ISSN 1472-2739 (on-line) 1472-2747 (printed)

Algebraic & Geometric Topology Volume 2 (2002) 1{9 Published: 12 January 2002

AG

Bihomogeneity of solenoids

Alex Clark Robbert Fokkink

Abstract Solenoids are inverse limit spaces over regular covering maps of closed manifolds. M.C. McCord has shown that solenoids are topologically homogeneous and that they are principal bundles with a pro nite structure group. We show that if a solenoid is bihomogeneous, then its structure group contains an open abelian subgroup. This leads to new examples of homogeneous continua that are not bihomogeneous.

AMS Classi cation 54F15; 55R10

Keywords Homogeneous continuum, covering space, pro nite group, principal bundle

A topological space X is *homogeneous* if for every pair of points $x; y \ 2 \ X$ there is a homeomorphism $h: X \ ! \ X$ satisfying h(x) = y. The space is *bihomogeneous* if for each such pair there is a homeomorphism satisfying h(x) = yand h(y) = x: A compact and connected space is called a *continuum*. Knaster and Van Dantzig asked whether a homogeneous continuum is necessarily bihomogeneous. This was settled in the negative by Krystyna Kuperberg [5]. Subsequent counterexamples were given by Minc, Kawamura and Greg Kuperberg [8, 2, 4]. The counterexamples in [5, 4] are locally connected. Ungar [15] has studied stronger types of homogeneity conditions and showed that these conditions imply local connectivity.

A solenoid M_1 is an inverse limit space over closed connected manifolds with bonding maps that are covering maps. We shall silently assume that the bonding maps are not 1 - 1, so that M_1 is not locally connected. McCord [7] has shown that solenoids are homogeneous provided that compositions of the bonding covering maps are regular. Minc [8] presented an example of a homogeneous but not bihomogeneous in nite-dimensional continuum similar to a solenoid, and Krystyna Kuperberg [6] observed that a similar construction could be used to construct a nite-dimensional solenoid which is homogeneous but not bihomogeneous. We shall show that M_1 is bihomogeneous only if a certain condition related to commutativity (or lack thereof) of $_1(M_i)$ is met. In case the solenoid is 2-dimensional, the condition is both necessary and su cient.

c Geometry & Topology Publications

1 Path-components of solenoids as left-cosets of the structure group

A (*strong*) solenoid M_1 is an inverse-limit space of closed manifolds M_i with bonding maps $p_i: M_{i+1} ! M_i$ for $i 2 \mathbb{N}$ which are covering maps, such that any composition $p_{i+k} ::: p_i$ is regular. Solenoids are homogeneous spaces and they have dense path-components.

A *G*-bundle (E; B; p; F) is *principal* if the structure group *G* acts e ectively on the bers. As a consequence, the ber *F* is homeomorphic to *G*, and *G* is naturally equivalent to the group of deck-transformations.

Theorem 1 (McCord, [7]) Suppose that $M_1 = \lim_{i \to 0} (M_i; p_i)$ is a solenoid. Let $_0: M_1 ! M_0$ be the projection onto the rst coordinate and let $_0 = _0^{-1}(m_0)$ be a ber. Then $(M_1; M_0; _0; _0)$ is a principal-bundle.

The projection $_0$ is not to be confused with a homotopy group. Note that a solenoid lim $(M_i; f_i)$ is a principal bundle over any M_i and we have singled out M_0 . The spaces M_i are called the *factor spaces* of the solenoid. We think of the fundamental groups $_1(M_i)$ as (normal) subgroups of $_1(M_0)$. The structure group $_0$ is isomorphic to the pro nite group $\lim_{i \to \infty} _1(M_i)$.

Choose base-points $m_i \ 2 \ M_i$ such that $p_i(m_i) = m_{i-1}$, so $m_1 = (m_i)$ is an element of M_1 . We identify the structure group $_0$ with the ber of m_0 and we identify m_1 with the unit element of $_0$. The fundamental group $_1(M_0)$ acts on the base-point ber $_0$ by path lifting: for $g \ 2 \ _0$ and $2 \ _1(M_0; m_0)$, de ne g as the end-point of the lifted path ~ starting from the initial-point g. One veri es that this right action of $_1(M_0)$ commutes with left multiplication of $_0$. More precisely, suppose that h is a deck-transformation and that ~ is a lifted path with initial-point g. Then $h(\sim)$ has initial point h(g) and end-point h(g) . Identify the structure group with the group of deck-transformations, so we get that (hg) = h(g).

De nition 2 Suppose that $(M_1; M_0; _0; _0; _0)$ is a solenoid. We shall call the $_1(M_0)$ -orbit of $e \ 2 \ _0$ the characteristic group and we shall denote it by $_0$. Let $K_1 \ _1(M_0)$ be the intersection of all $_1(M_i)$. Then $_0$ is isomorphic to $_1(M_0)=K_1$ and we shall refer to K_1 as the kernel of $_1(M_0)$.

Our de nition deviates from the common terminology, as in [14], where the equivalence class of $_0$ under inner automorphisms of $_0$ is called the characteristic class. Note that $_0$ inherits a topology from $_0$.

Lemma 3 The path components of a solenoid are naturally equivalent to the left cosets $_{0=0}$.

Proof Suppose that $x, y \ge 0$ are elements of the base-point ber. Then x = y for some $2 \ge 1(M_0)$ if and only if there exists a path ~ M_1 that connects x to y.

If we replace the base space M_0 by M_i for some index *i*, then we get a principal bundle $(M_1; M_i; i; i)$, where i = 0 is the subgroup of transformations that leave M_i invariant. The topology of 0 is induced by taking the i as an open neighborhood base of the identity. One veri es that the charateristic group of the bundle, denoted i, is equal to $0 \\ i$. Hence the i are open subgroups of 0.

Lemma 4 For j > i the inclusion j *i* induces a natural isomorphism between j = j and j = j:

Since path components are dense in M_1 ; the characteristic subgroups i_i are dense in i_i .

2 The permutation of path-components by selfhomeomorphisms

A solenoid M_1 can be represented as a subspace of $\bigcap M_i$, the Cartesian product of its factor spaces. We identify M_i with the subspace of M_i de ned by:

$$M_i = f(x_j) : x_j \ 2 \ M_j; \ x_j = p'_j(x_i) \text{ if } j \quad i; \ x_j = m_j \text{ if } j > ig$$

where $p_j^i : M_i ! M_j$ is a composition of bonding maps. In this representation, the factor spaces M_i and M_1 all have the same base-point.

A *morphism* between ber bundles can be represented by a commutative diagram:

We shall say that *h* is the *lifted map* and that *f* is the *base-map*. We say that morphisms are homotopic if their base-maps are. By the unique pathlifting property, a morphism between bundles with a totally disconnected ber is determined by the base-map $f: B_1 ! B_2$ and the image under *h* of a single element of E_1 . For pointed spaces, therefore, a bundle-morphism is determined by the base-map only. This implies that, for principal bundles with a totally disconnected ber, bundle-morphisms commute with deck-transformations; i.e., for a lifted map *h* and a deck-transformation $': E_1 ! E_1$, we have that h ' =

h for some deck-transformation $: E_2 ! E_2$.

Lemma 5 Suppose that $(E_i; B_i; p_i; i)$ are principal *i*-bundles with a totally disconnected ber (for i = 1/2). Then a base-point preserving bundlemorphism induces a homomorphism of the structure group. Furthermore, homotopic morphisms induce the same homomorphism.

Proof First note that the lifted map h maps $_1$ to $_2$. Deck-transformations are (left) translations $x \nmid ax$ of the base-point ber $_i (i = 1/2)$. Since a bundle-morphism commutes with deck-transformations, h: $_1 \restriction _2$ satis es h(ax) = f(a)h(x) for some f: $_1 \restriction _2$. Substitute x = e to nd that h(ax) = h(a)h(x). Now homotopic bundle-morphisms give homotopic homomorphisms h: $_1 \restriction _2$. Since the groups are totally disconnected, the homomorphisms are necessarily the same.

We shall say that a bundle morphism of a solenoid is an *automorphism* if the commutative diagram can be extended on the right-hand side

such that f_2 f_1 is homotopic to p_k^j . We shall say that h_1 is the inverse of h_2 . For instance, the covering projection $p_i^j \colon M_j \not M_i$ with lifted map id_{M_1} yields an automorphism. We show that for every self-homeomorphism of a solenoid, there is an automorphism that acts in the same way on the space of path-components.

Theorem 6 Suppose that h is a base-point preserving self-homeomorphism of a solenoid M_1 . Then h is homotopic to the lifted map of an automorphism of M_1 .

Proof Since M_0 is an ANR, the composition $_0$ $h \ge M_1 ! M_0$ extends to $H: U ! M_0$ for a neighborhood of $M_1 U$ in M_i . The restriction $H: M_i ! M_0$ is well-de ned for su ciently large *i*. Note that H preserves the base-point of M_i . For su ciently large *i*, the maps H_i and $_0 h$ are homotopic. By the homotopy lifting property, H_i can then be lifted to $H: M_1 ! M_1$, which is homotopic to *h*.

Now apply the same argument to $i \quad h^{-1}$ to $nd a map \quad G: M_j \mid M_i$ for su ciently large j which can be lifted to $G: M_1 \mid M_1$. By choosing j and i su ciently large, the composition $H \quad G: M_j \mid M_0$ gets arbitrarily close to and hence homotopic to the covering map p_0^j .

Theorem 6 and Lemma 5 describe how a self-homeomorphism acts on pathcomponents of a solenoid (provided that it preserves the base-point).

Lemma 7 Suppose that *h* is the lifted map of an automorphism of a solenoid M_1 . For some index *i*, *h* induces a monomorphism \hat{h} : $i ! _0$ such that $\hat{h}^{-1}(_0) = _i$ and $\hat{h}(_i)$ is an open subgroup of $_0$.

Proof By Lemma 5 we know that h induces a homomorphism \hat{h} : $i ! _0$. Since homeomorphisms preserve path-components, Lemma 3 implies that h induces a homomorphism $_{i=i} ! _{0=0}$. Since h is the lifted map of an automorphism, it has an inverse g which induces a homomorphism \hat{g} : $_j ! _0$. The composition $\hat{g} = \hat{h}$, which is de ned on an open subgroup, is equal to the identity. By Lemma 5, $\hat{g} = \hat{h}$ is equal to the homomorphism induced by p_i^j , which is the identity.

3 An algebraic condition for bihomogeneity

De nition 8 Suppose that $_0$ is the structure group of a solenoid with characteristic group $_0$. We de ne Mon $(_0; _0)$ as the set of monomorphisms $f: _i ! _0$, such that $f(_i) = _0 \setminus f(_i)$.

We say that an element of Mon $(_0; _0)$ is a *characteristic automorphism*. A self-homeomorphism H of M_1 need not preserve the base-point. It can however be represented as a composition of a homeomorphism h that preserves the path-component of the base-point and a deck-transformation. Since h is homotopic to a base-point preserving homeomorphism, H permutes the path-components in the same way as a composition of a base-point preserving homeomorphism

and a deck-transformation. In terms of $_0 = _0$, this is a composition of a characteristic automorphism ' and a left translation *z* ! *wz* of $_0$.

De nition 9 We say that a solenoid is *algebraically bihomogeneous* if it satises the following condition. For every $x; y \ge 0$ there are elements $w \ge 0$ and $2 \operatorname{Mon}(0; 0)$ such that $z \nmid w'(z)$ switches the residue classes $x \mod 0$ and $y \mod 0$.

Obviously, bihomogeneity implies algebraic bihomogeneity. The condition of algebraic bihomogeneity may seem awkward, but fortunately there is a simpler characterization as we shall see below. We denote x = y if x; y are in the same residue class of $_0$.

Lemma 10 A solenoid M_1 is algebraically bihomogeneous if and if only for every Z_{0}^2 there is a characteristic automorphism ' such that '(*z*) z^{-1} .

Proof Suppose that M_1 is algebraically bihomogeneous. For every $z \ 2_0$, we can switch the cosets of z and e. More precisely, there exists a $W \ 2_0$ and a ' $2 \operatorname{Mon}(_{0'},_{0})$ such that zg = w'(e) and $eg^{\emptyset} = w'(z)$ for $g; g^{\emptyset} \ 2_{0}$. Since '(e) = e; it follows that w = zg and '(z) = $g^{-1}z^{-1}g^{\emptyset}$. Compose ' with the inner automorphism $x \ gxg^{-1}$ to obtain $2 \operatorname{Mon}(_{0'},_{0})$ satisfying (z) z^{-1} :

If $(z) = z^{-1}g$ for some $g \ge 0$, then compose ' with the inner automorphism $x \mid gxg^{-1}$ to get 2 Mon(0; 0) satisfying $(z) = gz^{-1}$. Then $x \mid zg^{-1}(x)$ switches the cosets of e and z. This implies algebraic bihomogeneity.

Since $z \nmid z^{-1}$ is a homomorphism if and only if the group is abelian, we have the following corollary.

Corollary 11 A solenoid with an abelian structure group *i* is algebraically bihomogeneous.

This condition is automatically met if $_1(M_i)$ is abelian.

Lemma 12 Suppose that $_0$ is a characteristic group. Then Mon $(_0; _0)$ is countable.

Proof There are only countably many subgroups i and each of these is nitely generated. Hence, there are only nitely many homomorphisms $f: i ! _0$. Since characteristic automorphisms are determined by their action on some i, the result follows.

Theorem 13 Let M_1 be a bihomogeneous solenoid with structure group $_0$. Then $_0$ contains an open abelian subgroup.

Proof Suppose that ': $j ! _{0}$ is a characteristic automorphism. For $g 2_{0}$ define the subset $V(';g) = fz 2_{j} : z'(z) = gg_{0}$. As ' ranges over Mon($_{0};_{0}$) and g ranges over $_{0}$, the countable family of all V(';g) covers $_{0}$ by Lemma 10. Hence one of these sets, say $V('_{0};g_{0})$, is of second category in $_{0}$. It follows that $K = fz 2_{0}: z'_{0}(z) = g_{0}g$ is closed with non-empty interior in $_{0}$. Since K has non-empty interior, there exist a $z_{0} 2 K$ and a neighborhood V of e such that $'(z_{0}) = ^{-1}z_{0}^{-1}g_{0}$ for all 2 V. It follows that '() = $g_{0}^{-1}z_{0}^{-1}g_{0}^{-1}g_{0}$. By composition with the inner automorphism $x ! z_{0}^{-1}g_{0}xg_{0}^{-1}z_{0}$; we get a homomorphism such that () = $^{-1}$ for 2V. The group generated by V is an open abelian subgroup of $_{0}$.

For any neighborhood *V* of the identity, j = V for large enough *j*. Hence there exists an open abelian subgroup of $_0$ if and only if $_j$ is abelian for some *j*:

Corollary 14 Let M_1 be a solenoid and let K_1 be the kernel of $_1(M_0)$. Then M_1 is algebraically bihomogeneous if and only if $_1(M_j)=K_1$ is abelian for su ciently large index j, or, equivalently, $_j$ is abelian for su ciently large index j.

4 An application

Our algebraic condition for (topological) bihomogeneity in Corollary 14 is necessary but not su-cient. For this, there should exist a homeomorphism $h: M_i ! M_i$ which induces an isomorphism $h: {}_1(M_i) ! {}_1(M_i)$ such that $h(x) = x^{-1}$ (modulo K_1). The problem whether homomorphisms between fundamental groups are realized by continuous maps is known as the geometric realization problem. It is a classical result of Nielsen [9] that closed surfaces admit geometric realizations. This can be extended to certain three-dimensional manifolds [16]. The following result now follows from Nielsen's theorem.

Theorem 15 A two-dimensional solenoid S_1 with kernel K_1 (S_0) is bihomogeneous if and only if ${}_1(S_i) = K_1$ is abelian for su ciently large index *i*.

One easily constructs two-dimensional solenoids that are not bihomogeneous, using results from geometric group theory. The fundamental group $_1(S)$ of a closed surface is subgroup separable, see [13]; i.e., for every subgroup $H_{-1}(S)$ there is a descending chain of subgroups of nite index with kernel H. Hence, there exists a solenoid with base-space S and kernel H. For a closed surface S of genus greater than 1, the fundamental group contains no abelian subgroup of nite index. Therefore, a solenoid with base-space S and kernel *feg* is a (simply-connected) continuum which is not bihomogeneous.

5 Final remarks

One-dimensional solenoids are indecomposable continua. It is not di cult to show that higher-dimensional solenoids are not. Rogers [10] has shown that a homogeneous, hereditarily indecomposable continuum is at most onedimensional. His question whether there exists a homogeneous, indecomposable continuum of dimension greater than one remains open.

Our example of a non-bihomogeneous space is based on obstructions of the fundamental group, which seems to be characteristic for all examples so far. So it is natural to ask whether there exists a simply-connected Peano continuum that is homogeneous but not bihomogeneous. More generally, it is natural to ask whether there exists a continuum with trivial rst Cech cohomology that is homogeneous but not bihomogeneous.

References

- [1] RJ Fokkink, LG Oversteegen, Homogeneous weak solenoids, preprint, 2001
- [2] K Kawamura, On a construction of homogeneous, non-bihomogeneous continua of P. Minc, Topology Proc. 19 (1994) 121{127
- [3] J Keesling, The group of homeomorphisms of a solenoid, Trans. Amer. Math. Soc. 172 (1972) 119{131
- [4] **G Kuperberg**, Another homogeneous, non-bihomogeneous Peano continuum, Bull. Polish Acad. Sci. Math. 44 (1996) 457{460

- [5] K Kuperberg, On the bihomogeneity problem of Knaster, Trans. Amer. Math. Soc. 321 (1990) 129{143
- [6] K Kuperberg, Bihomogeneity and Menger manifolds, Topology Appl. 84 (1998) 175{184
- [7] MC McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965) 197{209
- [8] **P** Minc, Solenoids and bihomogeneity, Continua, Lecture Notes in Pure and Appl. Math. 170, Marcel Dekker (1995) 297{304
- J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen I, Acta Math. 50 (1927) 189{358
- [10] JT Rogers Jr, Homogeneous hereditarily indecomposable continua are treelike, Houston J. Math. 8 (1982) 421{428
- [11] JT Rogers Jr, JL Tolefson, Maps between weak solenoidal spaces, Colloquium Math. 23 (1971) 245{249
- [12] JT Rogers Jr, JL Tolefson, Homeomorphisms homotopic to induced homeomorphisms of weak solenoids, Colloquium Math. 25 (1972) 81{87
- [13] G P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978) 555{565.
- [14] Norman Steenrod, The topology of bre bundels, Princeton (1951)
- [15] GS Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975) 393{400
- [16] F Waldhausen, On irreducible 3-manifolds which are su ciently large, Ann. of Math. (2) 87 (1968) 56{88

University of North Texas, Department of Mathematics Denton TX 76203-1430, U.S.A.

and

Technische Universiteit Delft, Faculty of Information Technology and Systems Division Mediamatica, P.O. Box 5031, 2600 GA Delft, Netherlands

Email: al exc@unt.edu, r.j.fokkink@its.tudelft.nl

Received: 22 August 2001 Revised: 8 January 2002

9