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Genus two 3{manifolds are built from
handle number one pieces
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Abstract Let M be a closed, irreducible, genus two 3{manifold, and F
a maximal collection of pairwise disjoint, closed, orientable, incompressible
surfaces embedded in M . Then each component manifold Mi of M − F
has handle number at most one, i.e. admits a Heegaard splitting obtained
by attaching a single 1{handle to one or two components of @Mi . This
result also holds for a decomposition of M along a maximal collection of
incompressible tori.
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1 Introduction

Throughout this paper, all surfaces and 3{manifolds will be taken to be compact
and orientable. Suppose a 3-manifold M contains an essential 2{sphere. The
Haken lemma [4] tells us that each Heegaard surface for M intersects some
essential 2{sphere in a single essential circle (see also [5]). As a consequence
of this and the uniqueness of prime decompositions of 3-manifolds, Heegaard
genus is additive under connected sum,

g(M1# � � �#Mn) = g(M1) + � � �+ g(Mn);

where g(M) denotes the Heegaard genus of the manifold M .

How does Heegaard genus behave under decompositions of an irreducible man-
ifold along incompressible surfaces? Clearly, we do not expect additivity of
genus as before. Suppose that M contains an embedded, incompressible sur-
face F that separates M into two components M1 and M2 . The genus of the
two component manifolds must be greater than the genus of their boundary
component, g(Mi) > g(F ); i = 1; 2. This is particularly relevant in light of the
examples of Eudave-Mu~noz [2], tunnel number one knots whose exteriors con-
tain incompressible surfaces of arbitrarily high genus. (An appropriate Dehn
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surgery on such a knot results in a closed genus two manifold with an arbitrarily
high genus incompressible surface).

However, we can build a Heegaard splitting for M from Heegaard splittings of
the components M1 and M2 . If done in an e�cient manner, see for example
[12], this yields an upper bound on the genus of M ,

g(M) � g(M1) + g(M2)− g(F ):

Upper bounds on the genus of the component manifolds (lower bounds on
g(M)) are more di�cult, and not even possible without additional assump-
tions. Consider the examples of Kobayashi [8], knots whose tunnel numbers
degenerate arbitrarily under connected sum (decomposition along an annulus).
Again, an appropriate Dehn surgery will yield a closed manifold containing an
incompressible torus, and after cutting along the torus, the component mani-
folds have genus arbitrarily higher than that of the closed manifold. In contrast,
Schultens [13] has demonstrated that for tunnel numbers, this phenomenon can-
not occur in the absence of additional incompressible surfaces. We are led to
adding the assumption that the closed manifold should be cut along a maximal
embedded collection of incompressible surfaces (a slightly weaker assumption
will su�ce, see the de�nition of a complete collection of surfaces in the next
section).

While it is true that the spine of a Heegaard splitting for M induces Heegaard
splittings of the component manifolds, see Figure 3 and Section 4, the intersec-
tion between the Heegaard spine and incompressible surfaces could potentially
be very complicated, and almost certainly depends on the genus of the incom-
pressible surfaces. One approach to constructing upper bounds of the genus
of the component manifolds is to bound the complexity of this intersection in
terms of the genera of the incompressible surfaces and the Heegaard spine. This
is the approach used by Johannson in [6].

In this paper, we adopt a di�erent approach. Using ideas of Scharlemann and
Thompson [11], we arrange the spine of the Heegaard splitting to intersect the
collection of surfaces minimally. It is not hard to see that the induced Heegaard
splitting of the component manifolds is weakly reducible. We then prove a gen-
eralization of a result of Casson and Gordon [1] to manifolds with boundary. (A
similar theorem was proven by Lustig and Moriah [9].) A somewhat simpli�ed
version follows:

1.1 Theorem Let M be an irreducible 3{manifold and M = C1 [H C2 a
weakly reducible Heegaard splitting of M . Then either M contains a closed,
non-peripheral incompressible surface, or the splitting is not of minimal genus.
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This theorem allows us to make use of the assumption that we have taken the
collection of surfaces to be complete. Additional re�nements to this result show
that for many of the component manifolds, the induced Heegaard splitting can
be compressed to one that is induced by a single arc attached to the boundary.

1.2 Theorem Let M be a closed, irreducible 3{manifold and F a complete
collection of surfaces for M . If M −N(F) has n component manifolds, then
at least n+ 2− g(M) of these components have handle number at most 1.

We give de�nitions in the next section, but, note here that a complete collection
of surfaces applies both to maximal collections of incompressible surfaces and
maximal collections of incompressible tori. Handle number one means that the
component manifold has a Heegaard splitting that is induced by drilling out
a single arc, this is a generalization of tunnel number one and the concepts
are identical when the manifold has a single boundary component. While it is
possible that a component manifold has handle number 0, this will occur only
when M �bers over the circle, or unnecessary parallel copies of some surface
occur in the collection. Handle number 0 implies that the component is a
compression body, in fact a product, since its boundary is incompressible. This
component is either bounded by disjoint parallel copies of a surface, or there is
a single surface cutting M into a product, i.e., M �bers over the circle.

Unfortunately, we are unable to draw conclusions about every component man-
ifold unless the genus of Γ, hence g(M), is 2.

1.3 Corollary If M is a closed, irreducible genus two 3{manifold and F is a
complete collection of surfaces, then every component manifold of M −N(F)
has handle number at most 1.

Although the component manifolds have high genus Heegaard splittings, the
fact that they are handle number one means that this is due precisely to the
fact that these manifolds have boundary with high genus, and are otherwise
very simple in terms of Heegaard structure. The genus of a handle number one
component manifold is bounded above by

g(Mi) � g(@Mi) + 1;

where g(@Mi) is the sum of the genera of the components of @Mi . In some cases,
this allows one to precisely compute the genus of the component manifolds. For
example, when g(M) = 2 and the complete collection F consists of a single
separating surface F , we obtain the equality g(Mi) = g(F ) + 1; i = 1; 2. By
contrast, in this case Johannson obtains a bound of g(M1)+g(M2) � 2g(F )+10.
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Or, if F is a maximal embedded collection of tori, the single handle is either
attached to one boundary component or is an arc joining two distinct torus
boundary components. As a corollary, we obtain:

1.4 Corollary If M is genus 2, and F is a maximal collection of tori then
every component of M −N(F) has genus 2.

Kobayashi [7] has proven a much stronger result regarding torus decompositions
of genus 2 manifolds.

Most of the techniques presented here apply without assumption on the genus
of M . The exception is Proposition 6.3 whose hypothesis on handle number
will not be consistently met when the genus of M is greater than two. If the
hypothesis on handle number can be removed, then a general upper bound on
the handle numbers of the component manifolds is obtained. (It is likely that
one must adopt the assumption that the collection F is in fact maximal). This
would yield:

1.5 Conjecture Let M be a closed, irreducible 3{manifold and F a maximal
embedded collection of orientable, incompressible surfaces. If M − N(F) has
n components then

nX
1

h(Mi) � g(M) + n− 2;

where h(Mi) denotes the handle number of the component manifold Mi .

2 Preliminaries

We give brief de�nitions of concepts related to Heegaard splittings, the reader
is referred to [10] for a more thorough treatment. Let S be a closed surface,
I = [−1; 1]. A compression body C is a 3-manifold obtained by attaching 2{
handles and 3{handles to S�I , where no attachment is performed along S�f1g.
The boundary of a compression body is then viewed as having two parts, @+C
and @−C , where @+C = S � f1g and @−C = @C − @+C . Alternatively, we
may construct a compression body C by attaching 1{handles to S � I where
all attachments are performed along S � f1g. In this case, @−C = S � f−1g,
@+C = @C − @−C , and the 1{handles are dual to the 2{handles of the former
construction. In either construction, we adopt the convention that every 2{
sphere boundary component of @−C is capped o� with a ball. If @−C = ;
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then C is called a handlebody. Note that a handlebody can also be de�ned
as a connected manifold with boundary that possesses a complete collection of
compressing disks, a properly embedded collection of disks (the cores of the
2{handles) which cut the handlebody into a disjoint union of balls.

A Heegaard splitting is a decomposition of a (closed or bounded) 3{manifold,
M 0 = C1 [S C2 , where C1 and C2 are compression bodies with their positive
boundaries identi�ed, S = @+C1 = @+C2 . In this case S will be a closed surface
embedded in M 0 and will be called a Heegaard surface for M 0 . The genus of
M 0 is

g(M 0) = minfg(S)jS is a Heegaard surface for M 0g:

A Heegaard splitting will be called weakly reducible if there are non-empty
properly embedded collections of compressing disks �1 � C1 and �2 � C2

so that @D1 \ @�2 = ; in the Heegaard surface S . If it exists, the collection
�0 = �1 [�2 is called a weak reducing system for the Heegaard splitting.

Figure 1: Graphs with handle number 2.

If Γ is a graph then we will refer to the vertices of valence 1, as the boundary of
Γ, @Γ. A graph Γ �M 0 will be said to be properly embedded if it is embedded
in M and Γ \ @M 0 = @Γ. For a properly embedded graph Γ � M 0 , we will
de�ne the genus of Γ to be

g(Γ) = rank H1(Γ);

and de�ne the handle number of Γ to be

h(Γ) = rank H1(Γ; @Γ):

Equivalently, the handle number is the number of edges that need to be removed
from Γ so that the resulting graph is empty or a collection of trees each attached
to a boundary component of M 0 by a single vertex; or, h(Γ) = −�(Γ) + j@Γj =
g(Γ) + j@Γj − jΓj. Some handle number two graphs are pictured in Figure 1.

Typically we will keep track of a Heegaard splitting via a properly embedded
graph in the manifold. A Heegaard splitting of a closed manifold M will nec-
essarily consist of two handlebodies, and in this case, each of the handlebodies
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is isotopic to a regular neighborhood of a (non-unique) graph embedded in the
handlebody, hence the manifold. Any such graph Γ, for either handlebody,
will be called a spine of the Heegaard splitting. For bounded manifolds, Hee-
gaard splittings come in two varieties, depending on whether or not one of the
compression bodies is actually a handlebody. Correspondingly, there are two
ways that a properly embedded graph can represent a Heegaard splitting of a
bounded manifold. A tunnel system for M 0 is a properly embedded graph Γ so
that M 0 −N(Γ) is a handlebody. The tunnel number of M 0 is

t(M 0) = minfh(Γ)jΓ is a tunnel system for M 0g:
A handle system for M 0 is a properly embedded graph Γ so that M 0 −N(Γ)
is a compression body C and @−C � @M 0 . The handle number of M 0 is

h(M 0) = minfh(Γ)jΓ is a handle system for M 0g:
In either case, if @1M

0 denotes the boundary components of M 0 to which Γ is
attached, then @N(Γ [ @1M

0) is a Heegaard surface for M 0 .

Whenever a Heegaard splitting is represented by an embedded graph, whether a
spine, tunnel system, or handle system, then we may perform slides of edges of
the graph along other edges of the graph without changing the isotopy class of
the Heegaard surface, see Figure 2. Such moves are called edge slides or handle
slides. When working with tunnel or handle system, we may also slide handles
along the boundary of the manifold without changing the Heegaard splitting.

Figure 2: Edge slides do not change the Heegaard splitting.

In the case of a tunnel or handle system, Γ will be slide-equivalent to a collection
of h(Γ) properly embedded arcs in M 0 . So t(M 0) and h(M 0) should be thought
of as the minimal number of arcs that need to be drilled out of M 0 so that the
resulting manifold is a handlebody or compression body, respectively. The
handle number is a strict generalization of the tunnel number and we have
h(M 0) � t(M 0). In general these quantities are di�erent. For example the
exterior of the Hopf link in S3 is tunnel number one but handle number 0.

A bounded manifold M 0 will be said to be indecomposable if it contains no
closed, orientable, non-peripheral incompressible surface whose genus is either
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less than or equal to the genus of a single boundary component of M 0 or strictly
less than the sum of the genera of two distinct boundary components of M 0 .
Let F = F1 [ F2 [ : : : ; Fk �M be an embedded collection of closed orientable
incompressible surfaces. A component manifold is a component of the manifold
M −N(F). If F is an embedded collection of closed, orientable, incompressible
surfaces and each of the component manifolds is indecomposable, then we say
that F is a complete collection of surfaces.

Clearly a maximal embedded collection of orientable, incompressible surfaces
is complete. However, this is not required for the collection be complete. For
example, a maximal embedded collection of tori in an irreducible manifold is
complete as each of the component manifolds is indecomposable (any additional
surface would have to be genus 1).

3 Proof of the Main Theorem

In this section we will give an outline of the proof of the main theorem, Theorem
1.2. The proofs of several important lemmas will be deferred to later sections.
Throughout, M will denote a closed, orientable, irreducible 3{manifold, Γ will
be the spine of an irreducible Heegaard splitting of M , and F will be a complete
collection of incompressible surfaces.

Arranging Γ to intersect the decomposition minimally Embed in M
two parallel copies of each of the incompressible surfaces in F and denote this
collection by 2 F . If there are k components of F , 2 F decomposes M into
n+ k pieces, k product manifolds Fj � I; j = 1::k and n component manifolds
denoted Mi; i = 1::n; n < k , identical to those obtained by cutting along F .
See Figure 3.

Suppose that Γ is in general position with respect to 2 F and that we have cho-
sen � to be a complete collection of compressing disks for the complementary
handlebody M −N(Γ). The complexity of (Γ;�) is an ordered triple (�; �; �) of
the following quantities:

(1)
P
h(Γ\Mi) = the sum of handle numbers of the intersection of the spine

Γ with each of the component manifolds Mi ,

(2)
P
h(Γ \ (Fj � I)) = the sum of the handle numbers of the intersection

of the spine Γ with each of the product manifolds Fj � I ,

(3) j� \ 2 Fj = the number of components in the intersection of the disk
collection � and the surfaces 2 F .
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M1

M3

M2

M4

F1 x I

F2 x I
F3x I

F4 x I

Figure 3: Letting Γ intersect the decomposition minimally.

Isotoping or manipulating Γ by edge{slides does not change the isotopy class
of the Heegaard surface @N(Γ), and we therefore consider such a spine to
be equivalent to Γ. With no loss of generality, we will assume that a spine
equivalent to Γ and a complete collection of compressing disks � have been
chosen to minimize complexity with respect to lexicographic ordering. Speci�c
properties of the intersection (Γ[�)\ 2 F will be developed in Section 4; and
are based on the arguments of Scharlemann and Thompson [11]. In particular
we will prove:

3.1 Theorem Γ\M 0 is a tunnel system for each product or component man-
ifold M 0 .

Proof deferred to Section 4.

Ordering subdisks of � − 2 F By Lemma 4.3 we know that � − 2 F
is a collection of disks. We will (non-uniquely) label these disks d1; : : : ; dm
according to the following rules:

(1) Label an outermost disk d1 ,

(2) Assuming that the disks d1; : : : ; dl−1 have been labeled, give the label
dl to a subdisk of � − 2 F that is outermost relative to the subdisks
d1; : : : ; dl−1 . See Figure 4.
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d1

d2

d3

d4

Figure 4: Labeling subdisks of �− 2 F .

Note that each of the subdisks dl is embedded in some component or product
manifold M 0 . Moreover, it is a compressing disk for the handlebody that is the
complement of the tunnel system induced by Γ, M 0 −N(Γ).

Let fdijg be a subcollection of the disks �−2 F . The support of fdijg, denoted
supp(fdijg), is the sub{graph of Γ that is the spine of the handlebody obtained
by maximally compressing N(Γ) along compressing disks which are disjoint
from 2 F and disjoint from the boundary of fdijg � @N(Γ) and throwing away
any components which do not meet fdijg. For each component manifold Mi

let j be the least j so that dj � Mi . The disk Di = dj will be called the
relatively outermost disk for Mi . The graph

Ωi = supp(Di)

will be called the relatively outermost graph for Mj .

Figure 5: The support of a disk.
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Remarks

(1) In the de�nition of support, it may be necessary to perform handle slides
of Γ in the interior of some component manifolds in order to realize the
maximal collection of compressing disks, see Figure 5.

(2) We have chosen a �xed numbering of the subdisks of � − 2 F . Thus,
the notions of the relatively outermost disk and the relatively outermost
graph for a component manifold are well de�ned.

(3) We will consider the support of a relatively outermost disk Ωi = supp(Di)
to be a graph that is properly embedded in the component manifold Mi .
We will consider the support of a collection of subdisks supp(fdijg) to be
graph that is embedded in M .

We can reconstruct the spine Γ by building a sequence of graphs, each the
support of a larger collection of ordered subdisks of �− 2 F ,

Γk = supp(fdigi=1::k):

In particular,
Γm = Γ:

The relatively outermost graphs for each component manifold, Ω1; : : : ;Ωn , will
be attached at some point in building Γ. Moreover, they are the support of the
relatively outermost disks D1; : : : ;Dn , and as we will see they are attached to
the previous graph along all but at most one of their endpoints. This gives us a
lower bound for the genus of Γ in terms of the handle number of the outermost
graphs Ωi .

3.2 Lemma Let Γ be the spine of an irreducible Heegaard splitting. Then

g(Γ) �
nX
1

h(Ωi)− n+ 2:

Proof deferred until Section 5.

However, it is our aim to develop a lower bound for the genus of Γ in terms of
the handle numbers of the component manifolds, not just the handle numbers
of the relatively outermost graphs Ωi . In a special case (h(Ωi) = 1) we will
show that Ωi is in fact a handle system and obtain the desired bound.

3.3 Proposition If h(Ωi) = 1 then Ωi is a handle system for Mi . In partic-
ular, h(Mi) � 1.

Algebraic & Geometric Topology, Volume 1 (2001)



Genus two 3{manifolds are built from handle number one pieces 773

Proof deferred to Section 6.

Remark The restriction h(Ωi) = 1 in this proposition is what prevents us
from making a more general statement connecting genus to the sum of handle
numbers of the component manifolds. If Ωi were always a handle system for
the component manifold Mi then we would obtain the more general inequality
g(Γ) �

P
h(Mi)− n+ 2.

These lemma and proposition prove the main theorem. Let j � n be the
number of components Mi which have h(Mi) > 1. By Proposition 3.3, each of
the corresponding outer handle systems Ωi has h(Ωi) > 1. By Lemma 5.1 we
have

g(Γ)− 2 �
X

h(Ωi)− n � n+ j − n � j:

Therefore, the number of component manifolds with handle number one is at
least

n− (g(Γ)− 2) = n+ 2− g(Γ):

4 Properties of the Minimal Intersection between
2 F and Γ

This section is devoted to developing the properties of the minimal intersection
between the Heegaard complex Γ [ � and the incompressible surfaces 2 F .
Many of these properties were either speci�ed in the work of Scharlemann and
Thompson [11], or follow from the same methods. They are included here,
both for the sake of completeness, and due to the fact that the de�nition of
minimality used here di�ers from that in [11]. We also apply these properties
to characterize the support of outermost and relatively outermost disks.

Throughout this section, we assume that the spine Γ of the irreducible Hee-
gaard splitting and compressing disks � for its complement have been chosen
to intersect the surfaces 2 F minimally, as de�ned in the previous section.
However, it is not necessary to place any restrictions on the surface collection
F .

First we will demonstrate that Γ induces Heegaard splittings of each of the
component and product manifolds.

4.1 Lemma Let F be a component of 2 F . Then the punctured surface
F 0 = F −N(Γ) is incompressible in the handlebody M −N(Γ).
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Proof If some component of the punctured surface were compressible, then
there would be a compressing disk D for F 0 , a perhaps distinct component
of the punctured surface, embedded in some component or product manifold
M 0 . The boundary of D bounds a disk D0 in F . As M is irreducible, D
and D0 cobound a ball B , and B must be contained in M 0 , for otherwise the
incompressible surface F would lie in the ball B . We can therefore isotope
F through B , thereby pushing a portion of Γ \M 0 into an adjacent product
or component manifold. See Figure 6. Since Γ is the spine of an irreducible
splitting, by a theorem of Frohman [3], B \ Γ does not contain any loops of
Γ, it is merely a collection of trees. As there is no loop of Γ in the ball, this
move does not raise the induced handle number of the adjacent manifold, while
it does reduce the handle number of Γ \M 0 . This contradicts the minimality
of the intersection.

Figure 6: If F 0 is compressible the intersection is not minimal.

4.2 Theorem Γ\M 0 is a tunnel system for each product or component man-
ifold M 0 .

Proof The manifold M 0 −N(Γ) is a component of the handlebody M −N(Γ)
after it is cut along the properly embedded collection of punctured incompress-
ible surfaces 2 F 0 = 2 F −N(Γ). It is well known that when a handlebody is
cut along a collection of incompressible surfaces, the resulting pieces are han-
dlebodies. So M 0 −N(Γ) is a handlebody and Γ \M 0 is the corresponding
tunnel system.

The intersection of the 2-complex Γ [� with the incompressible surfaces 2 F
is a graph G � 2 F . See Figure 7. A component of intersection with the
spine, Γ \ 2 F is called a vertex. Since handlebodies do not contain closed
incompressible surfaces, there is at least one vertex in each component of 2 F .
A component of the intersection with the compressing disks, � \ 2 F is called
a circle if it is an intersection with the interior of � and an edge otherwise. An
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edge joining distinct vertices will be called an arc and an edge joining a vertex
v to itself is called a loop based at v .

circle

looparcvertex

Figure 7: The intersection of Γ [� with 2 F is a graph in 2 F .

4.3 Lemma There are no circles in G.

Proof This follows from the minimality of � \ 2 F , using an innermost disk
argument and Lemma 4.1.

4.4 Lemma [11] There are no isolated vertices (every vertex belongs to some
edge).

Proof If some vertex is isolated then it de�nes a compressing disk D for
the handlebody N(Γ) (or the vertex cuts o� a tree, contradicting minimality).
Moreover, the boundary of D is disjoint from the complete collection of disks �.
After compressing the handlebody M −N(Γ) along � we obtain a collection
of balls, and @D is a loop on the boundary of one of these balls. It therefore
also bounds a disk in the handlebody M −N(Γ). This implies that Γ is the
spine of a reducible Heegaard splitting.

We rely heavily on the notion of outermost edges [11]. Every edge e of G
separates some disk D � � into two subdisks, D1 and D2 . If one of the
subdisks does not contain any other edges of G then e is called an outermost
edge of G. Suppose that an edge e is joined to the vertex v and that one of
the two subdisks D1 or D2 does not contain an edge of G which is joined to
v . Then, e is an outermost edge with respect to v .

Note that by passing to subdisks, every vertex v has some edge e which is
outermost with respect to it. Also, an outermost edge is outermost with respect
to its vertices (or vertex), but not (in general) vice-versa.
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4.5 Lemma [11] Let e be an outermost edge with respect to one of its ver-
tices v . Then e is a loop based at v that is essential in 2 F .

Proof Suppose that e is an arc and joins v to a distinct vertex w . See Figure
8. (The edge e may or may not be outermost for w .) The edge e cuts o� a disk
D0 � � which does not contain any edge joined to v . Let M 0 be the adjacent
manifold into which D0 starts, and let M 00 be adjacent manifold. Let γ � Γ
denote the handle containing v .

We will now perform a broken edge slide [11] which shows that the intersection
is not minimal. See Figure 8. Add a new vertex to γ that lies slightly into
M 0 , this breaks γ into two handles, γ1 and γ2 . Use the disk D0 to guide an
edge-slide of γ1 , which pulls it back into M 00 . This edge-slide is permissible
precisely because e is outermost for v , we did not ask the handle γ1 to slide
along itself. It does not increase the handle number of Γ\M 00 , while it strictly
decreases the handle number of Γ\M 0 (and possibly others, if γ2 runs through
other manifolds). This contradicts the minimality of the intersection between
Γ and 2 F .

wv
e

γ
2

γ

γ
1

γ
2

γ
1

D' slide

e

γ

γ
1

γ
2

v

γ
1

γ
2

M'

M''

Figure 8: A broken edge slide.

We have established that an outermost edge for a vertex must be a loop. If
it were inessential then we can �nd an innermost inessential loop bounding a
disk D . If D contains a vertex v then an outermost edge for v is an arc,
contradicting the previous conclusion of this lemma. If D does not contain a
vertex, then we can reduce the number of intersections of �\2 F by boundary
compressing � along D . See Figure 9.
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D

Figure 9: Boundary compressing � reduces the number of intersections.

4.6 Lemma The support of an outermost disk, supp(dj) is connected, has a
single boundary vertex, and h(supp(dj)) = g(supp(dj)) > 0.

Proof There is a single edge e � G cutting o� the outermost disk dj from �.
By Lemma 4.5, this edge is an essential loop in some component F of 2 F . This
implies that supp(dj) has a single boundary vertex and is connected. Now, if
h(supp(dj) = 0, then the subarc � = @dj − e � @N(Γ) of the boundary of dj
does not cross any compressing disk of Γ\Mi other than the disk corresponding
to the vertex. This means that we can perform edge slides of Γ that allow us
to pull the arc � back to F , creating an essential circle of intersection in the
process. This is a contradiction, a subdisk of dj becomes a compressing disk
for F , see Figure 10.

Figure 10: An outermost disk with handle number 0.

Since, supp(dj) has a single boundary vertex, all of its handles must be realized
by genus, i.e., g(supp(dj)) = h(supp(dj)).

4.7 Lemma The support Ωi of a relatively outermost disk Di for a component
manifold Mi is connected and has h(Ωi) � 1.

Proof We �rst show that Ωi is connected. The boundary of the relatively
outermost disk Di consists of arcs on Ωi and edges lying in 2 F . Each arc in
Ωi lies in a single component of Ωi . All but at most one of the edges cuts o� a
disk which does not return to Mi . Each of these edges is therefore outermost
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for its vertices, and by Lemma 4.5 an essential loop in some component F of
2 F . Loops do not join distinct components of Ωi . This means that Ωi is
connected, for any edge leaving a component there must be an additional edge
that returns to that component, and we have at most one edge that is not a
loop.

Figure 11: A relatively outermost disk that joins distinct boundary components.

Now, suppose that h(Ωi) = 0. We know that all but at most one of the edges
is a loop. While in general it is possible that the remaining edge e is an edge,
this does not occur when h(Ωi) = 0. A single edge implies that the boundary
of Di joins two distinct vertices in the graph and therefore traverses a handle
in the component manifold.

Figure 12: A relatively outermost disk whose support has handle number 0.

Since h(Ωi) = 0 we may perform edge slides so that a sub disk of Di intersects
some component F of 2 F in a circle that bounds a disk in Mi . See Figure 12.
This may raise the handle number of an adjacent product manifold. Since F
is incompressible, the boundary of this disk bounds a disk in F , the two disks
bound a ball, and as in Lemma 4.1 we can perform an isotopy of the graph
that reduces the induced handle number of the component manifold Mi . This
contradicts minimality of the intersection of Γ and 2 F .

There is one situation contradicting minimality that cannot be detected from
the intersection of Γ and 2 F and the knowledge that an edge is outermost.
It is possible that there is a loop based at a vertex v that cuts o� a disk
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lying in a component manifold which runs along a handle exactly once, see
for example Figure 13. In this case, the handle can be slid into the product
manifold reducing complexity. This is also the motivation for working with the
collection 2 F instead of F and choosing our de�nition of complexity. If we
were working with a single copy, F , this move would not decrease complexity,
it raises the induced handle number of the adjacent component manifold. This
situation will be detected by using the machinery of Casson and Gordon [1] and
is analyzed in Section 6.

Figure 13: A handle that is parallel to a component of F .

5 Estimating the Genus of Γ

The setup for this section is that of the proof of the main theorem: Γ is the spine
of an irreducible Heegaard splitting, � is a complete collection of compressing
disk for M −N(Γ), both chosen to intersect 2 F minimally; and Ω1; : : : ;Ωn

are the support of relatively outermost disks, D1; : : : ;Dn , for the component
manifolds, M1; : : : ;Mn: We demonstrate that the sum of the handle numbers
of the supports gives us a lower bound on the genus of Γ.

5.1 Lemma

g(Γ) �
nX
1

h(Ωi)− n+ 2

Proof Recall that we have de�ned

Γk = supp(fdigi=1::k);

where d1; : : : ; dm is an outermost ordering of the subdisks of � − 2 F . The
proof is an inductive one, demonstrating that when Γk ( Γ,

g(Γk)− jΓkj �
X

Ωi�Γk

(h(Ωi)− 1); (1)
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where jΓkj denotes the number of components of Γk . We then analyze the
�nal attachment, when Γk = Γ. Note that at each stage we are attaching some
portion of the spine Γ; the right hand side of the inequality can only increase
when this portion is actually the support of the relatively outermost disk Ωi

for some component manifold Mi .

Let k = 1. The graph Γ1 is the support of the outermost disk d1 which is
embedded in either a component or product manifold M 0 . By Lemma 4.6, Γ1

is connected, has a single boundary vertex, and has positive genus. This means
that g(Γ1) = h(Γ1). If M 0 is a component manifold we have g(Γ1) − 1 �
h(Ω1) − 1 and if M 0 is a product manifold we have g(Γ1) − 1 � 0. This
establishes Inequality 1 for k = 1.

Now, suppose that k > 1, Γk ( Γ, and that Γk−1 satis�es the inductive
hypothesis. If dk is not an relatively outermost disk for a component manifold,
then we merely need to observe that the left-hand side of Inequality 1 does
not decrease when we attach supp(dk). It will decrease only if the number
of components increases, which means that some component of supp(dk) is
not attached to Γk−1 . But, this happens only if dk is an outermost disk, in
which case supp(dk) has a single component and there is an increase of genus
to compensate for the additional component.

We are left in the case that dk is a relatively outermost disk Di for some
component manifold Mi , then supp(dk) = Ωi . By Lemma 4.7, Ωi is connected.
Again, if Ωi is not actually attached to Γk−1 , an additional component is added,
but then dk is actually an outermost disk, supp(dk) is connected, has positive
genus, and h(Ωi)− 1 = g(Ωi)− 1 is added to both sides.

If dk is a relatively outermost disk Di for Mi , but not absolutely outermost
(for example that in Figure 11), then all but at most one boundary vertex of
Ωi is attached to Γk−1 . As noted in the proof of Lemma 4.7, all but at most
one of the vertices of Ωi , has an outermost loop in G attached to it that cuts
o� a subdisk of � containing only disks with labels di , where i < k . Each such
edge of the disk is attached to a disk with strictly smaller labels, so all but one
boundary vertex is attached to Γk−1 .

So, for all but the �rst vertex attached, each attached vertex adds to the genus
by one or reduces the number of components by 1, see Figure 14. Moreover,
any genus of Ωi is added to the genus of Γk−1 . We have added g(Ωi)+ j@Ωij−2
to the left-hand side of 1, this is the same as h(Ωi) − 1, which is added to the
right side.

A similar analysis pertains for the �nal attachment, when Γk = Γ. However,
in this case every vertex of supp(dk) is attached to Γk−1 , for there can be no
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or

Figure 14: Attaching Ωi , a relatively outermost graph with handle number 3, adds 2
to g(Γk−1)− jΓj.

or

Figure 15: The �nal attachment.

unattached vertices, see Figure 15. When supp(dk) is not some Ωi this adds
at least 1 to left side of Inequality 1 and nothing to the right hand side. When
supp(dk) = Ωi for some i, this adds h(Ωi) to the left hand side and h(Ωi)− 1
to the right side. In either case, the inequality will still hold even if we add an
additional 1 to the right side. This yields

g(Γ) − jΓj �
nX
1

(h(Ωi)− 1) + 1:

Since Γ is connected, we have

g(Γ) �
nX
1

h(Ωi)− n+ 2:

6 Weakly Reducible Heegaard splittings of Mani-
folds with Boundary

In [1] Casson and Gordon introduced the notion of a weakly reducible Heegaard
splitting of a closed 3{manifold, and showed that such a splitting is either re-
ducible or the manifold contains an incompressible surface. We �rst state and
prove an extension of their theorem to manifolds with boundary; a similar the-
orem was proven by Lustig and Moriah [9]. We will then apply these techniques
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to the Heegaard splittings of the component manifolds Mi that are induced by
the Heegaard spine Γ. These splittings are typically weakly reducible.

First, we introduce some notation. Suppose that H �M is a closed embedded
surface and � � M is an embedded collection of disks so that � \H = @�.
Let �(H;D) denote the surface obtained by performing an ambient 1-surgery
of H along D (i.e., compression). We use the notion of complexity introduced
in [1], the complexity of a surface is de�ned to be,

c(surface) =
X

(1− �(S));

where the sum is taken over all non-sphere components of the surface S . Note
that if D is a single disk with essential boundary then

c(�(H;D)) =

8><>:
c(H)− 1 if D is separating or compresses a torus

component of H, and;
c(H)− 2 otherwise:

6.1 Theorem Let M be a compact, orientable, irreducible 3-manifold and
M = C1[H C2 a Heegaard splitting of M . If �0 = �1[�2 is a weak reducing
system for the Heegaard splitting then either

(1) M contains an orientable, non-peripheral incompressible surface S so
that c(S) is less than or equal to the complexity of �(H;�0), or

(2) there is an embedded collection of disks c�1 � C1 so that �1 � c�1 and

some component of �(H; c�1) is a Heegaard surface for M , or

(3) there is an embedded collection of disks c�2 � C2 so that �2 � c�2 and

some component of �(H; c�2) is a Heegaard surface for M .

In particular, conclusions (2) and (3) imply that H is not of minimal genus.

Proof De�ne the complexity of a weak reducing system �0 = �1[�2 for the
Heegaard splitting C1 [H C2 to be

c(�0) = c(�(H;�0)):

Let the surfaces Hi = �(H;�i); i = 0; 1; 2, be obtained by compressing H
along the corresponding disk collections. See the schematic in Figure 16, it is
essential to understanding the arguments of this section. Note that the surface
H0 separates M into two components, denote these by X1 and X2 . If we
compress the compression body C1 along the disk system �1 we obtain a
compression body Y1 which we will think of as sitting slightly inside X1 . Its
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complement X1 − Y1 can be thought of as (H1 � I) [N(�2) - a product with
2-handles attached, and is therefore a compression body. Symmetrically, we
also have that X2 − Y2 is a compression body. Thus, the surfaces H1 = @Y1

and H2 = @Y2 are Heegaard surfaces for the (possibly disconnected) manifolds
X1 and X2 , respectively.

∆2

H

C2

C1

∆1

H0

H2

H1 Y1

Y2 }
} X1

X2

Figure 16: Compressing a Heegaard surface along a weak reducing system.

Suppose that some positive genus component of H0 is compressible, say into X1 .
The compressing disk D for H0 is a boundary reducing disk for the manifold
X1 . As H1 is a Heegaard surface for X1 , the Haken lemma (see [1]) implies
that we may isotope D to intersect H1 in a single circle. It also says that we
may choose a new collection of compressing disks �02 for X1−Y1 , hence for C2 ,
which is disjoint from D . The collection �00 = (�1[D)[�02 is a weak reducing
system with lower complexity than �0 because we have compressed H along
an additional disk. A symmetric phenomenon occurs if H0 is compressible into
X2 .

In fact, we may continue to compress H0 , �nding new disk collections of strictly
decreasing complexity, until each component of H0 is a 2-sphere or incompress-
ible surface. Denote the �nal weak reducing system by �00 , and the corre-
sponding surfaces and sub-manifolds indicated in Figure 16 by H 01;X

0
1; Y

0
1 ; : : : ,

etc.. Now �00 may or may not contain the original disk collections �1 and �2 .
However, the compression bodies Y 01 and Y 02 are obtained by compressing the
compression bodies Y1 and Y2 . These in turn were obtained by compressing
C1 and C2 along the original collections �1 and �2 . So we may also think of
Y 01 and Y 02 as being obtained by compressing C1 and C2 along a collection of
disks c�1 � C1 and c�2 � C2 where �1 � c�1 and �2 � c�2 . In general c�1

and c�2 do not have disjoint boundary on H and cannot be taken to be part
of a weak reducing system.

If some component S of H 00 is an incompressible and non-peripheral surface,
then we have conclusion (1) of the theorem. Moreover, we have that c(S) �
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c(�(H;�0)), for S is a component of H 00 which was obtained by compressing
H0 = c(�(H;�0)).

M'

H0'

ball

ball

Figure 17: A component M 0 is essentially the same as M .

We therefore assume that each component of H 00 is a 2-sphere bounding a
ball (M is irreducible) or a peripheral incompressible surface. See Figure 17.
Then some component of M −N(H 00), call it M 0 , is a copy of M perhaps with
some balls and product neighborhoods of boundary components of M removed.
Since H 00 separates M into X 01 and X 02 , M 0 must actually be a component of
either X 01 or X 02 , say X 01 . Recall that the surface H 01 is a Heegaard surface
for X 01 . This means that some component H 00 � H 01 is a Heegaard surface for
M 0 . In fact, H 00 is also a Heegaard surface for M ; �lling in balls and product
neighborhoods of the appropriate boundary components does not change the
property that H 00 bounds compression bodies to both sides. Moreover, the
Heegaard surface H 00 is a component of the boundary of Y 01 and it follows
from our earlier remarks, that it is a component of the surface �(H; c�1), where
�1 � c�1 . Symmetrically, if M 0 � X 02 then the Heegaard surface H 00 is a
component of the surface �(H; c�2), where �2 � c�2 .

There is one major di�erence between the case of closed manifolds addressed
by Casson and Gordon and the case of bounded manifolds addressed in Theo-
rem 6.1. Conclusions (2) and (3) in the above theorem do not imply that the
splitting is reducible. A Heegaard splitting de�nes a partition of the bound-
ary components of the manifold. Reducing (destabilizing) a Heegaard splitting
does not change this partition of the boundary components, whereas compres-
sion along c�1 orc�2 may change the partition. This is seen in the following
example.
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6.2 Example Consider M , the exterior of the three component chain pictured
in Figure 18. (The manifold M may also be though of as P � S1 , where P is
a pair of pants).

a
1

a
2

∆1

Figure 18: A weakly reducible tunnel system for the exterior of the three component
chain.

It is not di�cult to see that when a neighborhood of the arcs a1 and a2 are
tunneled out of M , a handlebody is the result. Thus, fa1 [ a2g is a tunnel
system for M . Moreover, this system is weakly reducible: let �1 = D1 be
the cocore of a1 and �2 be the compressing disk for M − N(a1 [ a2) whose
boundary is indicated in the �gure, running over a2 twice. Since, M does not
contain any closed non-peripheral incompressible surfaces, Theorem 6.1 implies
that this splitting can be compressed to a splitting of lower genus. However,
the tunnel system fa1 [ a2g cannot possibly be reducible, three is the minimal
genus of a Heegaard splitting for which all three boundary components of M
are contained in the same compression body. In fact, either of the arcs a1 or
a2 taken alone are a handle system for M . This induces a genus 2 Heegaard
splitting of M where one compression body contains two boundary components
of M and the other compression body contains one boundary component of M .

We now re�ne these methods to address the problem outlined in Section 3.
The setup is the same as in that section: M is a closed manifold, F is a
complete collection of surfaces, Γ is the spine of a Heegaard splitting that
has been arranged to intersect 2 F minimally, and Ωi is the support of a
relatively outermost disk Di for some component manifold Mi . The proof uses
the notation and closely follows the proof of Theorem 6.1.

6.3 Proposition If h(Ωi) = 1 then Ωi is a handle system for Mi . In partic-
ular, h(Mi) � 1.

Proof By Theorem 4.2 we know that Γi is a tunnel system for Mi ; H =
@N(Γi [ @Mi) is a Heegaard surface for Mi . We may write Mi = C1 [H C2
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where C1 is a compression body containing all components of @Mi and C2 is
a handlebody.

∆
1

∆
2

boundary components of Mi

Figure 19: The tunnel system Γ \Mi is weakly reducible.

If h(Γi) = 1 then Ωi = Γi and the result holds trivially. So we assume that
h(Γi) > 1. This implies that Mi = C1 [H C2 is weakly reducible: let �1 � C1

be a complete collection of compressing disks for N(Γi − Ωi), and �2 = Di ,
the relatively outermost disk. See Figure 19. We may choose �1 so that Y1

does not contain any balls, every component is attached to @M .

Following the proof of Theorem 6.1, by further compressing H0 we obtain a
sequence of weak reducing systems, with strictly decreasing complexity. Let
�00 = �01 [�02 be the �nal disk system; for this system the surface H 00 consists
of 2-spheres and incompressible surfaces.

Claim Every incompressible component of H 00 is peripheral.

Otherwise, by Theorem 6.1 Mi contains an orientable, non-peripheral incom-
pressible surface S . Recall that H1 is the surface obtained by compressing H
along �1 , in this case it consists of copies of boundary components (possibly
none), and either one or two boundary components with a handle, @N(Ωi),
attached. To obtain S , we further compress along �2 = Di and perhaps along
additional disks. Therefore S has genus less than or equal to the genus of a
boundary component when Ωi is attached to a single boundary component, or
strictly less than the sum of the genera of two boundary components when Ωi is
attached to two boundary components. This violates our assumption that the
decomposition along F was complete. This completes the proof of the claim.
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We conclude, as in Theorem 6.1, that some component M 0 � X 01 or M 0 � X 02
is a copy of Mi with some balls removed.

Claim If M 0 � X 01 then Ωi is a handle system for Mi .

In this case some component of H 01 = @Y 01 is a Heegaard surface for Mi . Recall
that Y 01 was obtained by �rst compressing C1 = N(@Mi[Γi) along �1 yielding
Y1 = (@Mi � I) [N(Ωi), and then perhaps compressing further. But, the only
compressions remaining are along the cocore of N(Ωi) or the separating disk
which is the double of the cocore (only if Ωi is attached to a single component
of @Mi ). But, we could not have compressed along either of these: compress-
ing along the cocore leaves Y 01 = @Mi � I whose boundary cannot include a
Heegaard surface (Mi is not a compression body), and compressing along the
double would imply that the Heegaard surface is the boundary of a solid torus,
in particular Mi has genus 1. This is not possible since @Mi has positive genus.
Thus �0 is the �nal weak reducing system and H 01 = H1 . The Heegaard surface
is the boundary of the component of Y1 that includes N(Ωi). In other words,
Ωi is a handle system for Mi . (Recall Figure 16). This completes the claim.

The theorem will follow from the proof of the following claim. In it we argue
that in fact, the initial disk system �0 is \almost" the �nal system �00 . There
may be one additional compression, but, it can be controlled.

Claim If M 0 � X 02 then the intersection of Γ with 2 F is not minimal (a
contradiction).

Since M 0 is isotopic to M (modulo balls), for each boundary component, M 0

either contains that boundary component or a parallel copy of that boundary
component. In fact, each must be a parallel copy: the original Heegaard surface
H separated the handlebody C2 from the boundary components, and then so
must H 00 separate X 02 from the boundary components. (Figure 16).

Since M 0 � X 02 we have that H 00 = @X 02 contains at least one parallel copy of
each boundary component of Mi . It follows that

c(H 00) � c(@Mi):

We now show that the surface H0 contains a parallel copy of each component
of @Mi . Denote the component(s) to which the handle Ωi is attached by @1Mi ,
and the others by @2Mi . The surface H1 was obtained by compressing along
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�1 and therefore contains a copy of each component of @1Mi and a copy of
@N(Ωi) [ @2Mi . It follows that

c(H1) =

(
c(@Mi) + 2 if j@1Mij = 1;
c(@Mi) + 1 if j@1Mij = 2:

The complexity of H0 is less by one if �2 = Di separates and less by two if
�2 = Di does not separate. Unless Ωi is attached to a single component and
Di separates, we have c(H0) � c(@Mi). But we know that c(@M) � c(H 00) �
c(H0). This implies that H0 = H 00 and by previous comments contains a copy
of each boundary component.

The remaining case is that @1Mi is a single component and �2 is separating.
In this case H0 contains @2Mi and two other components, S0 and S00 , each
with positive genus. In particular, c(H0) = c(@Mi) + 1. There can only be one
additional compression, say to S0 . But this implies that S00 is incompressible
and hence is a copy of @1Mi . In this case S00 is a compressible torus.

We now know that the surface H0 is a single parallel copy of each boundary
component and possibly a single compressible torus (see the proof of the above
claim). The disks �1 were chosen so that C1 , and hence X1 , contains at most
one component for each component of @Mi . Therefore the torus, if it exists, is
contained in a product neighborhood of the boundary and some component of
X2 is a manifold M 0 isotopic to M . See Figure 20.

X2

X1

X1

X1

X2

M'

Figure 20: A component of X2 is isotopic to M .

How does the spine Γ intersect M 0 ? As M 0 is a component of X2 it is formed
by attaching the 2-handles N(�1) to a handlebody C2 which is disjoint from Γ,
again Figure 16. But Γ intersects X2 in a single arc for each disk in �1 and the
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number of these is strictly less than h(Γ\Mi). Then Γ intersects M 0 � X 02 in a
subset of these arcs (perhaps all). By shrinking Mi to M 0 we reduce h(Γ\Mi)
to j�1j which is less by at least one (the handle Ωi). This contradicts the fact
that

Pn
1 h(Γ\Mi) was chosen to be minimal. Note that this may increase the

handle number of the intersection of Γ with the product manifold adjacent to
Mi . Also note that the situation in this claim is precisely the situation that
occurs when the outermost disk demonstrates that its support is parallel to the
boundary surface, recall Figure 13. This completes the proof of the claim and
the theorem.

Remark It is in the last claim of the proof that we are using the fact that
h(Ωi) = 1. It works because we have one handle, Ωi , and one compressing
disk for the complement, �2 = Di . This implies that the original disk system
�0 is \almost" the �nal compressing system �00 . If the handle number were
greater than one then we would have a discrepancy between the handle number
of Ωi and the number of compressions in �2 , we would need to compress C2

further, and be forced to change from the original disk collection �1 to a new
disk collection �01 . We cannot directly conclude that Γ intersects each disk of
�01 exactly once and the intersection of Γ with M 0 might not be lower than
that with Mi .
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