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Abstract Given Poincar�e spaces M and X , we study the possibility of
compressing embeddings of M�I in X�I down to embeddings of M in
X . This results in a new approach to embedding in the metastable range
both in the smooth and Poincar�e duality categories.
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1 Introduction

Let M and X be compact n-manifolds. The word compression of the title
refers to a situation in which one is presented with an embedding of M�I in
the interior of X�I and then tries to decide whether it arises from an embedding
of M in X , up to isotopy. If so, then the original embedding compresses. One
aim of the present paper is to decide when this is possible.

The compression problem is mirrored in the Poincar�e duality category. From
now on, let M and X be Poincar�e duality spaces of dimension n. One says that
M (Poincar�e) embeds in X with complement C if there exists a decomposition
X ’M[@MC in which @Mq@X is identi�ed with a Poincar�e duality boundary
for C (we also assume a compatibility of fundamental classes|see 2.4 below.)

It will be convenient to have separate notation for intervals of di�erent lengths.
Let I = [0; 1] and J = [1=3; 2=3]. For a subspace S � I set MS := M�S . We
start with the following data: an embedding of the (n+1)-dimensional Poincar�e
space MJ in XI with complement W . This gives us a map � : M ! W by
taking the composition

M1=3 � @MJ !W :

Let R(X) denote the category of retractive spaces over X . An object of R(X)
is a space Y equipped with maps sY : X ! Y and rY : Y ! X (called re-
spectively inclusion and retraction) such that rY � sY is the identity (objects
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are usually speci�ed without reference to their structure maps). A morphism
Y ! Z is a map of spaces which is compatible with the structure maps. Ac-
cording to Quillen [16], R(X) is a model category in which a weak equivalence
is a morphism Y ! Z which when considered as a map of spaces is a weak
homotopy equivalence (for the remaining structure, see 2.1 below). Hence, it
makes sense to speak of its homotopy category hoR(X).

The inclusion X0 � W and the composite W ! XI ! X equip the space W
with the structure of an object of R(X). Let M+ denote the object of R(X)
given by taking the disjoint union of M with X ; the inclusion X ! M+ is
evident and the retraction M+ ! X is de�ned to be the composite

M qX = M1=3 qX0 �MJ qX0 ! XI
project−−−−! X :

With respect to these conventions, the map � : M !W induces a morphism

�+ : M+ !W

of R(X). Then �+ determines a �berwise homotopy class

[�+] 2 [M+;W ]X :

Remark 1.1 This will be the primary obstruction to compression. Informally,
it should be thought of as measuring the self-linking of M in XI . Several
authors have studied non-�berwise versions of this construction (see Hirsch [7],
Levitt [14] and Williams [22]).

Following Goodwillie [4], the homotopy codimension of M is � q , if

� M is homotopy equivalent to a CW complex of dim � n−q , and

� the inclusion @M !M is (q−1)-connected.

In what follows, we write codimM � q . By a result of Wall [19], the �rst
condition is a consequence of the second whenever q � 3.

Examples 1.2 (1) If M is regular neighborhood of p-dimensional complex
in an n-dimensional manifold, then codimM � n−p.

(2) Let V p be a closed Poincar�e space of dimension p equipped with an
(n−p−1)-spherical �bration � : S(�)! V . Let D(�) be the mapping cylinder
of � . Then (D(�); S(�)) is a Poincar�e pair of dimension n with codimD(�) �
n−p.

We now state the main result.
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Theorem A Assume codimM � n−p � 3 and 3p+4 � 2n. Then there exists
an embedding of M in X which induces the given embedding of MJ in XI (up
to \concordance") if and only if [�+] 2 [M+;W ]X is trivial.

We remark that this is valid in both the smooth and Poincar�e cases (the smooth
case follows by application of the surgery machine|see below). In the special
case X = Dn is a disk, Theorem A reduces to a non-�berwise result which
is implicit in the work of Williams [23]. In fact, our proof of Theorem A is a
�berwisation of one of Williams’ arguments.

With respect to the numerical assumptions of Theorem A, we have

Addendum 1.3 The map of �berwise homotopy classes

�X : [M+;W ]X ! [�XM+; �XW ]X

is an isomorphism, where �X denotes �berwise suspension. Consequently, the
obstruction to compression [�+] is stable.

This is proved in x7 using the Freudenthal suspension theorem for hoR(X) (cf.
2.3 below).

1.1 Unstable �berwise normal invariants

Let M and X be n-dimensional Poincar�e spaces, and let f : M ! X be a
map. These data de�ne an object

M==@M 2 R(X)

whose underlying space is X [f j@M M (note: collapsing X to a point gives the
quotient M=@M ). Similarly, we have X==@X 2 R(X) which turns out to be
the double X [@X X (which gives X+ if @X is empty.)

If f : M ! X is the underlying map of an embedding of M in X with com-
plement C , then there is an associated �berwise homotopy class

�f 2 [X==@X;M==@M ]X

de�ned by taking

X [@X X
’ −−− X [@X (C [@M M) −−−! X [X (X [@M M) = M==@M :

This is the �berwise (Thom-Pontryagin) collapse of the embedding.

By analogy with Smale-Hirsch theory, a map f : M ! X is said to (Poincar�e)
immerse if there exists an integer j � 0 such that f�id : M�Dj ! X�Dj is
the underlying map of some embedding.
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Remark 1.4 A fact we won’t need, but which is nevertheless true, is that f
Poincar�e immerses if and only if there is a stable �ber homotopy equivalence
f��X ’ �M , where �X and �M denote the Spivak normal �brations of X and
M respectively. For a proof of this, see [12].

Taking the �berwise collapse of the embedding M�Dj ! X�Dj enables us to
associate a �berwise stable homotopy class

�st
f 2 fX==@X;M==@MgX

called the �berwise (stable) normal invariant of the immersion (this is indepen-
dent of the choice of embedding.)

Obviously, a necessary obstruction to compressing the given embedding to an
embedding of M in X is that �st

f should desuspend to an element �f 2
[X==@X;M==@M ]X . Call any such desuspension a �berwise unstable normal
invariant of the immersion.

Theorem B Assume f : M ! X immerses. Again, suppose that codimM �
n−p � 3 and 3p+4 � 2n. Then f embeds (inducing the given immersion) if
and only if there exists a �berwise unstable normal invariant �f . Moreover,
the embedding can be chosen so that its collapse induces �f .

In the case @X = ;, Richter has also proved Theorem B using �berwise Hopf
invariants and �berwise S -duality. By contrast, we will deduce Theorem B
from Theorem A (in fact, the theorems are equivalent).

A consequence of the above is a Whitney embedding theorem for immersions
in the Poincar�e duality category:

Corollary C Assume f : Mp ! Xn immerses, where codimM � n−p � 3
and 2p+1 � n. Then f embeds (inducing the given immersion up to concor-
dance).

This follows because the �berwise stable normal invariant destabilizes by 2.3.

1.2 A Levine style embedding theorem

When X is ‘highly’ connected, Theorem B simpli�es to a non-�berwise state-
ment. Here is its formulation: given an immersion of f : M ! X as above,
there is an associated stable (Thom-Pontryagin) collapse

�st 2 fX=@X;M=@Mg :
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Any homotopy class
� 2 [X=@X;M=@M ]

which suspends to �st is called an unstable normal invariant.

Theorem D Assume codimM � n−p � 3, X is [p=2]-connected and 3p+4 �
2n. Then there exists an embedding inducing the given immersion of M in
X if and only if there exists an unstable normal invariant � . Moreover, the
embedding can be chosen so that its collapse coincides with � .

For example, if we take X = Dn then we recover the Williams-Richter embed-
ding theorem [23], [17]. Levine’s embedding theorem [13, Thm. 4] amounts to
the case when X is a smooth n-manifold and M = D(�) is the unit disk bundle
of a vector bundle over a smooth p-manifold V .

1.3 Embedding spheres in the middle dimension

In applications to surgery on Poincar�e spaces, one of the main issues is whether
or not homotopy classes in the middle dimension are represented by ‘framed’
embedded spheres.

Let Xn be a Poincar�e space, and suppose that n = 2p. Set

P := Sp�Dp ;

and suppose that f : P ! X is a map which immerses. Let eX be the universal
cover of X , and let � be the group of deck transformations. A map Y ! X
then induces a � -covering of Y which we denote by eY . Note that eX=@ eX is a
based � -space, which is free in the based sense.

The immersion f gives rise to an equivariant stable homotopy classe�st 2 f eX=@ eX; eP=@ ePg� ;
called the equivariant stable collapse. This is constructed as follows: choose a
representative embedding for f�idDj : P�Dj ! X�Dj . The diagram for this
embedding can then be pulled-back along eX . The Thom-Pontryagin collapse
of the resulting diagram of � -spaces then yields e�st .

Theorem E Assume p > 2. An immersion f : P ! X is represented by
an embedding if and only if the equivariant stable collapse desuspends to an
element e� 2 [ eX=@ eX; eP=@ eP ]� . Furthermore, the embedding can be chosen so
that its equivariant collapse is e� .
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1.4 Embedded thickenings

Up until now, we have discussed embedding theorems between Poincar�e spaces
having the same dimension. In a previous paper [11], we studied the following
related problem: suppose that K is the homotopy type of a �nite complex, Xn

is a Poincar�e space, and f : K ! X is a map. Does there exist a ‘Poincar�e
boundary’ for K , say A! K , such that f : K ! X embeds? (More precisely,
we should really replace K by the mapping cylinder of the map A ! K to
get a Poincar�e pair.) Additionally, one assumes a codimensional restriction:
k � n−3, where k is the homotopy dimension of K (an integer such that K is
homotopy equivalent to a CW complex of that dimension).

This is the notion of Poincar�e embedding in which the ‘normal data’ are not a
priori chosen. In [11] we termed this notion a PD embedding. In this paper, we
will call it an embedded thickening, since the choice of Poincar�e boundary is a
‘Poincar�e thickening’ of K .

An important special case of this concept is when K itself is a closed Poincar�e
space. In this instance, the homotopy �ber of the map A! K is a sphere, and
one recovers the notion of Poincar�e embedding used by Wall [21, Chap. 11].

In [11], we proved that f : Kk ! Xn embedded thickens whenever f is (2k−
n+2)-connected. It was expected that this is not the sharpest result, for in the
smooth case, this result can be improved by one dimension. We show that the
result can be improved by one dimension in the range of Theorem A:

Theorem F Assume f : K ! X is (2k−n+1)-connected, k � n−3 and
3k+4 � 2n. Then there exists an embedded thickening of f .

Note that this immediately implies the Poincar�e versions of the ‘easy’ and ‘hard’
Whitney embedding theorems: let f : K ! X be a map with k � n−3.

Corollary G (1) If 2k+1 � n, then f embedded thickens.

(2) If 2k � n and and f is 1-connected, then f embedded thickens with the
possible exception of the case k=3 and n=6.

Remark 1.5 The �rst part of the corollary settles an issue raised by Levitt
[14, p. 402].

Another application yields an extension of [11, Cor. C], which concerns the
existence of the unstable homotopy tangent bundle for Poincar�e spaces:
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Corollary H Let Xn be a 1-connected closed Poincar�e space. Then the di-
agonal X ! X�X has an embedded thickening.

This follows by Theorem F if n � 4, and is trivial if n < 4.

1.5 Smooth embeddings

If M and X are compact smooth manifolds, then the Browder-Casson-Sullivan-
Wall theorem [21, Chap. 11] shows that all of the above results imply smooth
embedding results, (some new, some known). We leave it to the reader to make
sense of this translation.

The inequality 3p+4 � 2n can be improved to 3p+3 � 2n in the smooth
case: in proving Theorem A we make use of the relative embedding theorem of
[10], which is the Poincar�e variant of a result of Hodgson [8] with a loss of one
dimension. In the smooth case, Hodgson’s result may be directly substituted
in the appropriate part of the proof of Theorem A to yield the sharper result.

1.6 History

The concept of Poincar�e embedding surfaced in an attempt to understand
smooth embeddings within the framework of surgery theory. The Browder-
Casson-Sullivan-Wall theorem asserts that the smooth embedding problem of
Mn in Xn is equivalent to the corresponding Poincar�e embedding problem
as long as n � 6 and codimM � 3. Consequently, the problem of smooth
embedding is reduced to homotopy theory.

The inequality 3p+3 � 2n is called the metastable range. Roughly, it is the
place where triple point obstructions don’t arise for dimensional reasons.

From 1960-1975 there emerged (at least) three di�erent strategies to (smooth)
embedding in the metastable range. Firstly, there was the school of Haefliger,
which reduced the problem to a question about isovariant maps M�2 ! X�2

(an equivariant map such that the inverse image of the diagonal of X coincides
with the diagonal of M ). Secondly, there was the bordism theoretic approach,
as seen in the papers of Dax [3] and Hatcher-Quinn [6]. Both of these schools
relied heavily on the Whitney trick and/or engul�ng methods.

Lastly, there was the surgery school|most notably the works of Browder [1],
[2] and Wall [21]|which reduced the problem of smooth embedding to that of
Poincar�e embedding. This approach began with Levine [13], who, using surgery,
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constructed embeddings from unstable normal invariants when the source M is
the total space of a disk bundle over a smooth manifold and the ambient space
X is an n-sphere, or more generally when X is a su�ciently highly connected
manifold. Here, the role of the normal bundle is prominent.

Later, Williams [23], [22], Rigdon-Williams [18] and Richter [17], extended
Levine’s work to the case when M is a Poincar�e space and X = Dn . The work
of Williams et. al. used smooth manifold techniques to deduce results about
Poincar�e embeddings. Richter gave the �rst manifold-free proof of Williams’
results using homotopy theory.

It was only recently observed [11] that �berwise homotopy theory technology
was to play a role in extending the surgery approach to an arbitrary ambient
Poincar�e space X . This connection was discovered by Shmuel Weinberger and
the author (independently). The present work is an attempt to complete the
thread begun by the surgery school.

1.7 Outline

Section 2 is mostly language; the reader should be familiar with the majority of
material in this section. In x3 we show that the existence of a �berwise normal
invariant is su�cient to give an embedding of MJ in XI whose obstruction to
compression is trivial, so Theorem A implies the �rst part of Theorem B. x4
concerns the proof of Theorems D and E, which are a consequence of Theorem B
and Milgram’s EHP sequence. In x5 we prove Theorem A. The main tool in the
proof is the relative embedded thickening theorem of [10]. In x6 we show that
the embedding constructed in x3 has the correct collapse, thereby completing
the proof of Theorem B. In x7 we prove the stability of the obstruction [�+].
In x8 we prove Theorem F.

1.8 Acknowledgments
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Tom Goodwillie and Bill Richter. The proof of Theorem A was in part mo-
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2 Preliminaries

Our ground category is Top, the category of compactly generated Hausdor�
spaces. This comes equipped with the structure of a Quillen model category:

� The weak equivalences are the weak homotopy equivalences (i.e., maps
X ! Y such that the associated realization of its singular map jS�Xj !
jS�Y j is a homotopy equivalence). Weak equivalences are denoted �!.

� The �brations, denoted �, are the Serre �brations.

� The co�brations, denoted �, are the ‘Serre co�brations’, i.e., inclusion
maps given by a sequence of cell attachments (i.e., relative cellular inclu-
sions) or retracts thereof.

Every object is �brant. The co�brant objects are the retracts of iterated cell
attachments built up from the empty space. Every object Y comes equipped
with a functorial co�brant approximation Y c �� Y .

A non-empty space is always (−1)-connected. A connected space is 0-connect-
ed, and is r-connected for some r > 0 if its homotopy groups vanish up through
degree r , for any choice of basepoint. A map of non-empty spaces X ! Y is
called r-connected if its homotopy �ber with respect to any choice of basepoint
in Y is an (r−1)-connected space. An 1-connected map is a weak equivalence.

A space is homotopy �nite if it is homotopy equivalent to a �nite CW complex.

A commutative square of co�brant spaces

A −−−! B??y ??y
C −−−! D

is r-cocartesian if the evident map C0[A[0;1][B1 ! D (whose source is a double
mapping cylinder) is r-connected. More generally, a square of not necessarily
co�brant spaces is r-cocartesian if it is after applying co�brant approximation.
An 1-cocartesian square is cocartesian. Dually, the square is r-cartesian if
the map A ! holim (B ! D  C) is r-connected. An 1-cartesian square is
cartesian.

We introduce one last non-standard notation: given a map of spaces A ! B ,
if no confusion arises we will often let ( �B;A) denote the pair given by the
mapping cylinder B0 [AI with the inclusion of A1 .
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2.1 Fiberwise spaces

For X 2 Top an object, R(X) will denote the category of retractive spaces, as
in the introduction (in another notation, not to be used here, XnTop=X ). We
will assume in what follows that X is a co�brant object of Top.

According to Quillen [16], R(X) inherits a model category structure arising
from the one on Top. Weak equivalences and �brations are de�ned using the
forgetful functor R(X) ! Top. Co�brations are those maps satisfying the
left lifting property with respect to the acyclic �brations (the word ‘acyclic’ is
synonymous with weak equivalence).

Any object Y 2 R(X) comes equipped with a functorial co�brant approxima-
tion Y c �� Y and similarly, a functorial �brant approximation Y �� Y f .

Given an object Y 2 R(X), de�ne its �berwise suspension �XY to be the
object whose underlying space is obtained by collapsing the subspace XI �
�XY to X (via the �rst factor projection) in the double mapping cylinder
X0 [ YI [X1 . If Y is co�brant, then so is its �berwise suspension. We use the
notation �j

XY to denote the j -fold iterated application of �X to Y .

The homotopy category of R(X), denoted hoR(X), is the category whose
objects are those of R(X) and in which the hom-set from an object Y to
an object Z is given by homotopy classes of morphisms Y c ! Z f . This
is denoted [Y;Z]X ; it is a pointed set. The corresponding stable hom-set is
fY;ZgX := limj[�

j
XY;�

j
XZ]X .

Obstruction theory in Top gives rise to an obstruction theory in R(X). Let
Z 2 R(X) be an object. A commutative diagram

Sj−1 −−−! Z??y ??y
Dj −−−! X

de�nes another object Z [ Dj
X , whose underlying space is Z [Sj−1 Dj . This

operation is called attaching a j -cell to Z .

De�nition 2.1 An object P 2 R(X) has dimension � s if its �brant approx-
imation admits a factorization X � P 0

�! P f such that P 0 is obtained from X
by attaching cells of dimension � s.

A morphism Y ! Z is r-connected if it is r-connected as a map of spaces. In
particular, an object Y is r-connected if its structure map X ! Y is.
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Lemma 2.2 Let Y ! Z be r-connected morphism of R(X) and suppose that
P has dimension � r . Then the induced map of homotopy sets

[P; Y ]X ! [P;Z]X

is surjective. It is also injective if P has dimension � r−1.

This is essentially [9, 9.2].

2.2 The stable range

The Freudenthal theorem measures the extent to which �berwise suspension is
an isomorphism on the level of �berwise homotopy classes.

Lemma 2.3 (James [9, 9.3]). If Y;Z 2 R(X) co�brant objects such that Z
r-connected and Y has dimension � 2r+1, then �berwise suspension gives a
surjection of pointed sets

[Y;Z]X ! [�XY;�XZ]X :

This surjection is an isomorphism whenever Y has dimension � 2r .

2.3 Poincar�e spaces

In this paper, a Poincar�e space X of dimension n is a pair (X;@X) such that
X and @X are co�brant and homotopy �nite, @X ! X is a co�bration, and
X satis�es Poincar�e duality:

� there exists a local system of abelian groups L of rank one de�ned on X ,
and a fundamental class [X] 2 Hn(X;@X;L) such that the cap product
homomorphisms

\[X] : H�(X;M)! Hn−�(X;@X;L ⊗M)

and
\[@X] : H�(@X;N)! Hn−�−1(@X;Lj@X ⊗N)

are isomorphisms, where [@X] 2 Hn−1(@X;Lj@X) is the image of [X]
under the connecting homomorphism in the homology exact sequence of
the pair (X;@X), and M (N ) is any local system on X (resp. on @X )
(compare [11], [20]).

If (X;@X) is a pair such that @X ! X is 2-connected, then the �rst duality
isomorphism implies the second one (cf. [11, 2.1]). In these circumstances, X
is n-dimensional Poincar�e if and only if XI is (n+1)-dimensional Poincar�e.
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2.4 Embeddings

Let M and X a Poincar�e spaces of dimension n, where X is connected. An em-
bedding of M in X is a commutative cocartesian square of co�brant homotopy
�nite spaces

@M −−−! C

incl.

??y ??yg
M −−−!

f
X

together with a factorization of the inclusion @X ! C ! X , such that (M;@M)
and ( �C; @M q @X) satisfy Poincar�e duality with respect to the fundamental
classes obtained by taking the image of a fundamental class for X under the
homomorphisms

Hn(X;@X;L) ! Hn( �X;C;L) �= Hn(M;@M ; f�L)

and

Hn(X;@X;L)! Hn(X;M q @X;L) �= Hn( �C; @M q @X; g�L) :

If codimM � 3 then one only need verify the compatibility of fundamental
classes for M (see [11, 2.3]).

The space C is called the complement, and f : M ! X is the underlying map
of the embedding.

The decompression of an embedding of M in X is the embedding of MI in XI

de�ned by the diagram
@MI −−−! W??y ??y
MI −−−! XI

where W = X0 [ CI [X1 is (unreduced) �berwise suspension, and the factor-
ization @XI !W ! XI is evident.

Two embeddings from M to X with complements C0 and C1 are elementary
concordant if there exists a diagram of pairs

(@MI ; @M0 q @M1) (W;C0 [ (@X)I [ C1)

(MI ;M0 qM1) (XI ; @XI)

w

u u

w
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in which each associated diagram of spaces

@MI W

MI XI

w

u u

w

and

@M0 q @M1 C0 [ (@X)I [C1

M0 qM1 @XI

w

u u

w

is cocartesian (the latter of these is obtained from the disjoint union of the em-
bedding diagrams using the inclusion @X0q @X1 � @XI ). Moreover, the maps
Ci ! W are required to be weak equivalences. More generally, concordance is
the equivalence relation generated by elementary concordance.

2.5 Embedded thickenings

Suppose that K is a co�brant space which is homotopy equivalent to a �nite
connected CW complex of dimension � k . Let f : K ! X be a map, where
Xn is a connected Poincar�e space of dimension n. A cocartesian square

A −−−! C??y ??y
K

f−−−! X

(in which A and C are co�brant and homotopy �nite), together with a factor-
ization @X ! C ! X is called an embedded thickening of f if

� ( �K;A) gives an n-dimensional Poincar�e space such that codim �K � n−k ,
and

� Replacing K by �K in the diagram yields an embedding in the sense of
2.4.

An embedded thickening is what was called a PD embedding in the terminology
of [11]. In order to avoid confusion, we have changed the name to distinguish
between the embeddings appearing in this paper (where the boundary data
are a priori given) and the ones of [11] (embeddings of complexes in Poincar�e
spaces).

3 Proof of Theorem B (�rst part)

We show how Theorem A can be used to construct an embedding of M in X
from an unstable �berwise normal invariant.
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Let �f 2 [X==@X;M==@M ]X be an unstable �berwise normal invariant associ-
ated to an immersion f : M ! X . Based on a construction of Browder [2] we
will associate a Poincar�e embedding of MJ in XI .

For this section only, let us agree that M==@M now means the object of R(X)
whose underlying space is X0 [ (@M)I [M1 (the formulation provided in the
introduction di�ers from this description by a canonical weak equivalence).
Similarly, let X==@X now mean X0 [ (@X)I [ X1 . Let h : J ! I be the
homeomorphism t 7! 3t−1.

Then there is a commutative diagram of spaces

@MJ M==@M

MJ XI

u

w

u

w

in which the top arrow is de�ned by

M1=3 [ (@M)J [M2=3
id�h−−−! M0 [ (@M)I [M1

f[id[id−−−−−! X0 [ (@M)I [M1 ;

the bottom arrow is f�h, and the vertical arrows are evident. This diagram is
cocartesian. In what follows, we must replace M==@M in the diagram with its
�brant approximation (M==@M)f . Assume that this has been done.

The Poincar�e boundary for XI is X==@X ; it factors through (M==@M)f via a
representative for �f . This de�nes the embedding of MJ in XI . In particular,
the complement of this embedding is (M==@M)f .

Applying Theorem A, we see that the given embedding compresses to a embed-
ding of M in X if and only if [�+] 2 [M+;M==@M ]X is the trivial element. But
by construction, [�+] is the �berwise homotopy class determined by making the
composite (�berwise) map

M1=3 !M1=3 [ (@M)J [M2=3 ! X0 [ (@M)I [M1

\based" (i.e., add on a disjoint copy of X to M1=3 ). The composite clearly
factors through the \basepoint" X0 � X0 [ (@M)I [M1 , so [�+] is the trivial
element.

It remains to check that the collapse of the embedding of M in X equals �f .
This is not a formal consequence of Theorem A, but rather, a consequence of the
construction of the particular embedding in the proof of Theorem A contained
in x5 below. For this reason, we defer the proof of this until x6.
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4 Proof of Theorems D and E

Proof of Theorem D We �rst explain the idea of the proof while ignoring
technical details. There is a commutative diagram of R(X)

M==@M (M=@M)�X

QX(M==@M) Q(M=@M)�X
u

w

u

w

in which

� (M=@M)�X has structure maps given by the second factor projection
and the inclusion ��X � (M=@M)�X .

� The morphism M==@M ! (M=@M)�X is given by the quotient map
M==@M !M=@M together with the retraction M==@M ! X .

� QX means the �berwise version of stable homotopy, and the bottom map
of the diagram is de�ned in a way similar to the top map.

� The vertical maps are de�ned by means of the natural transformation
from the identity to (�berwise) stable homotopy.

Ignoring for the moment the issue of homotopy invariance of the terms in
the diagram, it will follow by an argument sketched below that the diagram is
n-cartesian. Assuming this the argument proceeds as follows:

The �berwise stable homotopy class �st is represented by a morphism X==@X !
QX(M==@M) and the homotopy class � is represented by a morphism X==@X !
(M=@M)�X . Up to �berwise homotopy the maps are compatible with the
diagram. By 2.2 applied to the n-connected morphism

M==@M ! holim (QX(M==@M)! Q(M=@M)�X  (M=@M)�X)

there is an unstable �berwise normal invariant � 2 [X==@X;M==@M ]X . Theo-
rem D now follows by application of Theorem B.

We now proceed to establish the degree to which the square is cartesian. First
of all, we replace the square by an equivalent one which is homotopy invariant
(for the extent to which QX is a homotopy invariant functor is unclear, even
for objects which are �brant and co�brant).

Choose a basepoint for X . Since X is a connected co�brant space, there is
a homotopy equivalence X ’ BG where G is the geometric realization of the
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simplicial set given which is the Kan loop group of the total singular complex of
X . Here, we think of G as a topological group object in Top. In what follows,
we will assume X is BG.

Let RG(�) denote the category of based G-spaces. This admits the structure
of a model category in which a morphism Y ! Z is a weak equivalence if (and
only if) it is a weak homotopy equivalence of spaces. Every object is �brant
and the co�brant objects are the retracts of free based G-CW complexes. In
fact, the homotopy categories of RG(�) and R(BG) are equivalent (but we will
not require this.)

Let M� denote the pullback of M ! BG EG. Then M�=@M� is an object
of RG(�). We recover M==@M 2 R(BG) up to weak equivalence by taking the
Borel construction (M�=@M�)�GEG. We recover M=@M as the homotopy or-
bits (i.e., reduced Borel construction) (M�=@M�)hG := (M�=@M�) ^G EG+ .
In its homotopy invariant formulation, the square is now given by the diagram
of morphisms of R(BG)

(M�=@M�)c�GEG (M�=@M�)c
hG�BG

Q((M�=@M�)c)�GEG Q((M�=@M�)c
hG)�BG

w

u u

w

(1)

(here, for an object Y 2 RG(�), the object Y c denotes its co�brant approxi-
mation).

Finally, we calculate the degree to which the square is cartesian. In what follows,
set N := M�=@M� , and note that N is (n−p−1)-connected. The homotopy
�ber of the left vertical map is the same thing as the homotopy �ber of the map
N ! QN . Denote this �ber by F1 . By Milgram’s EHP-sequence [15, 1.11],
there is a (3n−3p−3)-connected map Ω(N ^N)hZ=2 ! F1 . On the other hand
the homotopy �ber of the right vertical map is the same as the homotopy �ber
of the map NhG ! Q(NhG). If we denote this homotopy �ber by F2 , it again
follows by Milgram’s EHP-sequence that there is a (3n−3p−3)-connected map
Ω(NhG ^NhG)hZ=2 ! F2 . Moreover, the square

Ω(N ^N)hZ=2 Ω(NhG ^NhG)hZ=2

F1 F2

w

u u

w
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is commutative. The top map of the latter square is induced by the evident map
N ^N ! (N ^N)hG�G . This last map is easily checked to be (2n−2p+[p=2])-
connected. Assembling this information, it follows that the map F1 ! F2

is min(3n−3p−4; 2n−2p+[p=2]−1)-connected. By hypothesis, 3p+4 � n, so
this connectivity is at least n. Consequently, the square (1) is n-cartesian, as
claimed.

Proof of Theorem E The proof is similar to the proof of Theorem D (where
here P plays the role of M ). Therefore, we will only sketch the argument and
leave it to the reader to �ll in the details.

As above, there is a diagram

eP==@ eP ( eP=@ eP )� ~X

QX̃
eP==@ eP Q( eP=@ eP )� ~X

w

u u

w

which one checks (by essentially the same argument) to be (2p)-cartesian. The
�berwise stable normal invariant can be lifted to a �berwise equivariant mapeX=@ eX ! Q

X̃
eP==@ eP . The rest of the argument follows as in the proof of

Theorem B, substituting obstruction theory by equivariant obstruction theory,
and using the fact that the equivariant homotopy dimension of eX=@ eX is 2p.

5 Proof of Theorem A

Our main tool will be the relative embedded thickening theorem of [10] (see also
[11] for the absolute version). The statement of this result will require some
preparation.

Let (K;L) be a co�bration pair in Top. We assume for simplicity that K and
L are co�brant spaces which are homotopy �nite. Write

dim(K;L) � k

if there exists a factorization L! K 0 ! K in which K 0 is obtained from L by
attaching cells of dimension � k and the map K 0 ! K is a weak equivalence.

Let X be an n-dimensional Poincar�e space.
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By a relative embedded thickening of (K;L) in (X;@X) we mean a commutative
diagram of co�bration pairs

(AK ; AL) −−−! (CK ; CL)??y ??y
(K;L) −−−! (X;@X)

having the following properties.

� Each space appearing in the diagram is co�brant and homotopy �nite.

� Each of the diagrams of spaces
AK −−−! CK??y ??y
K −−−! X

and

AL −−−! CL??y ??y
L −−−! @X

is cocartesian and the latter of these diagrams is a embedded thickening
of L in @X .

� The image of the fundamental class of X with respect to the composite

Hn(X;@X) ! Hn( �X;@X [CL CK) �= Hn( �K;L [AL AK)

gives ( �K;L [AL AK) the structure of an n-dimensional Poincar�e space
(here, coe�cients are given by pulling back the orientation bundle for
(X;@X)). Similarly, ( �CK ; CL [AL AK) has the structure of a Poincar�e
space with fundamental class induced from X .

� The map AK ! K is (n−k−1)-connected.

The decomposition of (X;@X) is depicted in �gure 1 below.

K L CK AK 

AL 

CL 

AL 

Figure 1

Now let f : (K;L)! (X;@X) be a map with dim(K;L) � k and suppose that
the restriction fjL : L! @X embedded thickens. The main theorem of [10] is
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Theorem 5.1 Assume k � n−3 and f : K ! X is (2k−n+2)-connected.
Then there exists a relative embedded thickening of f : (K;L) ! (X;@X)
extending the given embedded thickening of fjL : L! @X .

Remark 5.2 The above is the Poincar�e version of the relative embedded thick-
ening theorem of Hodgson [8], with a loss of one dimension.

We now begin the proof of Theorem A. Assume [�+] 2 [M+;W ]X is trivial,
where W is the complement of an embedding of MJ in XI . We may also
assume without loss in generality that W 2 R(X) is �brant. A choice of
�berwise null-homotopy may be thought of as a family of maps �t : Mt ! W
for t 2 [0; 1=3] which commute with projection to X such that � = �1=3 and
�0 factors through X0 !W .

This null-homotopy gives rise to a map of pairs

(X0 [M[0;1=3];X0 qM1=3)! (W;@W )

in which X0 [M[0;1=3] is the mapping cylinder of the map M1=3 ! X . These
circumstances are depicted in �gure 2.

12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901

MJ 

M [0,1/3] 

X 0 

X 1 

M1/3 

M0 

Figure 2

The restricted map of spaces

X qM ! @W

is already embedded thickened (here, @W = @XI q @MJ ). This embedded
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thickening is given by the cocartesian square

@X0 q @M1=3 ((@X)I [X1) q ((@M)J [M2=3)

X0 qM1=3 @W :

w

u
u

w

The map
X0 [M[0;1=3] !W

is (n−p−1)-connected (since it, followed by the map W ! XI is a weak equiv-
alence, and the latter map is (n−p)-connected). Moreover, the pair (X0 [
M[0;1=3];X qM) has relative dimension � p+1.

Since n−p−1 � 2(p+1) − (n+1) + 2 if and only if 2n � 3p+4, by 5.1 there
exists a relative embedded thickening of

(X0 [M[0;1=3];X qM)! (W;@W )

which extends the given embedded thickening of X qM ! @W . Thus we have
a diagram of pairs (cf. �g. 3)

(A; @X0 q @M1=3) (C; ((@X)I [X1) q ((@M)J [M2=3))

(X0 [M[0;1=3];X qM) (W;@W ) :

w

u u

w

12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901
12345678901

X 0 

X 1 

M1/3 

C 

A A 

∂M ∂M 

X 

Figure 3

Algebraic & Geometric Topology, Volume 2 (2002)



Embedding, compression and �berwise homotopy theory 331

Consider the associated commutative diagram

@M −−−! A??y ??y
M −−−! X

(2)

and note that there is an evident factorization of @X ! X through the map
A! X .

To complete the proof of Theorem A, it su�ces to show:

Claim The square (2) is an embedding of M in X . It induces the given
embedding of MJ in XI after decompression.

To establish the claim, we �rst need to show that the square is cocartesian.
According to the de�nitions X0 [M[0;1=3] ’ X has an n-dimensional Poincar�e
boundary given by X0 [@X0 (M1=3 [@M1=3

A). Application of Poincar�e-Lefshetz
duality gives an isomorphism

H�( �X;M [@M A) �= Hn+1−�( �X;X0) = 0 :

in all degrees, for any bundle of coe�cients on X . Moreover, the map M [@M
A ! �X induces an isomorphism on fundamental groups (since A ! X and
@M ! M are 2-connected), so the square is cocartesian by application of
Whitehead’s theorem.

Secondly, a straightforward argument which we omit shows that the inclusion
X1 � C is a weak equivalence. Consequently, the composite C ! W ! X is
also a weak equivalence. Using this, we have a chain of weak equivalences

�XA
�! X [A C

� W

which is compatible with projection to XI and is relative to @XI . We infer that
the decompression of (2) yields the embedding of MJ in MI up to concordance.
Compatibility of fundamental classes is a consequence of the remarks at the end
of 2.3 and 2.4. This completes the proof of Theorem A.

6 Theorem B: completion of the proof

Given a �berwise unstable normal invariant

�f 2 [X==@X;M==@M ]X ;
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we constructed in x3 an embedding of M in X by �rst associating an embedding
of MJ in XI and then applying Theorem A (using the observation that the
compression obstruction of the latter embedding is trivial).

It remains to show that the collapse of this embedding coincides with �f . We
will give the argument in the case when @X = ;. The general case, which is
straightforward, will be left to the reader.

Returning to the proof of Theorem A and in particular �g. 3 above, note that
the collapse of the embedding of M in X is the �berwise homotopy class of the
map

X0 q (A [@M M)! �X [@M M ( �! X [@M M) ;

whose restriction to X0 is given by the inclusion X0 ! �X and the restriction
to A[@MM is given by the amalgamation of the map A! �X with the identity
map of M .

Using �g. 3, we rewrite this as follows: consider the amalgamated union

M 0 := (@M)J [@M2=3
M2=3 :

and write X 0 := A [@M1=3
M 0 (so X 0 is identi�ed with X up to weak equiva-

lence). Then the �berwise homotopy class of the composite

X0 qX 0 ! �X [@M1=3
M 0

�!W

represents the collapse of the embedding (recall that W is M==@M made �-
brant). Note there is an evident factorization X0 qX 0 ! X0 q C !W .

On the other hand, the composite

X0 qX1 ! X0 q C !W

induces �f .

Consequently, the restrictions of the map XqC ! W to X0qX 0 and X0qX1

induce respectively the collapse map of the embedding and �f .

But the maps X1 ! C and X 0 ! C are weak homotopy equivalences. Conse-
quently, the map X0 q C ! W induces both the collapse of the embedding of
M in X and �f on �berwise homotopy. Thus �f coincides with the collapse.
This completes the proof of Theorem B.
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7 Stability of the obstruction

To prove 1.3, we apply 2.3 to the homotopy set [M+;W ]X . Since M is ho-
motopy equivalent to a complex of dimension � p, we infer that the object
M+ 2 R(X) has dimension � p. On the other hand, the connectivity of
W 2 R(X) is one less than the connectivity of the map W ! XI , which in
turn, is at least the connectivity of the map @MJ ! MJ since the former is
the cobase change of the latter. But codimMJ � n−p+1, so @MJ ! MJ is
(n−p)-connected. Hence W 2 R(X) is an (n−p−1)-connected object.

Consequently, 2.3 implies that

[M+;W ]X ! [�XM+; �XW ]X
is an isomorphism whenever p � 2(n−p−1), or equivalently, whenever 3p+2 �
2n. Thus, the obstruction to compression is stable in the range of Theorem A
(with two dimensions to spare).

8 Proof of Theorem F

In this section we show how Theorem A implies a partial improvement of the
main result of [11]. Let K be a co�brant space which is homotopy equivalent
to a connected CW complex of dimension � k . Let X be a connected n-
dimensional Poincar�e space.

The main result of [11] is

Theorem 8.1 Assume that f : K ! X is (2k−n+2)-connected and k �
n−3. Then there exists an embedded thickening of f .

Now we have the statement of Theorem F, which is an improvement of 8.1 in
the metastable range:

Theorem 8.2 Assume f : K ! X is (2k−n+1)-connected, k � n−3 and
3k+4 � 2n. Then there exists an embedded thickening of f .

Proof By 8.1, there exists an embedded thickening of the composite fI : K !
X = X0

�! XI . Let this be denoted
A0 −−−! W??y ??y
K −−−!

fI
XI :
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Without loss in generality, we may take A0 ! K to be a �bration. By straight-
forward application of the Blakers-Massey theorem [5, p. 309], this square is
k -cartesian. Let P denote the homotopy pullback of the diagram given by
deleting A0 . Then the evident map A0 ! P is k -connected.

The maps id : K ! K and K
f! X = X0 �W are compatible up to homotopy

when followed by the given maps to XI . Consequently, there is an induced map
K ! P . As A0 ! P is k -connected, we obtain a factorization K ! A0 ! P .
Since A0 ! K is a �bration, the homotopy lifting property plus the factorization
yield a section � : K ! A0 . By construction, the composite

K+ = K qX �qidX−! A0 qX0 !W (3)

is �berwise null homotopic.

The map � : K ! A0 is (n−k−1)-connected. By 8.1, it embedded thickens
since n−k−1 � 2k−n+2 is equivalent to 3k+3 � 2n. Let

A −−−! C??y ??y
K −−−! A0

be such an embedded thickening. We claim that the composite C ! A0 ! K
is a weak equivalence. To see this, �rst note that C ! K is 2-connected,
since it is the composite of the (n−k−1)-connected map C ! A0 with the
(n−k)-connected map A0 ! K . Also, by Poincar�e-Lefshetz duality, we infer
that

H�( �K;C) �= Hn+1−�( �K;K) = 0

in all degrees. Consequently, C ! K is a weak equivalence by the Whitehead
theorem.

Let (M;@M) denote the pair ( �K;A). Then the argument of the last paragraph
implies that (MI ; @MI) coincides with ( �K;A0) up to homotopy. Furthermore,
with respect to this homotopy equivalence, the inclusion M0 � @MI corre-
sponds to � : K ! A0 .

Assembling these data, we have an embedding of MI in XI whose obstruction
[�+] vanishes by (3). Applying Theorem A yields an embedded thickening of
f : K ! X .
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