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Stabilisation, bordism and embedded spheres
in 4{manifolds

Christian Bohr

Abstract It is one of the most important facts in 4{dimensional topology
that not every spherical homology class of a 4{manifold can be represented
by an embedded sphere. In 1978, M. Freedman and R. Kirby showed that
in the simply connected case, many of the obstructions to constructing such
a sphere vanish if one modi�es the ambient 4{manifold by adding products
of 2{spheres, a process which is usually called stabilisation. In this paper,
we extend this result to non{simply connected 4{manifolds and show how
it is related to the Spinc {bordism groups of Eilenberg{MacLane spaces.
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1 Introduction and statement of results

To determine the minimal genus of an embedded surface representing a given
homology class of a 4{manifold has always been one of the most challenging
problems in 4{dimensional topology. In [6], M. Kervaire and J. Milnor discov-
ered the �rst non{trivial obstruction to realising certain homology classes by
embedded spheres, thus establishing that the minimal genus is not always zero,
not even in the simply connected case. Their main result is the following.

Theorem 1 (Kervaire, Milnor) Let X be a closed, connected and oriented
smooth 4{manifold and suppose that � 2 H2(X;Z) is a characteristic class. If
� can be represented by a smoothly embedded 2{sphere, then � � � � sign(X)
mod 16.

Recall that a homology class is called characteristic if the mod{2 reduction of
its Poincar�e dual is the second Stiefel{Whitney class. As an example, consider
the case X = CP 2 and let γ denote the generator of the group H2(X;Z) = Z
represented by a complex line. It is not hard to see that the classes γ and 2γ
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can both be represented by embedded spheres, whereas the obvious algebraic
representative of 3γ has genus one. In fact, Theorem 1 implies that this class
cannot be represented by an embedded sphere.

Even if X is simply connected, the converse of Theorem 1 is of course not
true. In the case X = CP 2 , P. Kronheimer and T. Mrowka [8] used Seiberg{
Witten gauge theory to prove that the minimal genus in the class nγ is given
by 1

2(jnj − 1)(jnj − 2). Consequently γ and 2γ are | up to sign | the only
classes which can be realised by embedded spheres, although many other classes
ful�ll the condition of Theorem 1.

However, it is known that all the gauge theoretical obstructions vanish if we
pass from the manifold X to one of the manifolds Xk = X#k(S2�S2) for large
k . Note that we have an inclusion H2(X;Z) � H2(Xk;Z), so the statement
that an embedded sphere in Xk represents the class � makes sense. If we
can �nd such a sphere for some k , we will say that the class � can be stably
represented by an embedded sphere. In 1978, Freedman and Kirby showed that
if the 4{manifold X is simply connected, the converse of Theorem 1 is true
up to stabilisation. More precisely, they proved the following result, which is
Theorem 2 in [4].

Theorem 2 (Freedman, Kirby) Let X be a simply connected, closed and
oriented smooth 4{manifold. A characteristic homology class � 2 H2(X;Z)
can be stably represented by a smooth embedding of a 2{sphere if and only if
� � � � sign(X) mod 16.

In this paper, we are interested in generalisations of this result to non{simply
connected 4{manifolds. First note that if X is not simply connected, there may
be homology classes which cannot even be represented by immersed spheres
because they are not hit by the canonical map �2(X)! H2(X;Z). Homology
classes in the image of this map are usually called spherical classes. The main
objective of this paper is to show that Theorem 2 is also true for 4{manifolds
with non{trivial fundamental group, provided that the classes in question are
spherical, and to demonstrate that this fact is a consequence of a non{trivial
relation between Spin and Spinc{bordism groups of Eilenberg{MacLane spaces.

Theorem 3 Let X be a closed, connected and oriented smooth 4{manifold. A
characteristic spherical homology class � 2 H2(X;Z) can be stably represented
by a smoothly embedded sphere if and only if � � � � sign(X) mod 16.

Of course it is in general not true that a given immersion of a sphere is homotopic
to an embedding, not even stably. Instead there is a secondary obstruction
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which is de�ned if a certain primary obstruction | Wall’s self intersection
number | vanishes and which determines whether a given homotopy class can
be stably represented by an embedding [11]. The assertion of Theorem 3 is
that we can change the homotopy class while �xing the homology class in such
a way that all these obstructions vanish.

The technique applied in [4] to construct an embedded sphere is to turn an
embedded surface of positive genus into a sphere by removing handles. To be
able to use this approach in the presence of a non{trivial fundamental group,
we have to �nd an embedding which enjoys the additional property that the
induced map from the fundamental group of the surface to the fundamental
group of the ambient 4{manifold is trivial.

De�nition 1 An embedding F ! X of a surface in a 4{manifold X will be
called �1 {null if the induced map �1(F )! �1(X) is trivial. We will say that a
homology class � 2 H2(X;Z) can be stably represented by a �1 {null embedding
if there is, for some natural number k , a �1{null embedding F ! X#k(S2�S2)
representing the class � .

It is clear that a characteristic class which can be stably represented by a �1{
null embedding is spherical. We shall see that this necessary condition is also
su�cient, i.e. we have the following

Theorem 4 A characteristic homology class of a closed, connected and ori-
ented smooth 4{manifold can be stably represented by a smooth �1{null em-
bedding if and only if it is spherical.

It should be mentioned that the condition that the homology class be charac-
teristic is essential. In fact, by developing further the arguments used in this
paper, one can show [2] that there are spherical homology classes which are not
characteristic and cannot be stably represented by a �1{null embedding. In
particular, they cannot be stably represented by an embedded sphere, although
they ful�ll the condition � � � � �(X) mod 16. The reason is that there are
non{trivial additional obstructions to stably representing spherical classes by
�1{null embeddings. These obstructions are de�ned in terms of certain bor-
dism groups and are studied in [2]. The relation between stable embeddings
of surfaces and bordism theory which is investigated here and in [2] is a gen-
eralisation of the ideas appearing in [6]. Note that the proof of Theorem 1 is
based on Rokhlin’s Theorem, which describes the image of the 4{dimensional
Spin{bordism group in the 4{dimensional Spinc{bordism group.
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The proof of Theorem 4 will form the main part of this paper. The idea of the
proof is to use the language of B{structures and Kreck’s stable di�eomorphism
classi�cation [7] to reduce to the case that the class � is trivial. This is done
by splitting the manifold stably into a simply connected 4{manifold and a spin
manifold such that the homology class � is moved into the simply connected
part. A crucial point is the choice of an appropriate bordism theory. As the
class � is characteristic, it can be realised as the �rst Chern class of a Spinc{
structure. This suggests using Spinc{bordism groups so that we can keep track
of the class � by keeping track of the Spinc{structure.

In general, a splitting as indicated above can only be obtained after adding a
simply connected 4{manifold, therefore it is necessary to understand the e�ect
of this on the representability by �1{null embeddings. To this end, we intro-
duce a modi�ed version of the usual self intersection numbers of immersions in
Section 2, which may also be of a certain interest in its own right. The bor-
dism problem into which the existence of the desired splitting can be translated
is discussed in Section 3. In Section 4, we prove Theorem 4 and Theorem 3,
and the last section of this manuscript is devoted to a short discussion of the
topological versions of our results.

Throughout this paper, all manifolds will be understood to be closed, connected,
oriented and smooth, unless stated otherwise. An exception will be made in
Section 5, where we comment on the topological case.

The author would like to thank B. Hanke, D. Kotschick and R. Lee for helpful
discussions and reading preliminary versions of this manuscript and M. Kreck
for explaining him some details in [7]. He is also grateful to Yale University
for its hospitality and to the Deutsche Forschungsgemeinschaft for �nancial
support.

2 Stable self intersection numbers

In this section, we introduce a modi�ed version of Wall’s self intersection number
which is adapted to our purposes. This modi�ed invariant turns out to be the
only obstruction to stably representing spherical homology classes by �1{null
embeddings. We will use this fact to show that in order for a spherical class
to be stably representable by a �1{null embedding, it is su�cient to become
representable after adding some simply connected 4{manifold, an observation
which will be used in the proof of Theorem 4.

The relation between �1{null embeddings and self intersection numbers of im-
mersions is provided by the following well known fact.
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Lemma 1 A homology class of a 4{manifold X can be represented by a �1{
null embedding if and only if it can be represented by an immersion f : S2 ! X
whose reduced self intersection number

��(f) 2 Z[�1(X)]=(h� − �−1i+ Z)

vanishes.

We refer the reader to [5] or [14] for a proof of this lemma as well as for the def-
inition and the most important properties of the invariant ��. For our purposes,
it will be convenient to introduce a modi�ed version of the self intersection
number which uses the homology classes of the loops associated with the self
intersection points instead of their homotopy classes.

De�nition 2 Let X be a 4{manifold and f : S2 ! X an immersion. For a
self intersection point x of f , we denote the associated group element by cx .
The sum

�s(f) =
X
x

[cx] 2 H1(X;Z2)

is called the stable self intersection number of f .

Note that although cx 2 �1(X) is only de�ned up to orientation, its Z2{
homology class is well de�ned and therefore the above expression makes sense.
The reason for the terminology will become clear later on as we shall see that
one can modify the reduced self intersection number of an immersion by stabil-
ising, but that all these modi�cations do not alter the stable self intersection
number. For another description of the stable self intersection number consider
the canonical map Z[�1(X)]! H1(X;Z2), given by mapping g 2 �1(X) to its
Z2{homology class. Note that an element of the type � − �−1 is mapped to
2� = 0 and 1 is mapped to 0. Hence this map induces a homomorphism

R : Z[�1(X)]=(h� − �−1i+ Z) −! H1(X;Z2):

It is immediate from the de�nition that, for an immersion f , the stable self
intersection number �s(f) is simply the image of ��(f) under the above homo-
morphism. In particular, it only depends on the homotopy class of f and de�nes
a map �s : �2(X) ! H1(X;Z2), which is the composition R � ��. Sometimes
we will also use that R factors over Z2[�1(X)]=(h� − �−1i+ Z2).

Example 1 Let us consider an easy example where we can actually compute
the map �s . Consider the orientation preserving involution t on S2�S2 given
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by t(x; y) = (−x; �(y)), where � denotes the reflection at the hyperplane x3 =
0. Let X = (S2 � S2)=t and denote the projection by � : S2 � S2 ! X .
Clearly �1(X) = Z2 . The two spheres � = S2 � 1 and � = 1 � S2 de�ne a
hyperbolic basis �; � 2 H2(S2 � S2;Z). A straightforward calculation shows
that ��(�) = 0 whereas ��(�) is the non{zero element of H2(X;Z) = Z2 , and
that the action of the deck transformation group on H2(S2 � S2;Z) is just the
multiplication by −1. Hence we obtain

�s(x� + y�) = xy mod 2
��(x� + y�) = x mod 2:

Since the classes � and � + � both project to the non{trivial element of
H2(X;Z) but have di�erent stable self intersection numbers, this example shows
in particular that the stable self intersection number of an immersion depends
in general really on its homotopy class and not only on its homology class.

The following proposition is the main technical result of this section. It shows
that the relation between stable self intersection numbers and stable �1{null
embeddings is similar to that between Wall’s self intersection number and �1{
null embeddings.

Proposition 1 Let X be a 4{manifold and � 2 H2(X;Z) a homology class.
Then the following conditions are equivalent.

(1) There is an immersion f : S2 ! X representing � such that �s(f) = 0.

(2) There is, for some k , a �1{null embedding F ! X#k(S2 � S2) repre-
senting the homology class (�; 0; : : : ; 0).

(3) There is, for some simply connected 4{manifold Y , a �1{null embedding
F ! X#Y such that the homology class of F is (�; c) with a character-
istic class c 2 H2(Y ;Z).

Before we can start with the proof of this result, we have to state and prove
some technical lemmas, the �rst one being a simple algebraic observation.

Lemma 2 Suppose that Q : Γ � Γ ! Z is a symmetric unimodular bilinear
form over the integers, where Γ is a free Z{module, and x; y 2 Γ are elements
whose sum x+ y is characteristic. Then Q(x; y) � 0 mod 2.

Proof Since x+ y is characteristic, we have

Q(x; x) � Q(x+ y; x) � Q(x; x) +Q(x; y) mod 2;

and the assertion follows.
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Lemma 3 Suppose that X is a 4{manifold, [f ] 2 �2(X), g 2 �1(X), and
� 2 f−1;+1g. Then there exists a homotopy class [f 0] 2 �2(X#(S2 � S2))
such that

(1) f 0�[S2] = (f�[S2]; 0) 2 H2(X#(S2 � S2);Z), and

(2) ��(f 0) = ��(f) + 2�g .

Proof Let Y = X#(S2 � S2) and denote by ~Y the universal covering. This
manifold is obtained from the universal covering ~X of X by adding copies of
S2�S2 , one at each preimage of the point at which we performed the connected
sum of X and S2 � S2 . It follows easily from the obvious Mayer{Vietoris
sequence that we have a splitting

�2(Y ) = H2( ~Y ;Z) = H2( ~X ;Z)� (H2(S2 � S2;Z)⊗Z Z[�1(X)])

which is orthogonal with respect to the intersection form. The action of the
deck transformation group on the second summand (from the left) is given
by g(x ⊗ h) = (x ⊗ gh), and the restriction of the intersection form � with
values in the group ring to the second summand is completely described by
�((0; x ⊗ g); (0; y ⊗ h)) = (x � y)gh−1 , where the dot denotes the intersection
product on H2(S2 � S2;Z).

Now choose some x 2 H2(S2 � S2;Z) such that x � x = −2�. Consider the
element � = (0; x ⊗ 1 − x ⊗ g) 2 H2( ~Y ;Z). An easy computation shows that
�(�; �) = −4� + 2�(g + g−1) and ��(�) = 2�g . If � : H2( ~Y ;Z) ! H2(Y ;Z)
denotes the projection, we have ��(�) = 0.

The element [f ] 2 �2(X) � �2(Y ) is contained in the �rst summand of the
above decomposition. Choose a map f 0 : S2 ! Y in the homotopy class [f ]+� .
Then f 0�[S

2] = ��([f ] + �) = ��([f ]) = (f�[S2]; 0), and, since �([f ]; �) = 0, we
have ��(f 0) = ��(f) + 2�g .

Lemma 4 Suppose that X is a 4{manifold and [f ] 2 �2(X), g; h 2 �1(X).
Then there is a homotopy class [f 0] 2 �2(X#(S2 � S2)) such that

(1) f 0�[S2] = (f�[S2]; 0) 2 H2(X#(S2 � S2);Z), and

(2) ��(f 0) = ��(f) + g + h− gh.

Proof Let Y = X#(S2�S2) and denote by ~Y the universal covering. Again
we will make use of the decomposition

�2(Y ) = H2( ~Y ;Z) = H2( ~X ;Z)� (H2(S2 � S2;Z)⊗Z Z[�1(X)]):
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As in the proof of Lemma 3, we only have to �nd an element � in the second
summand of this decomposition such that ��(�) = 0 and ��(�) = g + h − gh.
For this purpose, consider the elements

x = (1;−1)
y = (0; 1)
z = (−1; 0)

in the group H2(S2�S2;Z), here we use, as usual, the basis of this group given
by the homology classes of the factors. Then x � y = x � z = 1, y � z = −1 and
x+ y + z = 0. Now let

� = (0; x ⊗ 1 + y ⊗ g + z ⊗ h−1):

Then ��(�) = x + y + z = 0. Furthermore, a short calculation shows that
��(�) = g + h− gh, and the proof is complete.

Proof of Proposition 1 (1) =) (2): Assume that we are given an immer-
sion f as in the statement of the proposition. Pick a representative of ��(f) in
the group ring Z[�1(X)] and let x 2 Z2[�1(X)] denote its mod{2 reduction. By
assumption, the image of x under the canonical map Z2[�1(X)] ! H1(X;Z2)
is zero.

In the non{homogeneous description of the standard chain complex of �1(X)
with Z2{coe�cients, the group C1(�1(X);Z2) of one{cycles consists of all �nite
linear combinations

P
g2�1(X) ng[g], ng 2 Z2 (see for instance [3], Chapter II.3).

The boundary of an element [gjh] 2 C2(�1(X);Z2) is given by

@[gjh] = [g] + [h] + [gh]:

If we use the identi�cation of Z2[�1(X)] and C1(�1(X);Z2) as Z2{modules,
induced by g 7! [g], the kernel of the map Z2[�1(X)]! H1(X;Z2) is identi�ed
with the kernel of the projection

C1(�1(X);Z2) −! H1(�1(X);Z2);

which is by de�nition the subgroup generated by all boundaries [g] + [h] + [gh].
Consequently, the element x is a sum x =

P
j(gj +hj+gjhj) for some elements

gj ; hj 2 �1(X). By Lemma 4, we can therefore construct an element [f 0] 2
�2(X#k(S2 � S2)) such that

��(f 0) � ��(f) +
X
j

(gj + hj − gjhj) � x+ x � 0 mod 2;

and f 0�[S
2] = (f�[S2]; 0; : : : ; 0). This implies that there is a representativeP

i aigi of ��(f 0) in Z[�1(X)] such that all the coe�cients ai are even numbers.
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By Lemma 3, we can now �nd an immersion f 00 : S2 ! X#k0(S2�S2) for some
k0 which represents (f�[S2]; 0; : : : ; 0) and has reduced self intersection number
zero. The result then follows from Lemma 1.

(2) =) (3): clear, since S2 � S2 is spin, so the class 0 2 H2(S2 � S2;Z) is
characteristic.

(3) =) (1): Assume that we are given a �1{null embedding � : F ! X#Y
representing a class (�; c), where c is characteristic. Let Z = X#Y and denote
by � : ~Z ! Z the universal covering. By Lemma 1, there is an immersion
f : S2 ! Z representing (�; c) such that ��(f) = 0. Let [f ] 2 H2( ~Z;Z) = �2(Z)
denote the corresponding homology class. Then ��([f ]) = (�; c) 2 H2(Z;Z).
We have a decomposition

H2( ~Z;Z) = H2( ~X;Z)� (H2(Y ;Z)⊗Z Z[�1(X)]):

Let [f ] = �+ � be the corresponding decomposition of the element [f ]. Using
that �(�; �) = 0, it is easy to see that 0 = �s([f ]) = �s(�) +�s(�), and clearly
��(�) = � , ��(�) = c. If we can prove that �s(�) = 0, we obtain �s(�) = 0
and any immersion corresponding to � will ful�ll our requirements.

In order to show that �s(�) = 0, write � =
Pn

i=1 xi⊗gi 2 H2(Y ;Z)⊗ZZ[�1(X)],
where xi 2 H2(Y ;Z) and gi 2 �1(X). An easy calculation shows that ��(�) =P

i<j(xi � xj)gig−1
j . Hence we have

�s(�) =
X
i<j

(xi � xj)([gi] + [gj ])

=
X
i<j

(xi � xj)[gi] +
X
j<i

(xi � xj)[gi]

=
X
i

�X
j>i

xi � xj
�

[gi] +
X
i

�X
j<i

xi � xj
�

[gi]

=
X
i

�X
j 6=i

xi � xj
�

[gi]:

Now we know that ��(�) = c is characteristic, i.e
P

i xi is a characteristic class
for Y . Using Lemma 2, we therefore obtain (for �xed i)X

j 6=i
xi � xj = xi � (

X
j 6=i

xj) = xi � (c− xi) � 0 mod 2;

since xi + (c − xi) = c is characteristic. As this is true for every i, all the
coe�cients in the above expression are even and therefore �s(�) = 0 as desired.
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3 Some remarks on Spinc{bordism groups

In this section, we shall prove a result about Spinc{bordism groups (Proposi-
tion 2) of which Theorem 4 will be a consequence. First let us summarize some
well known facts about Spin and Spinc{bordism groups, which can for instance
be found in [12].

Lemma 5

(1) ΩSpinc

0 (�) = Z, ΩSpinc

1 (�) = ΩSpinc

3 (�) = 0 and ΩSpinc

2 (�) = Z.

(2) ΩSpin
0 (�) = Z, ΩSpin

1 (�) = ΩSpin
2 (�) = Z2 and ΩSpin

3 (�) = 0.

Throughout this section, all CW{complexes will be assumed to be connected
and to have only one 0{cell, which we use as base point.

De�nition 3 Let K be a space. De�ne a homomorphism

c1 : ΩSpinc

4 (K) −! H2(K;Z)

by c1([(X; s; f)]) = f�PD(c1(s)), where X is a connected 4{manifold with a
normal Spinc{structure s, c1(s) is the �rst Chern class of s and f : X ! K is
a continuous map.

This map is clearly well{de�ned and natural in K . For the remainder of this
section, we will work with the reduced homology theory ~ΩSpinc

� instead of ΩSpinc

� .
Since c1 clearly vanishes on the bordism group of the point, it de�nes a homo-
morphism

c1 : ~ΩSpinc

4 (K) −! H2(K;Z):

Our next aim will be to describe this homomorphism in greater detail and to
understand its kernel. For this purpose, let us consider the Atiyah{Hirzebruch
spectral sequence (AHSS for short)

E2
p;q = ~Hp(K; ~ΩSpinc

q (S0)) =) ~ΩSpinc

p+q (K):

Clearly E10;4 = E13;1 = E11;3 = 0. As ΩSO
4 (K) ! H4(K;Z) is onto and every

orientable 4{manifold has a normal Spinc{structure, all di�erentials emerging
from E�4;0 vanish. Hence we have a short exact sequence

0 −! E12;2 −! ~ΩSpinc

4 (K) −! H4(K;Z) −! 0:

Since all di�erentials emerging from E�2;2 are zero, we have a natural projection
E2

2;2 = H2(K;Z)! E12;2 , and we obtain a natural map

H2(K;Z) −! ~ΩSpinc

4 (K);

whose kernel is the image of the di�erential d3 : H5(K;Z)! H2(K;Z).

Algebraic & Geometric Topology, Volume 2 (2002)



Stabilisation, bordism and embedded spheres in 4{manifolds 229

De�nition 4 For every CW{complex K let ’ denote the composition

’ : H2(K;Z) −! ~ΩSpinc

4 (K) c1−! H2(K;Z)

of the map described above and c1 .

Lemma 6 The homomorphism ’ is the multiplication by 2.

Proof First, we show this in the special case that K is a connected orientable
surface. Then H2(K;Z) = Z, so ’ : H2(K;Z)! H2(K;Z) is the multiplication
by some number n. We have to prove that n = 2.

For this purpose, suppose that [(X; s; f)] is some element in ~ΩSpinc

4 (K). Since
c1(s) � w2(X) mod 2, we have c1([(X; s; f)]) � f�PD(w2(X)) mod 2. Now it
is an immediate consequence of Wu’s Theorem that the second Stiefel{Whitney
class of a 4{manifold and its orientation class are related by

PD(w2(X)) = (Sq2)�[X]2;

where (Sq2)� denotes the homology operation dual to the second Steenrod
square and [X]2 is the mod{2 orientation. By naturality, we obtain that

c1([(X; s; f)]) � f�((Sq2)�[X]2) = (Sq2)�f�[X]2 = 0 mod 2;

since H4(K;Z2) = 0. This implies that every element in the image of ’ is
divisible by 2, hence n must be even.

So we are done if we can show that every multiple of 2 is in the image of ’.
Suppose that x = 2y 2 H2(K;Z). Let X = K �K and let f : X ! K denote
the projection to one factor. Then, by the Künneth Theorem, f� : H2(X;Z)!
H2(K;Z) is onto. Pick a preimage �y of y and let �x = 2�y . Since X is spin (and
hence the stable normal bundle is spin), there exists a normal Spinc{structure
s on X having �rst Chern class c1(s) = PD(�x), hence c1([(X; s; f)]) = x.
Moreover H4(K;Z)=0, so E12;2 = E2

2;2 = H2(K;Z), and [(X; s; f)] de�nes an
element � 2 E12;2 = H2(K;Z). By de�nition, ’(�) = c1([(X; s; f)]) = x. So we
have proved that x is in the image of ’, and this completes the proof of the
lemma in the special case that K is a surface.

As to the general case, note that for every x 2 H2(K;Z), there is a connected
oriented surface F and a map f : F ! K mapping the orientation of F to x.
Since ’ is the multiplication by 2 on H2(F ;Z), we have

’(x) = ’(f�[F ]) = f�’([F ]) = f�(2[F ]) = 2x;

and this proves the lemma in the general case.
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As for Spinc{bordism, we also have reduced Spin{bordism groups, and for each
CW {complex K , we have a natural map

~ΩSpin
4 (K) −! ~ΩSpinc

4 (K)

whose image is clearly in the kernel of c1 . To understand this image, we will
need the following facts about the AHSS

~Hp(K; ~ΩSpin
q (S0)) =) ~ΩSpin

p+q (K):

which are easily veri�ed by comparing with the AHSS for ~ΩSpin
� (RP1) and

using the computations of the di�erentials in the E2 {term carried out in [13].

Lemma 7 For every CW{complex K , the di�erential

d3 : E3
4;0 −! E3

1;2

in the third term of the Atiyah{Hirzebruch spectral sequence for ~ΩSpin
� (K)

vanishes.

Lemma 8 Suppose that K is a CW{complex. The term E14;0 in the AHSS

for ~ΩSpin
� (K) is exactly the kernel of

(Sq2)� � red2 : H4(K;Z) −! H2(K;Z2);

where (Sq2)� is the operation dual to Sq2 and red2 denotes reduction mod 2.

To analyze the relation between ~ΩSpin
� and ~ΩSpinc

� , it proves useful to study the
\relative bordism theory" associated to the map BSpin ! BSpinc . Geomet-
rically, the objects in this bordism theory can be described as manifolds with
normal Spinc{structures and liftings of these structures to Spin{structures on
the boundary. However, we will use the description in terms of the associated
spectra. Let MSpin and MSpinc denote the Thom spectra of BSpin respec-
tively BSpinc . There is an obvious map MSpin! MSpinc which we can assume
to be an inclusion. We denote the cone over MSpin by C(MSpin).

De�nition 5 Let G = MSpinc [C(MSpin). We will also denote the associated
reduced homology theory by G� , i.e. for a space K with base point, we have

G�(K) = ��(G ^K):

The mappings MSpin ! MSpinc and MSpinc ! G of spectra induce natural
transformations ~ΩSpin

� ! ~ΩSpinc

� and ~ΩSpinc

� ! G� between the corresponding
homology theories. The following lemma summarizes some basic facts about
the homology theory G� and these natural transformations which are easily
proved using the fact that MSpin ! MSpinc ! G is a co�bre sequence and
some standard results for which the reader is referred to [1] or [10].

Algebraic & Geometric Topology, Volume 2 (2002)



Stabilisation, bordism and embedded spheres in 4{manifolds 231

Lemma 9

(1) For every CW{complex K , the sequence

~ΩSpin
� (K) −! ~ΩSpinc

� (K) −! G�(K)

is exact.

(2) G2(S0) = Z, G3(S0) = Z2 and Gi(S0) = 0 for i � 1.

(3) The map ~ΩSpinc

2 (S0)! G2(S0) is the multiplication by 2.

Using these results and the fact that the natural transformation G� ! ~ΩSpin
�−1

given by the map G ! � MSpin induces maps between the corresponding
spectral sequences, we can now determine some di�erentials in the AHSS for
G� . Again we omit the proof which is straightforward.

Lemma 10 Let K be a CW{complex and consider the AHSS

E2
p;q = ~Hp(K;Gq(S0)) =) Gp+q(K)

for G�(K). We then have

(1) For every p � 3, the di�erential

d2 : Hp(K;G2(S0)) −! Hp−2(K;G3(S0))

is the reduction mod 2 followed by the operation (Sq2)� dual to Sq2 .

(2) E11;3 = E2
1;3 = H1(K;Z2).

(3) E12;2 = E2
2;2 = H2(K;Z).

Lemma 11 Suppose that K is a CW{complex with 1{skeleton K1 . Then

im(G4(K1) −! G4(K)) \ im(~ΩSpinc

4 (K) −! G4(K)) = f0g:

Proof Suppose we are given some � 2 im(G4(K1) ! G4(K)) and some
� 2 ~ΩSpinc

4 (K) mapping to � under ~ΩSpinc

4 (K) ! G4(K). By de�nition, the
subgroup imG4(K1) is just the �rst stage F1G4(K) of the �ltration of G4(K)
used in the AHSS converging to G�(K), and F1G4(K) = E11;3 .

Now suppose that � 6= 0 2 E11;3 . Recall that E11;3 = E2
1;3 = H1(K;Z2) by

Lemma 10. We can �nd a map f : K ! RP1 such that f�� 6= 0, and f can
be chosen to be cellular. Let �E��;� denote the terms of the AHSS for G�(RP1).
Again we have �E11;3 = �E2

1;3 = H1(RP1;Z2), so f� : E11;3 ! �E11;3 maps � to the
non{zero element of �E11;3 = Z2 .
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Now �E11;3 = F1G4(RP1), hence we obtain that f�� 6= 0 2 G4(RP1). On the
other hand, we have a commuting diagram

~ΩSpinc

4 (K)
f�−−−! ~ΩSpinc

4 (RP1)??y ??y
G4(K)

f�−−−! G4(RP1)

and as H2(RP1;Z) = H4(RP1;Z) = 0, we have ~ΩSpinc

4 (RP1) = 0, in partic-
ular f�� = 0. This shows that f�� = 0, a contradiction.

Lemma 12 Suppose that K is a CW{complex and that � 2 ~ΩSpinc

4 (K). If
the image of � in H4(K;Z) is zero and c1(�) = 0, then � is in the image of
the natural map ~ΩSpin

4 (K)! ~ΩSpinc

4 (K).

Proof By Lemma 9, we only have to show that the image of � under the map
~ΩSpinc

4 (K)! G4(K) is zero.

Let E��;� denote the terms of the AHSS for ~ΩSpinc

� (K) and denote by �E��;� the
terms of the spectral sequence for G�(K). The CW{decomposition of K yields
�ltrations F� ~ΩSpinc

4 (K) of ~ΩSpinc

4 (K) and F�G4(K) of G4(K), and we have a
�ltration preserving homomorphism ~ΩSpinc

4 (K)! G4(K). As the image of � in
H4(K;Z) is zero, � 2 F2 ΩSpinc

4 (K) (recall that E13;1 = 0). Let �� 2 F2G4(K)
denote the image of �. We claim that �� 2 F1G4(K), i.e. that the induced
map E12;2 ! �E12;2 maps the equivalence class [�] of � to zero. In fact, E12;2 is
a quotient of E2

2;2 and, by Lemma 10, �E12;2 = E2
2;2 , so we have a commuting

diagram:

E2
2;2 −−−! �E2

2;2??y ??y
E12;2 −−−! �E12;2

Pick a lift x 2 E2
2;2 = H2(K;Z) of [�]. According to the de�nition of ’ and

by Lemma 6, we have ’(x) = c1(�) = 0 = 2x, so x has order at most 2. Now
Lemma 9 implies that the upper horizontal arrow is the multiplication by 2.
Hence it maps x to zero and we obtain that �� 2 F1G4(K), as claimed.

Now, by de�nition, F1G4(K) is simply the image of G4(K1)! G4(K), where
K denotes the 1{skeleton of K . Hence, by Lemma 11, we can conclude that
actually �� = 0, and the lemma is proved.
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Proposition 2 For every CW{complex K , the sequence

~ΩSpin
4 (K) −! ~ΩSpinc

4 (K) c1−! H2(K;Z)

is exact.

Proof It is immediate from the de�nition of c1 that we have the inclusion
image � kernel. So assume that we have a class � 2 ~ΩSpinc

4 (K) such that
c1(�) = 0. Let (X; s; f) be a triple representing �. As in the proof of Lemma
6, we then have

(Sq2)�f�[X]2 = f�PD(w2) = red2(c1(�)) = 0 2 H2(K;Z2):

But by Lemma 8, the image of ~ΩSpin
4 (K) in H4(K;Z) is precisely the kernel of

(Sq2)� � red2 , and therefore we can �nd an element � 2 ~ΩSpin
4 (K) having the

same image in H4(K;Z) as �. Let �� denote the image of � in ~ΩSpinc

4 (K). Then
�− �� is in the kernel of ~ΩSpinc

4 (K)! H4(K;Z) and c1(�− ��) = c1(�) = 0. By
Lemma 12, we can conclude that �− �� is in the image of ~ΩSpin

4 (K), and since
�� 2 im ~ΩSpin

4 (K) by construction, we are done.

4 The proofs of Theorem 4 and Theorem 3

In this section, we will use Proposition 2 to prove Theorem 4 and Theorem 3.
We mention that, at least in the case that K is an Eilenberg{MacLane space,
Proposition 2 is in fact equivalent to the statement of Theorem 4. The reason
is that, after adding copies of CP 2 , one can turn a stable �1{null embedding
realising a characteristic class into an embedding of a sphere along which one
can attach a 3{handle to obtain a spin manifold.

Proof of Theorem 4 Since a �1{null embedding can be lifted to the uni-
versal covering, it is clear that every class which can be stably represented by
a �1{null embedding is spherical. To prove the converse, assume that we are
given a 4{manifold X and a spherical and characteristic class � 2 H2(X;Z).

First let us assume that there is a spherical class ! such that ! � � = 1. We
will use the abbreviation � = �1(X). Pick a map u : X ! K(�; 1) inducing
an isomorphism �1(X) ! � and choose a normal Spinc{structure s on X
having �rst Chern class c1(s) = PD(�). By de�nition, the homomorphism
c1 maps the bordism class (X; s; u) to u�� . As � is spherical, this is zero.
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Hence Proposition 2 yields a Spinc 4{manifold (Z; s1) and a spin 4{manifold
Y together with a map v : Y ! K(�; 1) such that

[(Z; s1; �)] + [(Y; s2; v)] = [(X; s; u)] 2 ΩSpinc

4 (K(�; 1)):

Here s2 denotes the Spinc{structure induced by the spin structure on Y . Note
that c1(s2) = 0. We can also assume that Z is simply connected and that
v� : �1(Y ) ! � is an isomorphism. Furthermore we can arrange for c1(s1) to
be a primitive class by adding a copy of CP 2#CP 2 with the unique Spinc{
structure having Chern class (1; 1).

Let B = BSpinc�K(�; 1) and consider the obvious �bration B ! BSO. The
normal Spinc{structure s and the map u de�ne a B{structure � : X ! B on
X . It is not di�cult to see that the existence of the class ! implies that � is
a 2{equivalence. Similarly the Spinc{structure s0 on X 0 = Z#Y obtained by
gluing s1 and s2 and the map u0 : X 0 ! � which is v on Y and trivial on Z
de�ne a B{structure � 0 : X 0 ! B . As the class c1(s0) = c1(s1) is primitive and
� 0� : �1(X 0)! � is an isomorphism, this B{structure is also a 2{equivalence.

Of course the bordism group of B{structures is simply ΩSpinc

� (K(�; 1)), and
therefore the two B{structures � and � 0 are cobordant. Theorem 2 in [7] now
implies the existence of numbers t; s � 0 and of a di�eomorphism

�: X#t(S2 � S2) −! X 0#s(S2 � S2)

compatible with the normal B{structures obtained by � respectively � 0 and
the canonical B{structure on S2�S2 . In particular, � maps c1(s0) to c1(s) =
PD(�). By construction, c1(s0) has support in the simply connected part Z
and can therefore be represented by a �1{null embedding. Pulling back this
surface via � we obtain a �1{null embedding F ! X#t(S2�S2) representing
� as desired.

As to the general case, assume that � 2 H2(X;Z) is a spherical and charac-
teristic homology class. Denote the usual generator of H2(CP 2;Z) by γ and
consider the 4{manifold X 0 = X#CP 2 . Let �0 = (�; γ) 2 H2(X 0;Z). The
homology class of a generically embedded CP 1 in CP 2 is spherical and has in-
tersection number one with �0 . By what we just proved, this implies that �0 can
be stably represented by a �1{null embedding. As γ is characteristic, Proposi-
tion 1 can be applied and we obtain that also � can be stably represented by a
�1{null embedding.

Proof of Theorem 3 By Theorem 1, a characteristic class � which can be
stably represented by an embedded sphere ful�lls � � � � �(X) mod 16. Let us
now assume that conversely, the congruence � � � � sign(X) mod 16 holds. By
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Theorem 4 we can assume that the class � can be represented by a smoothly
embedded surface F � X such that �1(F )! �1(X) is trivial.

By Theorem 1 in [4], the Arf invariant of F vanishes. Now we could pro-
ceed as in the proof of Theorem 2 in [4] to obtain an embedded sphere in
X#m(S2 � S2) for some m representing [F ]. However, there is a slightly
di�erent argument using transversal spheres instead of framed surgery along
circles.

Since the Arf invariant of F is zero, we can �nd a homologically non{trivial
circle C � F with q(C) = 0, here our notation is the same as in [4]. Pick an
embedded disk D � X with boundary C whose interior intersects the surface F
transversely with algebraic intersection number k . After performing boundary
twists, we can assume that k = 0. Fix a framing of C in F and let l denote the
integer valued obstruction to extending this framing to a section of the normal
bundle of D . According to the de�nition of q , we have k + l � q(C) = 0
mod 2, hence l is even.

Now we will use transversal spheres to remove the intersection points of F nC
and D , as follows. After passing from X to X#(S2�S2) and attaching one of
the factors to D (note that this does note change l , since the attached sphere
has trivial normal bundle), we can assume that D has a transversal sphere which
does not meet F , namely the second factor of S2 � S2 . We can use parallel
copies of this transversal sphere to remove all the intersection points between
the interior of D and F . As k = 0, the homology classes of all these copies add
up to zero. Hence we obtain a new surface F 0 which still has homology class
[F ] and genus g(F ) such that D intersects F 0 only in C . Since the surface F 0

is obtained from F by cutting out disks and gluing in other disks instead, the
circle C is still non{trivial. Furthermore, we did not change the disk D , and
hence the obstruction to extending a framing of C over D is still l .

The arguments given so far show that we can arrange for the interior of the disk
D to be disjoint from F . After adding another copy of S2�S2 , we can �nd an
embedded sphere S with self intersection number −l disjoint from F and D ,
note that l is even. Tubing this sphere into the disk D gives a disk D0 with
boundary C , still disjoint from F , such that the framing obstruction vanishes.
By doing surgery along C , we can now obtain a new surface representing [F ]
with genus g(F ) − 1. Repeating the argument, we can therefore construct an
embedded sphere as desired.
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5 The topological case

Up to now, we have always been working in the smooth category, i.e. we have
considered smooth 4{manifolds, smoothly immersed spheres and smooth em-
beddings. However, it turns out that most of our results | including Theorem 4
| are also true in the topological category.

First of all, note that | as explained in [5] | every homotopy class of maps
from a surface to a topological 4{manifold contains an immersion. We can
de�ne self intersection numbers for these immersions as in the smooth case,
and again obtain a map

�� : �2(X) −! Z[�1(X)]=(h� − �−1i+ Z)

for every topological 4{manifold X . Lemma 1 then has an obvious generali-
sation to the topological case, and the de�nition of the stable self intersection
numbers still makes sense. Since the proof of Proposition 1 is based on algebraic
arguments, it can easily be adapted to the topological case to obtain

Proposition 3 Suppose we are given a topological 4{manifold X and a ho-
mology class � 2 H2(X;Z). Then the following conditions are equivalent.

(1) There is an immersion f : S2 ! X representing � such that �s(f) = 0.

(2) There is, for some k , a locally flat �1{null embedding F ! X#k(S2�S2)
representing the homology class (�; 0; : : : ; 0).

(3) There is, for some simply connected topological 4{manifold Y , a locally
flat �1{null embedding F ! X#Y such that the homology class of F is
(�; c) with a characteristic class c 2 H2(Y ;Z).

Now it turns out that also Theorem 4 remains true in the topological category.
Instead of going through the proof and checking carefully at which points the
smooth structure is used, it is more convenient to reduce the topological case
to the smooth case using an additional argument.

Theorem 5 A characteristic class in a topological 4{manifold can be stably
represented by a locally flat �1{null embedding if and only if it is spherical.

Proof Again it is clear that a class which can be stably represented by a �1{
null embedding is spherical. Now let X be a 4{manifold with a characteristic
spherical class � 2 H2(X;Z). First let us suppose that the Kirby{Siebenmann
invariant ks(X) is zero. Then there is some t such that the manifold X 0 =

Algebraic & Geometric Topology, Volume 2 (2002)



Stabilisation, bordism and embedded spheres in 4{manifolds 237

X#t(S2�S2) is smoothable. Applying Theorem 4 to this manifold shows that
the class (�; 0) 2 H2(X 0;Z) can be stably represented by a �1{null embedding.
By the very de�nition of \stably representable", the same is true for � .

In the case that ks(X) = 1, consider the 4{manifold X 0 = X#E8 and the
characteristic class �0 = (�; 0). Then ks(X 0) = ks(X) + 1 = 0, and by the �rst
part of the proof, we can represent the class �0 stably by a locally flat �1{null
embedding. By Proposition 3, the same is true for � .

Finally let us prove an analogue of Theorem 3 in the topological case. If F � X
is a topologically locally flat embedded surface in a 4{manifold X such that
�1(F )! �1(X) is trivial, one can de�ne a quadratic form

q : H1(F ;Z2) −! Z2

as in [4]. However, it is no longer true that Arf(q) = 1
8(F �F − sign(X)) as the

example of a trivially embedded sphere in E8 shows. Instead, we have

Arf(q) =
1
8

(F � F − sign(X)) + ks(X) mod 2;

where ks(X) is the Kirby{Siebenmann smoothing obstruction, see [9] (there
this is only proved in the case that X is simply connected, but one can always
reduce to this case by surgery along embedded circles). In particular, we obtain
that 1

8(F � F − sign(X)) � ks(X) mod 2 if the surface F is a sphere. If
Arf(F ) = 0, then we can obtain an embedded sphere in X#k(S2 � S2) for
some k representing [F ] as in the proof of Theorem 3. Hence Theorem 5
implies the following.

Theorem 6 Let X be a topological 4{manifold and let � 2 H2(X;Z) be a
spherical and characteristic homology class. Then � can be stably represented
by a locally flat embedding of a 2{sphere if and only if

1
8

(� � � − sign(X)) � ks(X) mod 2;

where ks(X) 2 Z2 denotes the Kirby{Siebenmann smoothing obstruction.

This result was obtained in [9] in the special case that the manifold X is simply
connected, note that in this case, every homology class is spherical.

Algebraic & Geometric Topology, Volume 2 (2002)



238 Christian Bohr

References

[1] J.F. Adams, Stable homotopy and generalised homology, Chicago Lectures in
Mathematics, University of Chicago Press, Ill.{London (1974)

[2] C. Bohr, Embedded spheres and 4{manifolds with spin coverings, Preprint
(2001), available as math.GT/0110301

[3] K.S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87,
Springer{Verlag, New York{Berlin (1982)

[4] M. Freedman, R. Kirby, A geometric proof of Rochlin’s Theorem, Proc. Sym-
pos. Pure Math. 32 (1978), 85{97

[5] M.H. Freedman, F. Quinn, Topology of 4{manifolds, Princeton University
Press, Princeton (1990)

[6] M. Kervaire, J. Milnor, On 2{spheres in 4{manifolds, Proc. Nat. Acad. Sci.
USA 47 (1961), 1651-1657

[7] M. Kreck, Surgery and duality, Ann. Math. 149 (1999), 707{754

[8] P.B. Kronheimer, T.S. Mrowka, The genus of embedded surfaces in the
complex projective plane, Math. Res. Lett. 1 (1994), 797{808

[9] R. Lee, D.M. Wilczynski, Locally flat 2{spheres in simply connected 4{
manifolds, Comment. Math. Helv. 65 (1990), 388{412

[10] Y.B. Rudyak, On Thom spectra, orientability and cobordism, Springer Mono-
graphs in Mathematics, Springer{Verlag, Berlin (1998)

[11] R. Schneiderman, P. Teichner, Higher order intersection numbers of 2{
spheres in 4{manifolds, Algebr. Geom. Topol. 1 (2001), 1{29

[12] R.E. Stong, Notes on cobordism theory, Princeton University Press, Princeton
(1968)

[13] P. Teichner, On the signature of four{manifolds with universal covering spin,
Math. Ann. 295 (1993), no. 4, 745{759

[14] C.T.C. Wall, Surgery on compact manifolds, Academic Press, London (1970)

Mathematisches Institut, Theresienstrasse 39
80333 München, Germany

Email: bohr@mathematik.uni-muenchen.de Received: 27 November 2001

Algebraic & Geometric Topology, Volume 2 (2002)


