Dehn twist is as

s s s s s s

Figure 3: Dehn twists mapped to half Dehn twists.

illustrated in Figure 4. These half Dehn twists are the standard generators of
the mapping class group of the 6-times punctured sphere.

s s s s

Figure 4: A half Dehn twist

That the kernel is Z2 is an elementary exercise in (branched) covering space
theory.

In Section 2 we constructed a faithful representation Kn of �0Di�(S2; n). By
the previous two propositions, K6 is a representation of �0Di��2 whose kernel
is equal to Z2 , generated by the standard involution.

Let H be the representation of �0Di��2 induced by the action of Di��2 on
H1�2 . This is called the symplectic representation. Under this representation,
the standard involution is sent to −I . The direct sum K6 � H is therefore a
faithful representation of �0Di��2 . It has dimension 6

(5
2

�
+ 4 = 64.
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4 Matrices

We start o� by computing matrices for the representation L0n . Explicit matrices
for Ln were worked out both in Krammer and Bigelow’s work. We use the
conventions of [Big], but we correct a sign error which occurs in that paper.
Here, �i are the half Dehn twist generators of the mapping class group of a
punctured disk, and Ln(�i) acts on the vector space V with basis vj;k for
1 � j < k � n.

Ln(�i)vj;k =

8>>>>>><>>>>>>:

vj;k i =2 fj − 1; j; k − 1; kg;
qvi;k + (q2 − q)vi;j + (1− q)vj;k i = j − 1
vj+1;k i = j 6= k − 1;
qvj;i + (1− q)vj;k − (q2 − q)tvi;k i = k − 1 6= j;
vj;k+1 i = k;
−tq2vj;k i = j = k − 1:

Using this, we can compute exp � ab(�i) = t−1=dq−n=d , with d =
(n

2

�
. Conse-

quently, L0n(�i) = t−1=dq−n=dLn(�i).

The induced representation Kn of L0n−1 is now straightforward to compute,
and we will give a block-matrix description of it in terms of L0n−1 .

Reminder: suppose a subgroup A of a group B acts on a vector space V . The
induced representation of B is the module MapA(B;V ) of A-equivariant maps
from B to V . The action of B on this module is given by b:f := f � Rb ,
where Rb : B ! B is right multiplication by b. Let fcig be a set of coset
representatives of A in B , ie., B is the disjoint union of the cosets ciA. Then
MapA(B;V ) = �ici:V , where our inclusion V � MapA(B;V ) is given by the
A-equivariant maps from B to V which are zero outside of A. The direct
sum is in the category of abelian groups. See [Lan, Proposition XVIII.7.2] for
details.

As coset representatives for Stab(pn) in �0Di�(S2; n) we will use the maps
c1 = Id, c2 = �n−1 , and

ci = (�n−i+1�n−i+2 : : : �n−2)�n−1(�n−i+1�n−i+2 : : : �n−2)−1

for i = 3; : : : ; n. Let �i be the permutation of f1; : : : ; ng such that �icj is in
the coset c�ijStab(pn). Thus �i is the transposition (n− i; n− i+ 1). Then

�i(cj :v) = c�ij :(c
−1
�ij
�icjv);

for any i = 1; : : : ; n− 2, j = 1; : : : ; n and v 2 V .
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Let � = �1�2 : : : �n−2�n−2 : : : �2�1 and let �j = �n−j+1�n−j+2 : : : �n−2 . Then:

c−1
�ij
�icj =

8>>>><>>>>:
�i i 6= n− 1; j 6= n+ 1− i
(�1 : : : �i−1)�−1(�1 : : : �i−1)−1�−1

i i 6= n− 1; j = n+ 1− i
Id i = n− 1; j = 1
�n−2�

−1 i = n− 1; j = 2
�j�n−2�

−1
j i = n− 1; j > 2

One can now deduce the matrices Kn(�i).

5 Remarks

Equipped with the knowledge that the mapping class group of an arbitrarily
punctured sphere is linear, Theorem 1 from [BH] allows us to deduce that several
subgroups of mapping class groups are linear.

Let S be a closed 2-manifold together with a group G of covering transforma-
tions acting on it. The covering transformations are allowed to have a �nite
number of branch points. Let n be the number of branch points of the covering
space S ! S=G and let Di�GS be the group of �ber-preserving di�eomor-
phisms of that covering space. An easy covering space argument shows that
there is an exact sequence of groups

G! �0Di�GS ! �0Di�(S=G; n):

Suppose there is a faithful representation of �0Di�(S=G; n). Then the above
exact sequence gives a representation of �0Di�GS whose kernel is the image of
G. If G acts faithfully on H1(S) then we can obtain a faithful representation
of �0Di�GS by taking a direct sum with the symplectic representation.

Suppose G is solvable and �xes each branch point, and S is not a sphere or a
torus. Then [BH, Theorem 1] states that the map Di�GS ! Di�S induces an
injection �0Di�GS ! �0Di�S . We claim that �0Di�GS is the normalizer of G
in �0Di�S . The proof of this claim uses the fact that any element of �0Di�S
which normalizes the image of G in �0Di�S can be lifted to an element of Di�S
which normalizes G. This is proved for the case G is cyclic in [BH, Theorem
3]. The general case follows exactly the same proof but uses the fact that the
Nielsen realization problem is now solved for all �nite groups [Ker].

The above line of reasoning can be used to obtain a faithful representation of
the hyperelliptic mapping class group of a closed surface S . This is the group of
elements of �0Di�S which commute with the hyperelliptic involution. In this
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case the group G is Z2 , generated by the hyperelliptic involution. The quotient
S=G is a sphere with 2g + 2 branch points. The generator of G acts as −I on
H1(S).

More generally, if S ! S2 is a branched covering space such that the group
of covering transformations is solvable and �xes the branch points then the
normalizer of G in Di�(S) is linear. The argument proceeds as previously
except we need to show that G acts faithfully on H1(S). This follows from the
well-known fact that the Torelli group is torsion-free. One way to see this is to
realize a torsion element as an isometry of the surface with a suitable hyperbolic
structure [Ker]. Such a map cannot be trivial on homology (see, for example
[FK, Section V.3]).

Finally, note that if S is a �nite-sheeted covering space of �2 without branch
points, with solvable group of covering transformations, then by the same meth-
ods, we obtain a faithful representation of the normalizer of the group of cov-
ering transformations in �0Di�S .
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