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A functor-valued invariant of tangles
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Abstract We construct a family of rings. To a plane diagram of a tangle
we associate a complex of bimodules over these rings. Chain homotopy
equivalence class of this complex is an invariant of the tangle. On the level
of Grothendieck groups this invariant descends to the Kau�man bracket
of the tangle. When the tangle is a link, the invariant specializes to the
bigraded cohomology theory introduced in our earlier work.
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1 Introduction

This paper is a sequel to [38] where we interpreted the Jones polynomial as
the Euler characteristic of a cohomology theory of links. Here this cohomology
theory is extended to tangles.

The Jones polynomial [30, 34] is a Laurent polynomial J(L) with integer co-
e�cients associated to an oriented link L in R3 . In [38] to a generic plane
projection D of an oriented link L in R3 we associated doubly graded coho-
mology groups

H(D) = �
i;j2Z
Hi;j(D) (1)

and constructed isomorphisms Hi;j(D1) �= Hi;j(D2) for diagrams D1;D2 re-
lated by a Reidemeister move. Isomorphism classes of groups Hi;j(D) are link
invariants, therefore. Moreover, the Jones polynomial equals the weighted al-
ternating sum of ranks of these groups:

J(L) =
X
i;j

(−1)iqjrk(Hi;j(D)): (2)

The Jones polynomial extends to a functor from the category of tangles to the
category of vector spaces. A tangle is a one-dimensional cobordism in R2� [0; 1]
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between two �nite sets of points, called top and bottom endpoints, which lie
on the two boundary components of R2 � [0; 1]: The functor J takes a plane
with n marked points to V ⊗n; where V is the two-dimensional irreducible
representation of the quantum group Uq(sl2): To an oriented tangle L with n
bottom and m top endpoints J associates an operator J(L) : V ⊗n ! V ⊗m

which intertwines the Uq(sl2) action (see [40],[15]).

Another version of J is the functor J 0 from the category of even tangles (tangles
with even number of top and bottom endpoints) to the category of vector spaces.
We call a tangle with 2m top and 2n bottom endpoints an (m;n)-tangle. J 0

takes a plane with 2n marked points to Inv(n) def= Inv(V ⊗2n); the space of
Uq(sl2)-invariants in V ⊗2n; and an even tangle L to the map J 0(L) : Inv(n)!
Inv(m) which is the restriction of J(L) to the space of invariants. This well-
known construction is explicitly or implicitly stated in [42, 35, 15, 23].

In Sections 2 and 3 we categorify this invariant of tangles, extending the coho-
mology theory H: Categori�cation is an informal procedure which turns integers
into abelian groups, vector spaces into abelian or triangulated categories, op-
erators into functors between these categories (see [18]). In our case, the Jones
polynomial turns into cohomology groups H; the space of invariants Inv(n)
into a triangulated category Kn (the chain homotopy category of complexes of
graded modules over a certain ring Hn ), and the operator J 0(L) into the functor
from Kn to Km of tensoring with a complex F(L) of (Hm;Hn)-bimodules.

The fundamental object at the center of our construction is the graded ring Hn;
introduced in Section 2.4. The minimal idempotents of Hn are in a bijection
with crossingless matchings of 2n points, i.e. ways to pair up 2n points on the
unit circle by n arcs that lie inside the unit disc and do not intersect. The
number of crossingless matchings is known as the nth Catalan number and
equals to the dimension of Inv(n): In addition, there is a natural choice of a
basis in Inv(n); called the graphical basis, and a bijection between elements of
this basis and crossingless matchings [42], [23].

Various combinatorial properties of the graphical basis of Inv(n) lift into state-
ments about the ring Hn and its category of representations. For instance
the Grothendieck group of the category of Hn -modules is free abelian and
has rank equal to the n-th Catalan number. We can glue crossingless match-
ings a and b along the boundary to produce a diagrams of k circles on the
2-sphere. Indecomposable projective Hn -modules are in a bijection with cross-
ingless matchings, and the group of homomorphisms from Pa to Pb (projective
modules associated to a and b) is free abelian of rank 2k:
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To a one-dimensional cobordism a in R� [0; 1] (which we call a flat cobordism
or a flat tangle) with 2n bottom and 2m top endpoints we associate a graded
(Hm;Hn)-bimodule F(a); see Section 2.7. To a two-dimensional cobordism
S in R3 between two flat cobordisms a and b we associate a homomorphism
F(a)! F(b) of graded bimodules. We get a functor from the category of
two-dimensional cobordisms in R3 to the category of (Hm;Hn)-bimodules and
bimodule homomorphisms. Summing over all n and m results in a two-functor
(Section 2.9) from the two-category of surfaces with corners embedded in R3

(the Temperley-Lieb two-category, described in Section 2.3) to the two-category
of bimodules and bimodule maps.

Figure 1: Two resolutions of a crossing

Given a generic plane projection D of an oriented (m;n)-tangle L; each crossing
of D can be \resolved" in two possible ways, as depicted in Figure 1. A plane
diagram D with k crossings admits 2k resolutions. Each resolution a is a one-
dimensional cobordism in R� [0; 1] between the boundary points of D; and has
a bimodule F(a) associated to it. There are natural homomorphisms between
these bimodules that allow us to arrange all 2k of them into a complex, denoted
F(D); as will be explained in Section 3.

In Section 4 we prove that complexes F(D1) and F(D2) are chain homotopy
equivalent if D1 and D2 are related by a Reidemeister move. Therefore, the
chain homotopy equivalence class of F(D) is an invariant of a tangle L; de-
noted F(L): This invariant categori�es the quantum invariant J 0(L) : Inv(n)!
Inv(m); in the following sense.

Let KnP be the category of bounded complexes of graded projective Hn -modules
up to homotopies. The Grothendieck group G(KnP ) is a free Z[q; q−1]-module
of rank equal to dimension of Inv(n): Moreover, there is a natural isomorphism
between G(KnP ) and the Z[q; q−1]-submodule of Inv(n) generated by elements
of the graphical basis. In particular, for a generic complex number q there is
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an isomorphism

G(KnP )⊗Z[q;q−1] C �= Inv(n): (3)

Tensoring with the complex F(D); for a plane diagram D; can be viewed as a
functor from KnP to KmP : On the Grothendieck groups this functor descends to
an operator G(KnP )! G(KmP ); equal to J 0(L) under the isomorphism (3).

When the tangle L is a link, our invariant F(L) specializes to the bigraded
cohomology groups H(L) of the link L; de�ned in [38]. In detail, a link L is a
tangle without endpoints, so that F(L) is complex of graded (H0;H0)-modules.
The ring H0 is isomorphic to Z; and F(L) is just a complex of graded abelian
groups, isomorphic to the complex C(L) de�ned in [38, Section 7]. H(L) are
its cohomology groups. Thus, we can view rings Hn and complexes F(L) of
(Hm;Hn )-bimodules as an extension of the cohomology theory H:
F(L) is a relative, or localized, version of cohomology groups H; and their
de�nitions are similar. F(L); with its (Hm;Hn)-module structure ignored, is
isomorphic to the direct sum of complexes C(aLb) over all possible ways to
close up L into a link by pairing up its top endpoints via a flat (0;m)-tangle
a; and its bottom endpoints via a flat (n; 0)-tangle b: In particular, the proof
of the invariance of F(L) is nearly identical to that of H: To make the paper
self-contained, we repeat some concepts, results and proofs from [38], but often
in a more concise form, to prevent us from copying [38] page by page.

The reader who compares this paper with [38] will notice that here we treat the
case c = 0 only. This is done to simplify the exposition. The base ring in [38]
was Z[c]: To get the Jones polynomial as the Euler characteristic it su�ces to
set c = 0; which results in only �nite number of nonzero cohomology groups
for each link [38, Section 7]. Generalizing the results of this paper from Z to
Z[c] does not represent any di�culty.

In a sequel to this paper we will extend the invariant F(L) to an invariant of
tangle cobordisms. The invariant of a cobordism will be a homotopy class of
homomorphisms between complexes of bimodules associated to boundaries of
the tangle cobordism, or, equvalently, the invariant is a natural transformation
between the functors associated to the boundaries of that cobordism.

In the forthcoming joint work with Tom Braden [13] we will relate rings Hn with
categories of perverse sheaves on Grassmannians. Tom Braden [12] proved that
the category of perverse sheaves on the Grassmannian of k -dimensional planes
in Ck+l (sheaves are assumed smooth along the Schubert cells) is equivalent
to the category of modules over a certain algebra Ak;l; which he explicitly
described via generators and relations. We will show that Ak;l is isomorphic to
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a subquotient ring of Hk+l ⊗Z C: This result is a step towards the conjecture
[38, page 365], [8] that the cohomology theory H is encoded in parabolic blocks
of highest weight categories of sln -modules, over all n:

Section 6, written rather informally, explains our views on the question: what
sort of algebraic structures describe quantum topology in dimension four? In
other words, we want to �nd a combinatorial description and underlying cate-
gorical structures of Floer-Donaldson-Seiberg-Witten invariants and any similar
invariants of 4-manifolds. This problem was considered by Louis Crane and Igor
Frenkel [18] (see also [5], for instance).

An n-dimensional topological quantum �eld theory (TQFT) is, roughly, a ten-
sor functor from the category of n-dimensional cobordisms between closed ori-
ented (n−1)-manifold to an additive tensor category. Interesting examples are
known in dimensions 3 and 4. In dimension 3 there is the Witten-Reshetikhin-
Turaev TQFT (constructed from representations of quantum sl2 at a root of
unity) and its generalizations to arbitrary complex simple Lie algebras. In
dimension 4 there are Floer-Donaldson and Seiberg-Witten TQFTs. Two-
dimensional TQFTs are in a bijection with Frobenius algebras. As suggested
by Igor Frenkel, we believe that no interesting examples of TQFTs exist beyond
dimension 4 (TQFTs constructed from fundamental groups and other algebraic
topology structures do not qualify, since the quantum flavor is missing).

It is more complicated to de�ne a TQFT for manifolds with corners. For short,
we will call it a TQFT with corners. n-dimensional manifolds with corners con-
stitute a 2-category MCn whose objects are closed oriented (n− 2)-manifolds,
1-morphisms are (n − 1)-dimensional cobordisms between (n − 2)-manifolds,
and 2-morphisms are n-dimensional cobordisms between (n − 1)-cobordisms.
A TQFT with corners is a 2-functor from MCn to the 2-category AC of addi-
tive categories. Objects of AC are additive categories, 1-morphisms are exact
functors and 2-morphisms are natural transformations. Examples have been
worked out in dimension 3 only, where the Witten-Reshetikhin-Turaev TQFT
extends to a TQFT with corners.

There are indications that Floer-Donaldson and Seiberg-Witten 4D TQFT ex-
tend to TQFTs with corners. According to Fukaya [24], the category associ-
ated to a connected closed surface in the Floer-Donaldson TQFT with corners
should be the A1 -category of lagrangian submanifolds in the moduli space
of flat SO(3)-connections over the surface. Kontsevich conjectured that A1 -
categories of lagrangian submanifolds in symplectic manifolds can be made into
A1 -triangulated categories, which, in turn, are A1 -equvalent to triangulated
categories. Putting symplectic topology and A1 -categories aside, here is how
we see the problem.
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Problem Construct 4-dimensional TQFTs, including the ones of Floer-Don-
aldson and Seiberg-Witten, and their extensions to 4-dimensional TQFTs with
corners. Construction should be combinatorial and explicit. To a closed ori-
ented surface K (decorated, if necessary, by homology classes, spin struc-
ture, etc) associate a triangulated category F (K): To a suitably decorated
3-cobordism M associate an exact functor F (M) : F (@0M) ! F (@1M): To a
suitably decorated 4-cobordism N associate a natural transformation of func-
tors F (N) : F (@0N)! F (@1N):

F should be a 2-functor from the 2-category of oriented and decorated 4-
manifolds with corners to the 2-category of triangulated categories. F should
be tensor, in appropriate sense.

Categories F (K) should be described explicitly, for instance, as derived cate-
gories of modules over di�erential graded algebras, the latter given by generators
and relations. The answer is likely to be even fancier, possibly requiring Zm -
graded rather than Z-graded complexes, or sophisticated localizations, but still
as clear-cut as triangulated categories could be. Functors F (M) and natural
transformations F (N) should be given equally explicit descriptions.

Why do we want categories F (K) to be additive? Let M1 and M2 be 3-
manifolds, each with boundary di�eomorphic to K: We can glue M1 and
M2 along K into a closed 3-manifold M = M1 [K (−M2): The invariant
F (M) of a closed 3-manifold is going to be a vector space or, may be, an
abelian group (think of Floer homology groups). On the other hand, F (M) �=
HomF (K)(F (M1); F (M2)): Varying M1 and M2 we get a number of objects in
F (K): These objects will, in some sense, generate F (K) (if not, just pass to
the subcategory generated by these objects). The set of morphisms between
each pair of these objects has an abelian group structure. Introducing formal
direct sums of objects, if necessary, we can extend additivity from morphisms
to objects. It is thus plausible to expect F (K) to be additive categories.

Why do we expect F (K) to be triangulated? Typical examples of additive
categories are either abelian categories and their subcategories or triangulated
categories. The mapping class group of the surface K acts on F (K): Automor-
phism groups of abelian categories have little to do with mapping class groups
of surfaces. Triangulated categories occasionally have large automorphisms
groups, and sometimes contain braid groups as subgroups (see Section 6.5).
The braid group isn’t that far o� from the mapping class group of a closed
surface. This observation quickly biases us away from abelian and towards
triangulated categories.
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In the 2-category MCn of n-cobordisms with corners an (n − 1)-cobordism
M from N0 to N1 has a biadjoint cobordism W; which is M considered as a
cobordism from N1 to N0: Consequently, for any 2-functor F from MCn to
the 2-category of all small categories, the 1-morphism F (M) has a biadjoint.
In other words, the functor F (W ) is left and right adjoint to F (M): A functor
which has a biadjoint is called a Frobenius functor.

This property hardly ever surfaced for 3-dimensional TQFT with corners, since
in main examples the categories F (K) were semisimple and functors between
them were Frobenius for the obvious reason. Not so in dimension 4, where
semisimple categories are out of favor.

These observations lead to the following heuristic principle:

Categories associated to surfaces in 4-dimensional TQFTs with corners will
be triangulated categories with large automorphism groups and admitting many
Frobenius functors.

Among prime suspects are derived categories of

� the category O ,

� categories of modules over Frobenius algebras,

� categories of coherent sheaves on Calabi-Yau manifolds.

We believe that carefully picked categories from these classes of derived cate-
gories will give rise to invariants of 2-knots and knot cobordisms, while invari-
ants of 4-manifolds will emerge from less traditional triangulated categories.

Acknowledgements Section 5.1 was inspired by a conversation with Raphaël
Rouquier. The observation that the braid group acts on derived categories of
sheaves on partial flag varieties (see Section 6.5) emerged during a discussion
with Tom Braden.

2 A bimodule realization of the Temperley-Lieb two-
category

2.1 Ring A and two-dimensional cobordisms

All tensor products are over the ring of integers unless speci�ed otherwise. Let
A be a free abelian group of rank 2 spanned by 1 and X: We make A into a
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graded abelian group by assigning degree −1 to 1 and degree 1 to X: Introduce
a commutative associative multiplication map m : A⊗A ! A by

12 = 1; 1X = X1 = X; X2 = 0:

m is a graded map of degree 1: De�ne the unit map � : Z ! A by �(1) = 1:
De�ne the trace map � : A ! Z by

�(1) = 0; �(X) = 1 (4)

A is a commutative ring with a nondegenerate trace form. Such a ring de�nes a
two-dimensional topological quantum �eld theory|a functor from the category
M of oriented cobordisms between one-manifolds to the category of abelian
groups and group homomorphisms [1], [6, Section 4.3].

In our case, this functor, which we will call F (following the notation from [38,
Section 7.1]), associates abelian group A⊗k to a disjoint union of k circles. To
elementary cobordisms S1

2 ; S
1
0 ; S

0
1 ; depicted in �gure 2, F associates maps m; �

and �; respectively (here Sij is the connected cobordism of the minimal possible
genus between j and i circles).

S
2

1

S
0

1
S

1

0

Figure 2: Elementary cobordisms

To a 2-sphere with 3 holes, considered as a cobordism from one circle to two
circles (this is di�erent from the surface S1

2 ; which we view as a cobordism from
two circles to one circle), the functor F associates the map

� : A ! A⊗2; �(1) = 1⊗X +X ⊗ 1; �(X) = X ⊗X:
The map F(S) of graded abelian groups, associated to a surface S; is a graded
map of degree minus the Euler characteristic of S :

deg(F(S)) = −�(S): (5)

The ring A is essential for the construction ([38, Section 7]) of the link coho-
mology theory H: In [38] this ring was equipped with the opposite grading.
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In this paper we invert the grading to make the ring Hn (de�ned later, in
Section 2.4, and central to our considerations) positively graded rather than
negatively graded.

Given a graded abelian group G = �
k2Z

Gk; denote by Gfng the abelian group

obtained by raising the grading of G by n:

Gfng = �
k2Z

Gfngk; Gfngk = Gk−n:

Remark In [38] fng denotes the downward rather than the upward shift by
n in the grading.

We will be using functor F in the following situation. Let ES be the category
of surfaces embedded in R2 � [0; 1]: Objects of ES are smooth embeddings of
closed one-manifolds into R2: A morphism is a compact surface S smoothly
embedded in R2 � [0; 1] such that the boundary of S lies in the boundary of
R2 � [0; 1]; and S is tubular near its boundary, i.e., for some small � > 0;

S \ (R2 � [0; �]) = (@0S)� [0; �];
S \ (R2 � [1− �; 1]) = (@1S)� [1− �; 1];

where we denoted

@0S
def= @S \ (R2 � f0g);

@1S
def= @S \ (R2 � f1g):

We will call a surface S � R2� [0; 1] satisfying these conditions a slim surface.
The tubularity condition is imposed to make easy the gluing of slim surfaces
along their boundaries. We view a slim surface S as a cobordism from @0S to
@1S; and as a morphism in ES: Two morphisms are equal if slim surfaces rep-
resenting them are isotopic relative to the boundary. Morphisms are composed
by concatenating the surfaces along the boundary.

We now construct a functor from ES to the category M of oriented two-
dimensional cobordisms (no longer embedded in R2 � [0; 1]). This functor
forgets the embedding of S into R2� [0; 1]: Before the embedding is forgotten,
it is used to orient S; as follows.

First, any object C of ES (a closed one-manifold embedded in R2 ) comes with
a natural orientation. Namely, we orient a component C 0 of C counterclockwise
if even number of components of C separate C 0 from the \in�nite" point of R2:
Otherwise orient C 0 clockwise. A clarifying example is depicted in Figure 3.

A slim surface S admits the unique orientation that induces natural orientations
of its boundaries @0S and @1S: An orientation of a component S0 of S depends
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Figure 3: Orientations of objects of ES

on the parity of the number of components of S that separate S0 from the
in�nity in R2 � [0; 1]: We call this orientation the natural orientation of S:

The natural orientation of slim surfaces and their boundaries behaves well under
compositions, and can be used to de�ne a functor from ES to the category
M of oriented two-cobordisms. This functor forgets the embedding but keeps
the natural orientation of slim surfaces and their boundaries. Composing the
forgetful functor with F , which is a functor from M to graded abelian groups,
we get a functor from the category of slim surfaces to the category of graded
abelian groups and graded maps. We will denote this functor also by F :

2.2 Flat tangles and the Temperley-Lieb category

The Temperley-Lieb category T L is a category with objects{collections of
marked points on a line and morphisms{cobordisms between these collections
of points. In this paper we restrict to the case when the number of marked
points is even. The objects of the Temperley-Lieb category are nonnegative
integers, n � 0; presented by a horizontal line lying in a Euclidean plane, with
2n points marked on this line. For convenience, from now on we require that
the x-coordinates of these marked points are 1; 2; : : : ; 2n: A morphism from n
and m is a smooth proper embedding of a disjoint union of n + m arcs and a
�nite number of circles into R � [0; 1] such that the boundary points or arcs
map bijectively to the 2n marked points on R�f0g and 2m marked points on
R�f1g: In addition, we require that around the endpoints the arcs are perpen-
dicular to the boundary of R� [0; 1] (this ensures that the concatenation of two
such embeddings is a smooth embedding). An embedding with this property
will be called a flat tangle, or a flat (m;n)-tangle. We de�ne morphisms in
the Temperley-Lieb category T L as flat tangles up to isotopy. In general, we
will distinguish between equal and isotopic flat tangles. The embedding of the
empty 1-manifold is a legitimate (0; 0)-flat tangle. An example of a flat tangle
is depicted in Figure 4.
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1 2

1 2 3 4

Figure 4: A flat (2; 1)-tangle

Given a flat (m;n)-tangle a and a flat (k;m)-tangle b; de�ne the composition
ba as the concatenation of b and a: In details, we identify the top boundary of
a with the lower boundary of b so that the 2m marked points on each of these
boundary components match. The result is a con�guration of arcs and circles
in R � [0; 2]: We rescale it along the second coordinate to get a con�guration
in R� [0; 1]: The resulting diagram is a flat (k; n)-tangle.

Denote by Vert2n the vertical embedding of 2n arcs (i.e. the i-th arc embeds as
the segment (i; y); 0 � y � 1). This flat (n; n)-tangle is the identity morphism
from n to n:

Denote by bBm
n the space of flat tangles with 2n bottom and 2m top points.

Let

W : bBm
n ! bBn

m

be the involution of the space of flat tangles sending a flat tangle to its reflection
about the line R� f1

2g: An example is depicted in Figure 5.

b W(b)

Figure 5: Involution W

Choose a base point in each connected component of bBm
n that consists of em-

beddings without circles. Denote the set of base points by Bm
n : We pick the

base points so that W (Bm
n ) = Bn

m for all n and m. Note that the cardinality
of Bm

n is the (n + m)th Catalan number. Let rm : bBm
n −! Bm

n be the map
that removes all circles from a diagram b 2 bBm

n ; producing a diagram c; and
assigns to b the representative of c in Bm

n (the unique flat (m;n)-tangle in Bm
n

isotopic to c).
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Denote the set Bn
0 by Bn: An element in Bn represents an isotopy class of

pairwise disjoint embeddings of n arcs in R � [0; 1] connecting in pairs 2n
points on R � f1g: Thus, elements of Bn are crossingless matchings of 2n
points.

De�ne LT L; the linear Temperley-Lieb category, as a category with objects{
nonnegative integers, and morphisms from n to m{formal linear combinations
of elements of Bm

n with coe�cients in Z[q; q−1]: The composition of mor-
phisms is Z[q; q−1]-linear, and if a 2 Bm

n ; b 2 Bk
m; de�ne their composition

as (q + q−1)irm(ba); where i is the number of circles in ba: In other words,
we concatenate b and a and then remove all circles from ba; multiplying the
diagram by q + q−1 each time we remove a circle.

De�ne the linearization functor

lin : T L −! LT L (6)

as the identity on objects, and lin(a) = (q+ q−1)irm(a); where i is the number
of circles in a:

2.3 The Temperley-Lieb 2-category

Let a; b 2 bBm
n : An admissible cobordism between flat tangles a and b is a surface

S smoothly and properly embedded in R� [0; 1] � [0; 1] subject to conditions

S \ (R� [0; 1] � [0; �]) = a� [0; �] (7)
S \ (R� [0; 1] � [1− �; 1]) = b� [1− �; 1] (8)

S \ (R� [0; �] � [0; 1]) = f1; 2; : : : ; 2ng � [0; �] � [0; 1]) (9)
S \ (R� [1− �; 1] � [0; 1]) = f1; 2; : : : ; 2mg � [1− �; 1] � [0; 1]) (10)

for some small � > 0: The �rst condition says that S contains a in its boundary,
moreover, near a; the surface S is the direct product of a and the inverval [0; �]:
The second condition gives a similar requirement on the opposite part of S ’s
boundary. The conditions are imposed to make gluing of two surfaces along a
common boundary easy.

The boundary of S consists of a; b and 2(n+m) intervals, of which 2n lie in the
plane R�f0g� [0; 1] and remaining 2m in R�f1g� [0; 1]: Conditions (9) and
(10) describe these n+m segments explicitly. Notice that the corners of S are
in a one-to-one correspondence with the endpoints of a and b: It is convenient
to present S by a sequence of its cross-sections with planes R� [0; 1]� ftg for
several values of t 2 [0; 1]: See Figure 6 for an example. The �rst frame depicts
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a b

Figure 6: Cross-sections of a cobordism

a (case t = 0), the last frame depicts b (case t = 1). The two dashed lines in
each frame show the boundary of R� [0; 1] � ftg:

If S is an admissible cobordism from a to b; let @0S = a; @1S = b: The height
function f : S ! [0; 1] of S is the projection on the third factor in the direct
product R� [0; 1] � [0; 1]: In particular, f−1(0) = @0S and f−1(1) = @1S:

An admissible cobordism will also be called an admissible surface, and a cobor-
dism between flat tangles. Given an admissible cobordism S1 from a to b and
an admissible cobordism S2 from b to c, we can concatenate S1 and S2 (glue
them along their common boundary b) to get an admissible cobordism, denoted
S2 � S1; from a to c:

Admissible cobordisms admit another kind of composition. Let a; b 2 bBm
n and

c; d 2 bBk
m: Let S1 be an admissible cobordism from a to b and S2 an admissible

cobordism from c to d: Then we can compose S1 and S2 to obtain an admissible
cobordism, denoted S2S1; from ca to db:

Two admissible surfaces are called equivalent, or isotopic, if there is an isotopy
from one to the other through admissible surfaces, rel boundary.

A slim surface is the same as an admissible cobordism between flat (0,0)-tangles.

De�ne the 2-category TL as a 2-category with objects{nonnegative integers,
one-morphisms from n to m{flat (m;n)-tangles and two-morphisms from a to
b; where a; b are flat (m;n)-tangles|isotopy classes of admissible cobordisms
from a to b: This 2-category is de�ned and discussed at length in [16]. We
only stress here the di�erence between morphisms in the category T L and 1-
morphisms in the two-category TL: The morphisms in T L are isotopy classes
of flat tangles, equivalently, the morphisms from n to m are connected compo-
nents of the space bBm

n : One-morphisms in TL are flat tangles (points of bBm
n ).

Consequently, the composition of one-morphisms in TL is not strictly associa-
tive. If c; b; a are composable 1-morphisms, the compositions (cb)a and c(ba)
represent di�erent plane diagrams, so that these 1-morphisms are di�erent.
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The plane diagrams are isotopic, though, and to an isotopy there is associated
an admissible surface that de�nes a 2-morphism from (cb)a and c(ba): This
2-morphism is invertible, and the 1-morphisms (cb)a and c(ba) are isomorphic.

De�ne the Euler-Temperley-Lieb 2-category ETL as a 2-category with objects
n for n � 0; with 1-morphisms pairs (a; j) where a is a 1-morphism in TL (a
flat tangle) and j an integer. 2-morphisms from (a; j1) to (b; j2) are isotopy
classes of admissible surfaces S with @0S = a; @1S = b and

�(S) = n+m+ j2 − j1 (11)

(recall that � denotes the Euler characteristic).

Given composable flat tangles a and b; we de�ne the composition (a; j)(b; k)
as (ab; j + k): Earlier we described two possible ways to compose admissible
surfaces. Equation (11) ensures consistency for these three kinds of composition
of 1- and 2-morphisms, so that ETL is indeed a 2-category.

The forgetful functor ETL −! TL takes a 1-morphism (a; j) of ETL to the
1-morphism a of TL:

2.4 The ring Hn

In this section we de�ne a �nite-dimensional graded ring Hn; for n � 0: As a
graded abelian group, it decomposes into the direct sum

Hn = �
a;b

b(Hn)a;

where a; b 2 Bn and

b(Hn)a
def= F(W (b)a)fng: (12)

Since a 2 Bn and W (b) 2 B0
n; their composition W (b)a belongs to B0

0 ; and
is a disjoint union of circles embedded into the plane. Therefore, we can apply
the functor F to W (b)a and obtain A⊗k where k is the number of circles in
W (b)a: Recall that fng denotes the upward shift by n in the grading.

De�ning the multiplication in Hn is our next task. First, we set uv = 0 if
u 2 d(Hn)c; v 2 b(Hn)a and c 6= b: Second, the multiplication maps

c(Hn)b ⊗ b(Hn)a −! c(Hn)a

are given as follows. bW (b); for b 2 Bn; is the composition of the mirror image
of b with b; see Figure 7 for an example.
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b W(b)b

Figure 7: A cobordism b and bW (b)

Let S(b) be an admissible surface in R� [0; 1] � [0; 1] with

@0S(b) = bW (b); @1S(b) = Vert2n;

such that S(b) is di�eomorphic to a disjoint union of n discs. In other words,
S(b) is the \simplest" cobordism between bW (b) and Vert2n (recall that Vert2n

denotes the diagram made of 2n vertical segments). S(b) can be arranged
to have n saddle points and no other critical points relative to the height
function. A clarifying example is depicted in Figure 8 where we present S(b)
by a sequence of its intersections with planes R � [0; 1] � ftg; for �ve distinct
values of t 2 [0; 1]: The �rst frame shows @0S(b) = bW (b); the last (frame
number 5) shows @1(S(b)) = Vert2n:

1 2 3

4 5

Figure 8: Cobordism S(b)

For a; b; c 2 Bn de�ne a cobordism from W (c)bW (b)a to W (c)a by composing
cobordism S(b) with the identity cobordisms from a to itself and from W (c)
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to itself:

W (c)bW (b)a
IdW (c)S(b)Ida−! W (c)a: (13)

This cobordism is a slim surface and induces a homomorphism of graded abelian
groups

F(W (c)bW (b)a) −! F(W (c)a): (14)

Since W (c)bW (b)a is the composition of W (c)b and W (b)a; both of which
consist only of closed circles, we have a canonical isomorphism

F(W (c)bW (b)a) �= F(W (c)b) ⊗F(W (b)a)

and homomorphism (14) can be written as

F(W (c)b) ⊗F(W (b)a) −! F(W (c)a) (15)

The surface underlying cobordism (13) has Euler characteristic (−n); so that
(15) has degree n and after shifting we get a grading-preserving map

F(W (c)b)fng ⊗ F(W (b)a)fng −! F(W (c)a)fng (16)

We de�ne the multiplication

mc;b;a : c(Hn)b ⊗ b(Hn)a −! c(Hn)a

to be (16), i.e., the diagram below is commutative

c(Hn)b ⊗ b(Hn)a
mc;b;a−−−! c(Hn)a??y�= ??y�=

F(W (c)b)fng ⊗ F(W (b)a)fng
(16)
−−−! F(W (c)a)fng

(17)

where the vertical arrows are given by (12).

Maps mc;b;a , as we vary a; b and c over elements of Bn , de�ne a grading-
preserving multiplication in Hn . Associativity of this multiplication follows
from functoriality of F :

The elements 1a 2 a(Hn)a; de�ned as 1⊗nfng 2 A⊗nfng �= a(Hn)a; are
idempotents of Hn: Namely, 1ax = x for x 2 a(Hn)b and 1ax = 0 for x 2
c(Hn)b; c 6= a: Similarly, x1a = x for x 2 b(Hn)a and x1a = 0 for x 2
b(Hn)c; c 6= a: Adding up these idempotents, we obtain the unit 1 2 Hn :

1 =
X
a2Bn

1a

To sum up, we have:
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Proposition 1 Structures, described above, make Hn into a Z+ -graded as-
sociative unital ring.

To acquaint ourselves better with the ring Hn; we next examine it for n =
0; 1; 2:

n = 0: The ring H0 is isomorphic to Z; since B0 contains only the empty
diagram, and the functor F applied to the empty diagram produces Z:

a a

W(a)

Figure 9: The diagram a in B1 and the composition W (a)a

n = 1: There is only one diagram in B1; depicted in Figure 9. The composition
W (a)a is a circle (see Figure 9), so that

H1 = a(H1)a = F(W (a)a)f1g = Af1g

(the �rst equality holds since a is the only element in B1 ). The multiplication in
H1 is induced via the functor F by the cobordism S1

2 (see section 2.1) between
two circles (representing W (a)aW (a)a) and one circle (representing W (a)a).
Thus, the multiplication in H1 is just the multiplication in the algebra A and,
hence, H1 is isomorphic to A; with the grading shifted up by 1 (note that the
multiplication in A becomes grading-preserving after this shift in the grading).

n = 2. The set B2 consists of two diagrams (see Figure 10) which we denote

a b

Figure 10: Diagrams in B2

by a and b; respectively. From Figure 11 we derive that

a(H2)a = A⊗2f2g; b(H2)a = Af2g;
a(H2)b = Af2g; b(H2)b = A⊗2f2g:

The multiplication table for H2 can be easily written down. For instance, the
multiplication map a(H2)b� b(H2)a ! a(H2)a; under the above identi�cations,
becomes the map �m : A⊗2f4g m−! Af3g �−! A⊗2f2g:
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W(a)a W(b)a

W(b)bW(a)b

Figure 11: Diagrams W (a)a;W (a)b;W (b)a; and W (b)b

2.5 Projective Hn-modules

All Hn -modules and bimodules considered in this paper are assumed graded,
unless otherwise speci�ed. All Hn -module and bimodule homomorphisms are
assumed grading-preserving, unless otherwise speci�ed.

Denote by Hn−mod the category of �nitely-generated left Hn -modules and
module maps. The category Hn−mod is abelian. Since Hn is �nite over Z;
an Hn -module is �nitely generated if and only if it is �nitely generated as an
abelian group. The functor fkg shifts the grading of a module or a bimodule
upward by k:

Hn; considered as a left Hn -module, belongs to Hn−mod: Let Pa; for a 2 Bn;
be a left Hn -submodule of Hn given by

Pa = �
b2Bn

b(Hn)a

Hn decomposes into a direct sum of left Hn -modules

Hn = �
a2Bn

Pa

By a projective Hn -module we mean a projective object of Hn−mod: Clearly,
Pa is projective, since it is a direct summand of the free module Hn: Moreover,
Pa is indecomposable, since A⊗nfng; the endomorphism ring of Pa; has only
one idempotent 1a = 1⊗nfng:
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Proposition 2 An indecomposable projective Hn -module is isomorphic to
Pafmg for some a 2 Bn and m 2 Z:

Proof More generally, let R be a Z+ -graded ring, R = �i�0Ri such that R0

is isomorphic to a �nite direct sum Z�j of rings Z: Our ring Hn is of this form.
Let 1i; 1 � i � j be the minimal idempotents of R: We have:

Lemma 1 An idecomposable graded projective left R-module is isomorphic
to R1ifmg for some i and m:

Sketch of proof If M is a graded R-module, M 0 def= M=R>0M is a graded
Z�j -module and decomposes into direct sum of abelian groups,

M 0 = �
1�i�j;k2Z

M 0i;m;

where M 0i;m is the degree m direct summand for the idempotent 1i:

If M is projective, M � N �= F; where F is a free module, a direct sum
of copies of R; with shifts in the grading. This induces an isomorphism of
graded R0 -modules M 0 � N 0 �= F 0: We can �nd i and m such that M 0i;m 6=
0: Then there is a surjection of abelian groups M 0i;m ! Z: It extends to a
surjective map M 0i;m�N 0i;m �= F 0i;m ! Z: From this and an isomorphism F �=
�
i;m
F 0i;m ⊗R1ifmg we obtain an R-module homomorphism F ! R1ifmg: This

homomorphism restricts to a surjective homomorphism M ! R1ifmg (this
homomorphism is surjective in degree m; therefore surjective since R1ifmg is
generated by Z in degree m).

Remark This proposition classi�ed all graded projective Hn -modules. If we
forget the grading, it is still true that all projective Hn -modules are standard:
any indecomposable projective Hn -module is isomorphic to Pa; for some a:
More generally, if R is as before and, in addition, �nitely-generated as an
abelian group, then any indecomposable projective R-module is isomorphic to
R1i for some i:

We denote by Hn
P -mod the full subcategory of Hn−mod that consists of pro-

jective modules.

Denote by aP the right Hn -module �
b2Bn

a(Hn)b: This is an indecomposable

right projective Hn -module.
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2.6 Bimodules and functors

a Sweet bimodules

De�nition 1 Given rings C1; C2; a (C1; C2)-bimodule N is called sweet if it is
�nitely-generated and projective as a left C1 -module and as a right C2 -module.

The tensor product over C1 with a (C1; C2)-bimodule N is a functor from the
category of right C1 -modules to the category of right C2 -modules. The tensor
product over C2 with N is a functor from the category of left C2 -modules to
the category of left C1 -modules. If N is sweet, these functors are exact and
take projective modules to projective modules. The tensor product N ⊗C2 M
of a sweet (C1; C2)-bimodule N with a sweet (C2; C3)-bimodule M is a sweet
(C1; C3)-bimodule.

To simplify notations, an (Hm;Hn)-bimodule will also be called an (m;n)-
bimodule. The functor of tensoring with a sweet (m;n)-bimodule preserves
the subcategory Hn

P -mod of Hn−mod that consists of projective modules and
their homomorphisms.

b Categories of complexes

Given an additive category S; we will denote by K(S) the category of bounded
complexes in S up to chain homotopies. Objects of K(S) are bounded com-
plexes of objects in S: The abelian group of morphisms from an object M of
K(S) to N is the quotient of the abelian group �i2ZHomS(M i;N i) by the null-
homotopic morphisms, i.e. those that can be presented as hdM + dNh for some
h = fhig; hi 2 HomS(M i;N i−1): We sometimes refer to K(S) as the homotopy
category of S:
For n 2 Z denote by [n] the automorphism of K(S) that is de�ned on objects
by N [n]i = N i+n; d[n]i = (−1)ndi+n and continued to morphisms in the obvious
way.

A complex homotopic to the zero complex is called contractible. A complex

: : : −! 0 −! T
Id−! T −! 0 : : : ; T 2 Ob(S); (18)

is contractible. If S is an abelian category (or, more generally, an additive
category with split idempotents) then any bounded contractible complex is
isomorphic to the direct sum of complexes of type (18).

The cone of a morphism f : M ! N of complexes is a complex C(f) with

C(f)i = M [1]i �N i; dC(f)(m
i+1; ni) = (−dMmi+1; f(mi+1) + dNn

i):
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The cone of the identity map from a complex to itself is contractible.

If the category S is monoidal, so is K(S); with the tensor product

(M ⊗N)i = �
j
M j ⊗N i−j;

d(m⊗ n) = dm⊗ n+ (−1)jm⊗ dn; m 2M j; n 2 N:
(19)

We denote the category K(Hn
P -mod) by KnP : Its objects are bounded com-

plexes of �nitely-generated graded projective left Hn -modules (with grading-
preserving di�erentials). Denote the category K(Hn−mod) by Kn:

Tensoring an object of KnP with a sweet (m;n)-bimodule gets us an object of
KmP : More generally, tensoring with a complex N of sweet (m;n)-bimodules is
a functor from KnP to KmP ; and from Kn to Km:

2.7 Plane diagrams and bimodules

Let a 2 bBm
n : De�ne an (m;n)-bimodule F(a) by

F(a) = �
b;c

cF(a)b;

where b ranges over elements of Bn and c over elements of Bm and

cF(a)b
def= F(W (c)ab)fng (20)

The left action Hm �F(a)! F(a) comes from maps

d(Hm)c � cF(a)b −! dF(a)b

induced by the cobordism from W (d)cW (c)ab to W (d)ab which is the com-
position of the identity cobordisms W (d) ! W (d); ab ! ab and the standard
cobordism S(c) : cW (c)! Vert2m; de�ned in Section 2.4.

Similarly, the right action F(a)�Hn ! F(a) is de�ned by maps

dF(a)c � cH
m
b −! dF(a)b

induced by the cobordism from W (d)acW (c)b to W (d)ab obtained as the com-
position of the identity cobordisms of W (d)a and b and the standard cobordism
cW (c)! Vert2m:

Let us illustrate this de�nition with some examples. If n = m and a is isotopic
to the con�guration Vert2n of 2n vertical lines, then F(a) is isomorphic to Hn;
with the natural (n; n)-bimodule structure of Hn: In fact, the shift by fng in
the formula (20) was chosen to make F(Vert2n) isomorphic to Hn:
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If a 2 Bn then F(a) is isomorphic to the left Hn -module Paf−ng and F(W (a))
to the right Hn -module aP:

If b 2 bBm
n is obtained by adding a circle to a; then

F(b) �= F(a) ⊗A �= F(a)f1g � F(a)f−1g:
Our de�nition of F(a) implies:

Lemma 2 Let a 2 bBm
n : The bimodule F(a) is isomorphic, as a left Hm -

module, to the direct sum �b2BnF(ab)fng and, as a right Hn -module, to the
direct sum �b2BmF(W (b)a):

Proposition 3 Let a 2 bBm
n : The bimodule F(a) is a sweet (m;n)-bimodule.

Proof We must check that F(a) is projective as a left Hm -module and as a
right Hn -module. By the preceeding lemma, to prove that F(a) is projective
as a left Hm -module, it su�ces to check that F(ab) is left Hm -projective for
any b 2 Bm: The diagram ab contains some number (say, k) of closed circles.
After removing these circles from ab; we get a diagram isotopic to a diagram
in Bm: Denote the latter diagram by c: Then the left Hm -modules F(ab)
and Pc ⊗ A⊗k are isomorpic and, since Pc is projective, F(ab) and F(a) are
projective as well. Similarly, F(a) is right Hn -projective.

Proposition 4 An isotopy between a; b 2 bBm
n induces an isomorphism of

bimodules F(a) �= F(b): Two isotopies between a and b induce equal isomor-
phisms i� the bijections from circle components of a to circle components of b
induced by the two isotopies coincide.

Proof An isotopy from a to b induces an isotopy from W (e)ac to W (e)bc
for all e 2 Bm and c 2 Bn: These isotopies induce isomorphisms of graded
abelian groups F(W (e)ac) �= F(W (e)bc): Summing over all e and c we obtain
a bimodule isomorphism F(a) �= F(b):

An isotopy of flat tangles is a special case of an admissible cobordism (see
section 2.2). An admissible cobordism also induces a bimodule map:

Proposition 5 Let a; b 2 bBm
n and S an admissible surface with @0S = a and

@1S = b: Then S de�nes a homomorphism of (m;n)-bimodules

F(S) : F(a)! F(b)f�(S) − n−mg;
where �(S) is the Euler characteristic of S (the shift is there to make the map
grading-preserving).
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Proof We have F(a) = �
c;e
F(W (e)ac)fng and F(b) = �

b;c
F(W (e)bc)fng where

the sum is over c 2 Bn and e 2 Bm: The surface S induces a cobordism
from W (e)ac to W (e)bc de�ned as the composition of the identity cobordism
from c to c; cobordism S from a bo b and the identity cobordism from W (e)
to W (e): This cobordism is represented by a surface S0 that contains S as a
closed submanifold. S0 induces a map of graded abelian groups F(W (e)ac)!
F(W (e)bc): Summing over all c and e we get a map F(a) ! F(b) which
is, obviously, a bimodule map. According to Section 2.1 this map has degree
−�(S0) = n+m−�(S) and, after a shift, we get a grading-preserving bimodule
map F(a)! F(b)f�(S) − n−mg which we will denote F(S):

Proposition 6 Isotopic admissible surfaces induce equal bimodule maps.

Proof Suppose that admissible surfaces S1 and S2 are isotopic. This isotopy
keeps the boundary of S1 and S2 �xed, so that @0S1 = @0S2; @1S1 = @1S2; and
there are canonical bimodule isomorphisms F(@0S1) �= F(@0S2) and F(@1S1) �=
F(@1S2): The proposition says that the diagram below is commutative

F(@0S1)
F(S1)−−−! F(@1S1)f�(S1)− n−mg??y�= ??y�=

F(@0S2)
F(S2)−−−! F(@1S2)f�(S2)− n−mg

which easily follows from our de�nition of the bimodule map associated to a
surface and the invariance of F under isotopies of slim surfaces.

Proposition 7 Let a; b; c 2 bBm
n and admissible surfaces S1 and S2 de�ne

cobordisms from a to b and from b to c; respectively. Then F(S2)F(S1) =
F(S2 � S1) where S2 � S1 is the cobordism from a to c obtained by composing
surfaces S1 and S2:

This proposition says that the bimodule map associated to the composition of
surfaces S1 and S2 is equal to the composition of bimodule maps associated to
S1 and S2: That follows immediately from the functoriality of F :

Theorem 1 For a 2 bBm
n and b 2 bBk

m there is a canonical isomorphism of
(k; n)-bimodules

F(ba) �= F(b)⊗Hm F(a):
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Proof De�ne  : F(b) ⊗Z F(a)! F(ba) via a commutative diagram

F(b)⊗Z F(a)
 −−−! F(ba)??y�= ??y�=

�
c;d1;d2;e

F(W (e)bd1)⊗F(W (d2)ac)fn +mg �−−−! �
c;e
F(W (e)bac)fng

where the bottom map � is zero if d1 6= d2 and otherwise (when d1 = d2 )
induced by the minimal cobordism from d1W (d1) to Vert2m:

The resulting map  is, �rst of all, a (k; n)-bimodule map, where the left Hk

action on F(b) ⊗Z F(a) comes from left Hk action on F(b) and the right Hn

action from right action on F(a):

Moreover,  factors through F(b)⊗Hm F(a): To check this, let m1 2 eF(b)d1 ,
x 2 d1(Hm)d2 ; and m2 2 d2F(ac): We claim that

 (m1x⊗m2) =  (m1 ⊗ xm2) (21)

The left and right hand sides of this equality can be described geometrically by
two cobordisms between W (e)bd1W (d1)d2W (d2)ac and W (e)bac: Both cobor-
disms are compositions of minimal cobordisms on d1W (d1) and d2W (d2) and
the identity cobordisms in the rest of the product. Relation (21) follows and so,
indeed,  factors through the map F(b)⊗Hm F(a) −! F(ba) which we denote
by  0: The latter map is a (k; n)-bimodule map, since  is. Therefore, the
theorem will follow if we prove that  0 is a bijective grading-preserving map of
graded abelian groups.

 0 is a direct sum of maps

e 
0
c : eF(b)⊗Hm F(a)c −! eF(ba)c

where e and c vary over elements of Bk and Bn; respectively, and

eF(b) def= �
f
eF(b)f ; F(a)c

def= �
f
fF(a)c:

We have canonical isomorphisms of right Hm -modules eF(b) �= F(W (e)b);
left Hm -modules F(a)c �= F(ac)fng and graded abelian groups eF(ba)c �=
F(W (e)bac)fng: We are thus reduced to establishing isomorphisms

F(W (e)b) ⊗Hm F(ac) �= F(W (e)bac)

of graded abelian groups.

Notice that W (e)b is an element of bB0
m and ac an element of bBm

0 : There are
unique x 2 Bm and y 2 Bn such that W (y) is isotopic to W (e)b with all its
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circle component removed and W (x) isotopic to ac with all its circle component
removed. Assuming that W (e)b have j1 and ac have j2 circle components,
there are natural left/right Hm -module isomorphisms F(W (e)b) �= A⊗j1 ⊗
F(W (y)) and F(ac) �= F(x) ⊗ A⊗j2: Moreover, F(W (e)bac) �= F(W (y)x) ⊗
A⊗j1+j2 and hence it su�ces to prove the isomorphism

F(W (y))⊗Hm F(x) �= F(W (y)x)

for x; y 2 Bm: Notice that the right Hm -module F(W (y)) is isomorphic to
the right projective module yP; the left Hm -module F(x) is isomorphic to the
left projective module Pxf−ng; and F(W (y)x) is isomorphic to y(Hm)xf−ng:
The desired formula (2.7) thus transforms into yP ⊗Hm Px = y(Hm)x; which
in turn follows from Hm⊗HmHm = Hm; by multiplying the latter by minimal
idempotents 1x and 1y on the left and right respectively.

Proposition 8 The bimodule F(a) is indecomposable if a 2 Bm
n : Bimodules

F(a) and F(b); for a; b 2 Bm
n are isomorphic if and only if a = b:

We leave the proof to the reader. An equivalent form of the proposition is that

� F(a); for a 2 bBm
n ; is indecomposable if and only if a does not contain

circles;

� bimodules F(a) and F(b); for a; b 2 bBm
n are isomorphic if and only if a

and b contain the same number of circles and the flat tangles obtained
from a and b by removing all circles are isotopic.

2.8 The category of geometric bimodules

An (m;n)-bimodule is called geometric if it is isomorphic to a �nite direct sum
of bimodules F(a); possibly with shifts in the grading, for a 2 Bm

n (equivalently,
for a 2 bBm

n ).

Notice that any geometric bimodule is sweet and that the tensor product of
a geometric (k;m)-bimodule and a geometric (m;n)-bimodule is a geometric
(k; n)-bimodule.

Let Smn be the category with objects{geometric (m;n)-bimodules and morph-
isms{bimodule homomorphisms (grading preserving, of course). The category
Smn is additive. Sm0 is equivalent to Hm

P -mod; the category of �nitely-generated
projective Hm -modules.
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Tensor products of modules and bimodules can be viewed as bifunctors

Skm � Smn −! Skn;
Smn �Hn-mod −! Hm-mod;
Smn �Hn

P -mod −! Hm
P -mod:

Let Kmn
def= K(Smn ) be the category of bounded complexes of objects of Smn up

to chain homotopies. Tensor products of complexes give rise to bifunctors

Kkm �Kmn −! Kkn;
Kmn �Kn −! Km;
Kmn �KnP −! KmP :

The category Km0 is equivalent to KmP :

2.9 A 2-functor

The results of Section 2.7 say that F is a 2-functor from the 2-category of sur-
faces with corners embedded in R3 to the 2-category of geometric H -bimodules
and bimodule maps. In more details, let GB be the 2-category with nonnega-
tive integers as objects, geometric (m;n)-bimodules as 1-morphisms from n to
m; and bimodule homomorphisms as 2-morphisms. 1-morphisms from n to m
and from m to k are composed by tensoring the bimodules over Hm: We call
GB the 2-category of geometric H -bimodules. Observations from Section 2.7
summarize into:

Proposition 9 F is a 2-functor from the Euler-Temperley-Lieb 2-category
ETL to the 2-category GB of geometric H -bimodules.

Note that the objects of both 2-categories are nonnegative integers, and F is
the identity on objects. It takes a 1-morphism (a; j) of ETL to the bimodule
F(a)fjg: We introduced ETL; a \central extension" of TL; to make bimodule
homomorphisms F(S) grading-preserving.

3 Tangles and complexes of bimodules

3.1 Category of tangles

We will only consider tangles with even number of top endpoints (notice that
in any tangle the numbers of top and bottom endpoints have the same parity).
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An unoriented (m;n)-tangle L is a proper, smooth embedding  of n+m arcs
and a �nite number of circles into R2 � [0; 1] such that:

(i) The boundary points of arcs map bijectively to the 2(n +m) points

f1; 2; : : : ; 2ng � f0g � f0g; f1; 2; : : : ; 2mg � f0g � f1g:
The �rst 2n points lie in R2 � f0g; the other 2m in R2 � f1g:
(ii) Near the endpoints, the arcs are perpendicular to the boundary planes.

We impose (i) and (ii) to make tangles easy to concatenate. We distinguish
between oriented and unoriented tangles. An oriented (m;n)-tangle comes
with an orientation of each connected component.

Unoriented tangles constitute a category with objects{nonnegative integers, and
morphisms{isotopy classes of (m;n)-tangles. The composition of morphisms is
de�ned as the concatenation of tangles, in the same way as the composition of
flat tangles was de�ned in Section 2.2.

Oriented tangles constitute a category, denoted OT AN ; with objects{even
length sequences of �1; and morphisms{isotopy classes of oriented (m;n)-
tangles. Our conventions are explained in Figure 12. An arc oriented upward
near its boundary point marks this point with 1; a downward oriented arc with
−1:

1 -1

1 1-1 -1

Figure 12: This oriented (2,4)-tangle is a morphism from f1,-1g to f1,-1,-1,1g.

Any tangle is isotopic to a composition of elementary tangles, depicted in Fig-
ures 13-14 (to make our life easier, we will often draw piecewise-linear approx-
imations of smooth tangles).

A plane diagram of a tangle is a generic projection of a tangle onto the (x; z)-
plane (onto R� [0; 1]). We call a projection generic if it has no triple intersec-
tions, tangencies and cusps. Two diagrams are called isotopic if they belong to
a one-parameter family of generic projections.

Figure 15 explains the di�erence between isotopies of tangles and isotopies of
plane diagrams. A deformation of a plane diagram is an isotopy if it does not
change the combinatorial structure of the diagram.
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1 2 i 2n1 i 2n2

Figure 13: Tangles �i;2n and �−1
i;2n

2n1 i1 2 2ni

Figure 14: Tangles \i;2n and [i;2n

An isotopy of plane diagrams

Not an isotopy of plane diagrams

Figure 15: Isotopies of plane diagrams explaned

Proposition 10 Two plane diagrams represent isotopic tangles if and only if
these diagrams can be connected by a chain of diagram isotopies and Reide-
meister moves, depicted in Figures 16{19.

Figure 16: Addition/removal of a left-twisted curl
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Figure 17: Addition/removal of a right-twisted curl

Figure 18: Tangency move

Figure 19: Triple point move

3.2 Resolutions of plane diagrams and the Kau�man bracket

Let D be a diagram of an unoriented tangle L: A crossing of D can be \re-
solved" in two possible ways, as in Figure 20.

0-resolution 1-resolution

Figure 20: Two resolutions of a crossing

We call the resolution on the left 0-resolution, the one on the right 1-resolution.
A resolution of D is a resolution of each double point of D: Thus, a resolution
of a plane diagram is a flat tangle, and a morphism in the Temperley-Lieb
category (see Section 2.2).
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A diagram with k crossings has 2k resolutions. De�ne hDi; the bracket of D;
as the weighted sum

hDi =
X
s

(−q−1)#(s)s; (22)

where s varies over all resolutions of D and #(s) is the number of 1-resolutions
in s: We treat the sum as a morphism in the linear Temperley-Lieb category
LT L (see Section 2.2).

x(D) y(D)

Figure 21: Orientations of crossings

Let D be a diagram of an oriented (m;n)-tangle L: Let x(D) and y(D) be
the number of crossings of D with local orientations as in Figure 21. To D we
associate the Kau�man bracket K(D) by the formula

K(D) def= (−1)x(D)q2x(D)−y(D)hDi:

Proposition 11 K(D) does not depend of the choice of a diagram D of an
oriented tangle L; and is an invariant of L:

We denote this invariant by K(L) and call it the Kau�man bracket of the tangle
L: It is an element of the free Z[q; q−1]-module generated by elements of Bm

n ;
and also a morphism from n to m in the linear Temperley-Lieb category.

Proposition 12 The Kau�man bracket is a functor from the category OT AN
of oriented tangles to the linear Temperley-Lieb category LT L:

This functor takes an object of OT AN which is a sequence of �1 of length
2n to the object n of LT L: Notice also that L is an oriented tangle while
flat tangles are not oriented, according to our convention. When this functor
is computed on an oriented tangle L using its diagram D; the orientations of
components of L are discarded once we know x(D) and y(D):

The Kau�man bracket was discovered by Louis Kau�man [34], who also showed
that after a simple change of variables the Kau�man bracket turns into the
Jones polynomial. The usual formula in the literature for the Kau�man bracket

Algebraic & Geometric Topology, Volume 2 (2002)



A functor-valued invariant of tangles 695

appears somewhat more symmetric, due to the use of the square root of q: We
steer clear of the square root at the cost of a normalization that employs 2
parameters, x(D) and y(D); rather than just one{the writhe. Moreover, in the
literature the bracket of the closed circle is set to −q − q−1; rather than our
q + q−1; so that our q is the conventional −q:

3.3 Commutative and anticommutative cubes

This section is a repeat of [38, Sections 3.2-3.4], included here for completeness.

A commutative cube is a generalization of a commutative square. We assign an
object of a category to each vertex of an n-dimensional cube and a morphism
to each edge so that each 2-dimensional facet of the cube is a commutative
diagram.

In details, let I be a �nite set, jIj its cardinality, and r(I) the set of all pairs
(T; a) where T is a subset of I and a 2 I n T: To simplify notation we will
often denote a �nite set fa; b; : : : ; dg by ab : : : d; the disjoint union T1 t T2 of
two sets by T1T2; so that Ta; for instance, means T t fag:

De�nition 2 A commutative I -cube V over a category S assigns an object
V (T ) of S to each subset T of I and a morphism V (T ) −! V (Ta) to each
(T; a) 2 r(I) such that the diagram

V (T ) −−−! V (Ta)??y ??y
V (Tb) −−−! V (Tab)

commutes for any triple (T; a; b) where T � I; and a; b 2 I n T; a 6= b: The
morphisms are called the structure maps of V:

We will call a commutative I -cube an I -cube or, sometimes, a cube without
explicitly mentioning I:

If the category S is monoidal, commutative cubes over S admit internal and
external tensor products. The internal product of two I -cubes V and W is an
I -cube, denoted V ⊗W; with (V ⊗W )(T ) = V (T )⊗W (T ) and structure maps
de�ned in the obvious way. The external tensor product of an I1 -cube V and
an I2 -cube W is an I1I2 -cube V �W with (V �W )(T1T2) = V (T1)⊗W (T2);
where Ti � Ii; and obviously de�ned structure maps.
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A skew-commutative I -cube over an additive category S is de�ned in the same
way as a commutative I -cube, except that we require that for every square
facet of the cube the associated diagram of objects and morphisms of S anti-
commutes.

De�ne a skew-commutative I -cube E(I) over the category of abelian groups as
follows. For a �nite set T denote by o(T ) the set of total orderings or elements
of T: For x; y 2 o(T ) let p(x; y) be the parity function, p(x; y) = 0 if y can
be obtained by from x via an even number of transpositions of two elements
in the ordering, otherwise, p(x; y) = 1: To T associate an abelian group E(T )
which is the quotient of the free abelian group generated by x for all x 2 o(T )
by relations x = (−1)p(x;y)y for all pairs x; y 2 o(T ): Notice that E(T ) is
isomorphic to Z: For a 62 T the map o(T ) ! o(Ta) that takes x 2 o(T ) to
ax 2 o(Ta) induces an isomorphism E(T ) �= E(Ta): Moreover, the diagram
below anticommutes.

E(L) −−−! E(La)??y ??y
E(Lb) −−−! E(Lab)

(23)

Denote by EI the skew-commutative I -cube with EI(T ) = E(T ) for T � I
and the above isomorphisms E(T ) �= E(Ta) as structure maps.

Note that in [38, Section 3.3] the structure maps of EI take x to xa = (−1)jxjax;
rather than to ax: We changed the de�nition to make Lemma 3 (see below)
hold.

If V is a commutative I -cube over an additive category S; the internal tensor
product V ⊗ EI is a skew-commutative I -cube over S: Essentially, the tensor
product with EI adds minus signs to some structure maps of V; making each
square anticommute. Since EI is de�ned in a rather invariant way, the minuses
stay hidden, however.

To a skew-commutative I -cube W over S we associate a complex C(W ) of
objects of S by

C
i(W ) = �

T�I;jT j=i
W (T ) (24)

and the di�erential d is the sum of the structure maps of W: Skew-commutat-
ivity of square faces of V ensures that d2 = 0:

To a commutative I -cube V over S we associate the complex C(V ⊗ EI) of
objects of S:
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Assume now that S is an additive monoidal category. Then the category of
S -complexes is also monoidal. Let V1; V2 be commutative I1; I2 -cubes over
S: The following lemma says that there are two equivalent ways to produce
a complex from this data: either take the complex associated to the external
tensor product of V1 and V2; or take the tensor product of complexes associated
to V1 and V2:

Lemma 3 Complexes C((V1 � V2) ⊗ EI1I2) and C(V1 ⊗ EI1) ⊗ C(V2 ⊗ EI2)
are isomorphic, via the map which sends (t1 ⊗ t2) ⊗ (x1x2); considered as an
element of the �rst complex (where ti 2 Vi(Ti) and xi 2 o(Ti) for some Ti � Ii)
to (t1 ⊗ x1)⊗ (t2 ⊗ x2); considered as an element of the second complex.

Proof We just have to check that the above identi�cation of terms in the two
complexes is consistent with the di�erentials in the complexes. That follows
from our de�nitions of EI and the di�erential in the tensor product (19). If a
is an element of I2 nT2; we have ax1x2 = (−1)jx1jx1ax2; the same power of −1
as in the formula (19) for the di�erential of the tensor product.

3.4 The complex associated to a tangle diagram

Fix a plane diagram D with k crossings of an oriented (m;n)-tangle L: Let
I be the set of crossings of D: To D we will associate an I -cube VD over the
category of (m;n)-bimodules. This cube will not depend on the orientation of
components of L:

D admits 2k resolutions (see Section 3.2), in bijection with subsets of I : given
T � I; take 1-resolution of each crossing that belongs to T; and 0-resolution
of each crossing that doesn’t. Denote by D(T ) the resolution associated to T:
Each resolution of D is a flat (m;n)-tangle and F(D(T )) is an (m;n)-bimodule.
We assign this bimodule, with the grading lowered by the cardinality of T; to
the vertex of VD associated to T :

VD(T ) def= F(D(T ))f−jT jg:

To de�ne the structure maps VD(T ) −! VD(Ta); for a 2 I n T; we notice that
resolutions D(T ) and D(Ta) of D di�er only in a small neighbourhood U of
the crossing a of D (see Figure 22, the dashed circle is the boundary of U ).

There is an admissible cobordism S between D(T ) and D(Ta); unique up to
isotopy, which is the identity cobordism outside U � [0; 1]; and the simplest
cobordism between U \D(T ) and U \D(Ta) inside U � [0; 1]: This cobordism
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D ( T ) D ( T a )D

Figure 22: D and the two resolutions in the neighbourhood of a

has one saddle point and no other other critical points relative to the height
function S � R2� [0; 1] −! [0; 1]: For a more detailed description of S we refer
the reader to [38, Section 4.2].

F(S) : F(D(T )) −! F(D(Ta)) is a degree 1 homomorphism of (m;n)-
bimodules, therefore, after shifts it becomes a grading-preserving bimodule ho-
momorphism

F(S) : F(D(T ))f−jT jg −! F(D(Ta))f−jTajg;
since jTaj = jT j+ 1: This is the homomorphism we assign to the oriented edge
of the cube VD connecting vertices labeled by T and Ta: Functoriality of F
implies that every square face of VD is commutative.

Tensoring VD with EI ; we get a skew-commutative I -cube VD ⊗ EI : Denote
by F(D) the complex C(VD ⊗ EI); and by F(D) the shifted complex

F(D) def= F(D)[x(D)]f2x(D) − y(D)g: (25)

3.5 Main result

Theorem 2 If D1;D2 are diagrams of an oriented (m;n)-tangle L; the com-
plexes F(D1) and F(D2) of (m;n)-bimodules are chain homotopy equivalent.

The proof occupies Section 4.

It follows that the isomorphism class of F(D) in the category Kmn does not
depend on the choice of a diagram D of an oriented tangle L; and is an invariant
of L; denoted F(L):

4 Proof of Theorem 2

4.1 Invariance under isotopies of plane diagrams

An isotopy γ between plane diagrams D1 and D2 induces a bijection γ� :
I1
�= I2 between their sets of crossings. There is a canonical isotopy between
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resolutions D1(T1) and D2(γ�T1); for any subset T1 of I1; giving rise to an
isomorphism of bimodules F(D1(T1)) �= F(D2(γ�T1)): These isomorphisms re-
spect structure maps and provide us with an isomorphism of cubes VD1 and
VD2: This isomorphism immediately leads to an isomorphism between com-
plexes F(D1) and F(D2); since x(D1) = x(D2) and y(D1) = y(D2):

4.2 Behaviour under composition of plane diagrams

Proposition 13 Let D2;D1 be plane diagrams of unoriented (k;m)- and
(m;n)-tangles. There is a canonical isomorphism of complexes of (k; n)-bimod-
ules

F(D2D1) �= F(D2)⊗Hm F(D1): (26)

Proof Let Ii be the set of crossings of Di: Given subsets Ti � Ii; the res-
olution D2D1(T2T1) of D2D1 is the composition of resolutions D2(T2) and
D1(T1): Theorem 1 provides us with a canonical bimodule isomorphism

F(D2D1(T2T1)) �= F(D2(T2))⊗Hm F(D1(T1)):

If ai 2 Ii n Ti; elementary cobordisms between Di(Ti) and Di(Tiai) induce
bimodule maps F(Di(Ti)) −! F(Di(Tiai)) which make the diagram below
commute (for i = 1; similarly for i = 2)

F(D2D1(T2T1)) �= F(D2(T2))⊗Hm F(D1(T1))
# #

F(D2D1(T2T1a1))f−1g �= F(D2(T2))⊗Hm F(D1(T1a1))f−1g
Therefore, the external tensor product of commutative cubes VD2 and VD1 is
canonically isomorphic to the commutative cube VD2D1 : Lemma 3 implies that
there is a canonical isomorphism of complexes of bimodules

F(D2D1) �= F(D2)⊗Hm F(D1)

Observing that x(D) and y(D) are additive under composition of diagrams,

x(D2D1) = x(D2) + x(D1); y(D2D1) = y(D2) + y(D1);

we obtain isomorphism (26).

Any tangle can be written (in many ways, of course) as a composition of ele-
mentary tangles, depicted in �gures 13, 14. Therefore, the complex F(D) is
isomorphic to a tensor product of complexes associated to �gure 13 and 14 dia-
grams of elementary tangles (referred to from now on as elementary diagrams).
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The invariance of F(D) under the Reidemeister moves can be checked locally.
For instance, if D1 and D2 are related by a triple point move (�gure 19), there
are decompositions

D1
�= D0�i;2n�i+1;2n�i;2nD

00 and D2
�= D0�i+1;2n�i;2n�i+1;2nD

00;

where �= above denotes isotopy of plane diagrams. These decompositions give
rise to isomorphisms of complexes of bimodules

F(D1) �= F(D0)⊗Hn F(�i;2n�i+1;2n�i;2n)⊗Hn F(D00);
F(D2) �= F(D0)⊗Hn F(�i+1;2n�i;2n�i+1;2n)⊗Hn F(D00):

Consequently, the invariance under triple point moves will follow once we con-
struct a chain homotopy equivalence

F(�i;2n�i+1;2n�i;2n) �= F(�i+1;2n�i;2n�i+1;2n):

Similar chain homotopy equivalences will imply invariance under the tangency
and curl addition moves.

4.3 Left-twisted curl

Denote by D the elementary tangle \i;2n; arbitrarily oriented, by D1 the dia-
gram D with a left-twisted curl added, and by D2 the 0-resolution of D1; as
depicted in Figure 23.

Note that D is isotopic to the 1-resolution of D1: We want to construct an iso-
morphism in the category Kn−1

n between the bimodule F(D) and the complex
of bimodules F(D1); the latter isomorphic to the cone of a bimodule homomor-
phism F(D2)! F(D) (in this informal discussion we will ignore shifts). Since,
F(D2) �= F(D)⊗A = F(D)�F(D); and the homomorphism F(D2)! F(D)
is the identity when restricted to F(D) = F(D)⊗ 1 � F(D2); after taking the
cohomology we’ll be left with the remaining copy of F(D):

We will now beef up this intuitive sketch into a rigorous argument. Notice that
F(D2) �= F(D) ⊗ A: Cobordisms in Figures 24, 25 and 26 induce (grading-
preserving) bimodule homomorphisms:

m0 : F(D2)f1g −! F(D)
�0 : F(D)f1g −! F(D2)
�0 : F(D) −! F(D2)f1g

(27)

These bimodule homomorphisms are similar to the structure maps m;�; � of
the ring A; hence the notation. Note that

m0�0 = IdF(D):

Let |0 = �0 − �0m0�0: Then m0|0 = 0:
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1 2 i 2n

D

D
1

D
2

Figure 23: Left-twisted curl and its two resolutions

Figure 24: m0 cobordism

Figure 25: �0 cobordism

Proposition 14 Bimodule homomorphisms �0 and |0 are injective and there
is a direct sum decomposition of bimodules

F(D2) = �0(F(D)f−1g) � |0(F(D)f1g):

The proof is straightforward.
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Figure 26: �0 cobordism

The complex F(D1) is given by

: : : −! 0 −! F(D2) m0−! F(D)f−1g −! 0 : : : ;

which we can rewrite as

0 −! �0(F(D)f−1g) � |0(F(D)f1g) (id;0)−! F(D)f−1g −! 0:

This complex is isomorphic to the direct sum of

0 −! F(D)f1g −! 0

and a contractible complex

0 −! F(D)f1g id−! F(D)f1g −! 0;

therefore, F(D1) �= F(D)f1g in the homotopy category Kn−1
n :

Equalities x(D1) = x(D) = 0 and y(D1) = y(D) + 1 = 1; valid for any orien-
tation of D; give an isomorphism F(D1) �= F(D) in the homotopy category of
complexes of bimodules.

4.4 Right-twisted curl

We let diagrams D and D2 be the ones in the previous subsection, and let
D1 be D decorated by a right-twisted curl (�gure 27). D is isotopic to the
0-resolution of D1 and D2 to the 1-resolution of D1:

1 2 i 2n

D
1

Figure 27: Right-twisted curl in the standard position
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We will use bimodule homomorphisms m0;�0; �0; de�ned in the previous sub-
section. In addition, introduce a bimodule homomorphism

�0 : F(D2) −! F(D)f1g (28)

associated to the surface depicted in Figure 28.

Figure 28: Cobordism for �0

Proposition 15 There is a direct sum decomposition of bimodules

F(D2) = �0(F(D)f−1g) ��0(F(D)f1g):

Denote by } the bimodule homomorphism

} = m0 −m0�0�0 : F(D2)f1g −! F(D):

Lemma 4 We have equalities

}�0 = 0 (29)
}�0 = IdF(D) (30)

F(D1) is the cone of the bimodule homomorphism �0 : F(D) −! F(D2)f−1g:
The complex F(D1) is isomorphic to

0 −! F(D)
(id;0)−! F(D)�F(D)f−2g −! 0

so that F(D1) is isomorphic to the direct sum of a contractible complex and
F(D)f−2g[−1]:

Since x(D1) = x(D) + 1 = 1 and y(D1) = y(D) = 0 for any orientation of D;
there is an isomorphism F(D1) �= F(D) in the homotopy category of complexes
of bimodules.
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a

bD D
1

Figure 29: Tangency move

D (    ) D ( a b )D ( a ) D ( b )

Figure 30: Four resolutions of D1

4.5 Tangency move

Let D and D1 be two diagrams related by a tangency move (Figure 29). We can
assume that D is the diagram Vert2n of the identity tangle, and D1 = �i;2n�

−1
i;2n:

Denote by a and b the crossings of D: Notice that F(D) is isomorphic to Hn

as an (n; n)-bimodule. D1 admits four resolutions (Figure 30).

D(;) and D(ab) are isotopic, and D(a) is isotopic to D(;) with a circle added,
so that there are canonical bimodule isomorphisms

F(D(;)) �= F(D(ab)); F(D(a)) �= F(D(;)) ⊗A:

The commutative fa; bg-cube VD1 is actually a commutative square

F(D(;)) �1−−−! F(D(a))f−1g??y�2

??y�4

F(D(b))f−1g �3−−−! F(D(ab))f−2g
where �i are bimodule homomorphisms induced by elementary cobordisms be-
tween the four resolutions. The complex F(D1) is canonically isomorphic to

: : : −! 0 −! F(D(;)) �1+�2−! F(D(a))f−1g � F(D(b))f−1g �4−�3−!
−! F(D(ab))f−2g −! 0 −! : : :

Let � : F(D(b)) ! F(D(a)) be the bimodule homomorphism induced by the
Figure 31 cobordism.
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Figure 31: Cobordism for �

Let X1 be the subbimodule of F(D(a))f−1g�F(D(b))f−1g given by (�(u); u);
for all u 2 F(D(b))f−1g: This bimodule is isomorphic to F(D(b))f−1g �=
F(D)f−1g; and dX1 = 0 since �3 = �4� (where d stands for di�erential in
F(D1)). Therefore, X1 as a subcomplex of F(D1):

Let X2 be the subcomplex of F(D1) generated by F(D(;)): Since d is injective
on F(D(;)); the complex X2 is isomorphic to

0 −! F(D(;)) id−! F(D(;)) −! 0;

and, therefore, contractible.

Let X3 be the subcomplex of F(D1) generated by the bimodule

1⊗F(D(;))f−1g � A⊗ F(D(;))f−1g �= F(D(a))f−1g:

Since the di�erential in F(D1) takes 1⊗F(D(;))f−1g bijectively to
F(D(ab))f−2g; the complex X3 is contractible.

Direct sum decomposition F(D1) = X1 � X2 � X3 implies that complexes
F(D1) and X1 are chain homotopic. Therefore, F(D1) is chain homotopic to
F(D)[−1]f−1g:

For any orientation, x(D1) = 1; y(D1) = 1 and F(D1) = F(D1)[1]f1g: We
obtain a chain homotopy equivalence F(D1) �= F(D):

4.6 Triple point move

Let D1 and D2 be diagrams �i;2n�i+1;2n�i;2n and �i+1;2n�i;2n�i+1;2n; respec-
tively. Denote their double points by a1; b1; c1; a2; b2; c2; see Figure 32. We
will construct a chain homotopy equivalence of complexes of bimodules F(D1)
and F(D2): Since x(D1) = x(D2) and y(D1) = y(D2) it su�ces to show that
F(D1) and F(D2) are homotopy equivalent.
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Note that 1-resolution of the crossing a1 of D1 is isotopic to 1-resolution of the
crossing a2 of D2; see Figure 33. Consequently, complexes of bimodules associ-
ated to these 1-resolutions are isomorphic. These complexes are subcomplexes
of F(D1) and F(D2); respectively, and will be denoted Z1 and Z2: As part of
this isomorphism there are isomorphisms of bimodules

F(D1(a1)) �= F(D2(a2)); F(D1(a1b1)) �= F(D2(a2b2));
F(D1(a1c1)) �= F(D2(a2c2)); F(D1(a1b1c1)) �= F(D2(a2b2c2)):

Resolutions of 0-resolutions of a1 and a2 are depicted in Figures 34, 35.

Let �1; �2 be bimodule maps associated to Figures 36, 37 cobordisms

�1 : F(D1(c1)) −! F(D1(b1));
�2 : F(D2(c2)) −! F(D2(b2)):

Diagrams D1(b1) and D2(b2) contain one closed cirle each. Therefore,

F(D1(b1)) �= A⊗F(G1); F(D2(b2)) �= A⊗F(G2);

where Gj is the diagram obtained by removing the circle from Dj(bj): Denote
by Mj the subbimodule 1⊗F(Gj) of F(Dj(bj)):

Let X1
j ;X

2
j ;X

3
j ; for j = 1; 2 be the following subcomplexes of F(Dj):

X1
j = fx+ �j(x) + yjx 2 F(Dj(cj))[−1]f−1g; y 2 Zjg;

X2
j = fx+ dyjx; y 2 F(Dj(;))g;

X3
j = fx+ dyjx; y 2Mj[−1]f−1gg;

where d denotes the di�erential in F(Dj):

Proposition 16 (1) X1
j ;X

2
j ; and X3

j are indeed subcomplexes of F(Dj):
(2) There is a direct sum decomposition

F(Dj) = X1
j �X2

j �X3
j :

(3) Complexes X2
j and X3

j are contractible.

(4) Complexes X1
1 and X1

2 are isomorphic.

Proof From de�nition, X2
j ;X

3
j are subcomplexes. X1

j is a subcomplex since
d(x + �j(x)) lies in Zj (we twisted x by �j to make it so). Veri�cation of
direct sum decompositions is straighforward (or see [38, Section 5.4]). Com-
plexes X2

j and X3
j are contractible since the di�erential is injective on F(Dj(;))

and Mj[−1]f−1g: The complex X1
j is isomorphic to the cone of the map

F(Dj(cj))[−2]f−1g −! Zj : Canonical isomorphisms F(D1(c1)) �= F(D2(c2))
and Z1

�= Z2 commute with these maps and give the isomorphism X1
1
�=

X1
2 :

Algebraic & Geometric Topology, Volume 2 (2002)



A functor-valued invariant of tangles 707

a
1

b
1

c
1

a
2

b
2

c
2
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Figure 32: Diagrams D1 and D2

1
a1−resolution  of  a

2
1−resolution  of  

Figure 33: 1-resolutions of a1 and a2

D (b )
1 1

D (c )
1 1

D (b c )
1 1 1

D (
1

)

Figure 34: Resolutions of 0-resolution of a1

D (c )
2 2

D (b )
2 2

D (b c )
2 2 2

D ( )
2

Figure 35: Resolutions of 0-resolution of a2

We obtain a sequence of homotopy equivalences

F(D1) �= X1
1
�= X1

2
�= F(D2):
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Figure 36: Cobordism for �1

Figure 37: Cobordism for �2

5 Interpretations of our invariant

5.1 Direct sum decompositions in categories of complexes

We say that an abelian category S is Krull-Schmidt if every object is isomor-
phic to a �nite direct sum of indecomposable objects, and this decomposition is
unique: for any isomorphism �i2IMi

�= �j2JNj between direct sums of inde-
composables there is a bijection f : I ! J such that Mi

�= Nf(i): The category
of �nite length modules over a ring is Krull-Schmidt. In particular, the category
of �nite-dimensional modules over a k -algebra R is Krull-Schmidt, where k is
a �eld. Also, the category of �nite-dimensional graded modules over a graded
k -algebra R is Krull-Schmidt.

Let Kom(S) be the category of bounded complexes of objects of S: It is an
abelian category and in the previous sections of this paper we’ve been working
with its quotient category K(S):

For the rest of this subsection we assume that S is either the category of �nite-
dimensional modules over a k -algebra R or the category of �nite-dimensional
graded modules over a graded k -algebra R:

Proposition 17 Kom(S) is Krull-Schmidt.

Proof Kom(S) is equivalent to the category of �nite-dimensional graded
(resp. bigraded) modules over the algebra R⊗ (k[@]=@2 = 0):
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Proposition 18 Any object M of Kom(S) has a direct sum decomposition
M �= Core(M)� Ct(M) where Ct(M) is contractible and Core(M) does not
contain any contractible direct summands. Core(M) and Ct(M) are uniquely
(up to an isomorphism) determined by M:

We call Core(M) the core of M:

Proposition 19 Complexes M and N in Kom(S) are chain homotopy equiv-
alent if and only if Core(M) and Core(N) are isomorphic.

In other words, two complexes are homotopy equivalent i� they are isomorphic
after splitting o� their contractible direct summands.

Earlier we proved that the chain homotopy class of F(D) is an invariant of the
tangle L: We would like to specialize this invariant to more tangible invariants.
One way is to take the cohomology: cohomology groups of F(D) are graded
(m;n)-bimodules. The other is to split o� contractible summands to get the
core of F(D): Unfortunately, we do not know if Kom(Kmn ) is a Krull-Schmidt
category, i.e. whether it has a unique decomposition property.

Instead, we change from Z to a �eld k: By tensoring Hn and F(D) with k we
get a graded �nite-dimensional k -algebra, denoted Hn

k ; and a complex F(D)⊗k
of graded (Hm

k ;H
n
k )-bimodules. Chain homotopy equivalence is preserved by

base change, so that the chain homotopy equivalence class of F(D) ⊗ k is an
invariant of L: In particular, Core(F(D)⊗k) is an invariant of L: This invariant
is a complex of graded (Hm

k ;H
n
k )-bimodules, up to an isomorphism.

5.2 Grothendieck and split Grothendieck groups

a Grothendieck groups

The Grothendieck group G(S) of an abelian category S is an abelian group
with generators [M ]; for all objects M of S; and de�ning relations [M2] =
[M1] + [M3] for all short exact sequences

0 −!M1 −!M2 −!M3 −! 0:

In particular, the Grothendieck group of a Jordan-Gölder category (a category
with �nite composition series, for instance the category of �nite-length modules
over a ring), is a free abelian group generated by isomorphism classes of simple
objects.
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The Grothendieck group of the category K(S) of bounded complexes of objects
of S up to chain homotopies is an abelian group with generators [M ]; for all
objects M of K(S); and de�ning relations [M [1]] = −[M ] (where M [1] is the
shift of M one degree to the left, the two di�erent uses of brackets should not
lead to confusion), and [M2] = [M1] + [M3] for all short exact sequences of
complexes

0 −!M1 −!M2 −!M3 −! 0;

(that is, 0 −!M i
1 −!M i

2 −!M i
3 −! 0 is exact for all i).

The inclusion of categories S � K(S) that to an object M of S associates the
complex

: : : −! 0 −!M −! 0 −! : : : ;

with M in degree 0; induces an isomorphism between the Grothendieck groups
of S and K(S):

More generally, the Grothendieck group of a triangulated category T is an
abelian group with generators [M ]; for all objects M of T ; and relations
[M [1]] = −[M ] and [M2] = [M1] + [M3] for all distinguished triangles

M1 −!M2 −!M3 −!M1[1]

In particular, it is easy to see that the Grothendieck group of the bounded
derived category Db(S) is isomorphic to the Grothendieck groups of K(S) and
S:

If B is a graded ring, the Grothendieck group of the category of graded B -
modules is naturally a Z[q; q−1]-module, where the multiplication by q corre-
sponds to the grading shift: [Mf1g] = q[M ]:

Let Z(a); for a 2 Bn; be a graded Hn -module, isomorphic as a graded abelian
group to Z; placed in degree 0; with 1a acting as the identity on Z(a); and 1b;
for b 6= a acting by 0:

Proposition 20 The Grothendieck group of Hn−mod is a free Z[q; q−1]-
module generated by [Z(a)] over all a 2 Bn:

Proof The base change from Z to Q is an exact functor from Hn-mod to the
category of graded �nite-dimensional Hn

Q -modules. By the Jordan-Gölder the-
orem the Grothendieck group of the latter is a free Z[q; q−1]-module spanned by
isomorphism classes of simple Hn

Q -modules. The base change de�nes a bijection
between modules Z(a) and simple Hn

Q -modules. Therefore, images [Z(a)] of

Algebraic & Geometric Topology, Volume 2 (2002)



A functor-valued invariant of tangles 711

modules Z(a) in the Grothendieck group of Hn-mod are linearly independent
over Z[q; q−1]:

Any module in Hn-mod has a �nite-length composition series with subse-
quent quotients isomorphic to Z(a)fig and Z(a)=pZ(a)fig; for various a 2 Bn;
primes p; and integers i: The images of modules Z(a)=pZ(a) are zero in the
Grothendieck group. Therefore, the Grothendieck group of Hn-mod is gener-
ated, as a Z[q; q−1]-module, by [Z(a)]; over all a 2 Bn:

Given a subcategory C of S; or K(S); or Db(S); de�ne the Grothendieck group
G(C) of C as the subgroup of the Grothendieck group of the larger category
generated by [M ] over all objects M of C:

To summarize, we have:

Proposition 21 (1) The Grothendieck groups of Hn−mod;Db(Hn−mod);
and Kn are naturally isomorphic. They are free Z[q; q−1]-modules gen-
erated by [Z(a)]; for a 2 Bn:

(2) The Grothendieck groups of Hn
P -mod and KnP are naturally isomorphic.

They are free Z[q; q−1]-modules generated by [Pa]; for a 2 Bn:

a b

Figure 38: Flat tangles a and b:

Let a and b be flat (1; 1)-tangles depicted in Figure 38. Bimodules F(a)
and F(b) are isomorphic to H1 and H1 ⊗ H1f−1g; respectively (note that
H1 �= Af1g). There is a short exact sequence of bimodules

0 −! F(a)f2g −! F(b)f1g −! F(a) −! 0

isomorphic to the exact sequence

0 −! H1f2g γ−! H1 ⊗H1 m−! H1 −! 0

where γ(1) = 1⊗X −X ⊗ 1: Therefore, in the Grothendieck group of graded
(H1;H1)-bimodules we have

[F(b)] = (q + q−1)[F(a)]:
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a1 b1

Figure 39: Stabilization of a and b

On the other hand, we would like bimodules F(a) and F(b) to be independent
in the Grothendieck group, by analogy with the linear Temperley-Lieb category
LT L; where a and b are linearly independent over Z[q; q−1] as morphisms from
1 to 1: For this purpose we use split Grothendieck groups, described below.

Remark Stabilizing a and b also makes them independent. Let a1 and b1 be
flat tangles obtained from a and b by adding 2l vertical lines, as in Figure 39.
Bimodules F(a1) and F(b1) are independent in the Grothendieck groups of
�nitely-generated (H l+1;H l+1)-bimodules, for l > 0: This dependence property
is a fancier version of the fact that the linear map

Homsl(2)(V
⊗2n; V ⊗2m) −! HomC(Inv(V ⊗2n); Inv(V ⊗2m))

which restricts an sl(2)-intertwiner between tensor powers of the fundamental
representation to the map between the spaces of sl(2)-invariants is not injective,
in general, but becomes injective after a stabilization with the identity map of
V ⊗2l; for l > n;m:

b Split Grothendieck groups and the Kau�man bracket

The split Grothendieck group Gspl(S) of an additive category S is the abelian
group with generators [M ] for all objects M of S and relations [M1] = [M2] +
[M3] whenever [M1] is isomorphic to the direct sum of M2 and M3:

The split Grothendieck group tends to be much larger than the Grothendieck
group. For instance, if the category S is Krull-Schmidt the split Grothendieck
group of S is an abelian group freely generated by isomorphism classes of
indecomposable objects of S:

Proposition 22 [F(a)]; over all a 2 Bm
n ; are independent over Z[q; q−1];

when treated as elements of the split Grothendieck group of the category of
�nitely-generated graded (Hm;Hn)-bimodules.

Proof Tensor everything with a �eld k: The category of �nitely-generated
graded (Hm

k ;H
n
k )-bimodules is Krull-Schmidt. According to Proposition 8,

modules F(a)⊗ k are indecomposable and pairwise non-isomorphic.
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Therefore, the split Grothendieck group Gspl(Smn ) of the category Smn of geo-
metric (m;n)-bimodules is a free Z[q; q−1]-module with a basis f[F(a)]; a 2
Bm
n g: Thus, the split Grothendieck group is canonically isomorphic to the
Z[q; q−1]-module of morphisms from n to m in the linear Temperley-Lieb cat-
egory. The isomorphism takes [F(a)] to a: Denote this isomorphism by iso:

iso : Gspl(Smn )
�=−! MorLT L(n;m): (31)

Note that iso takes the tensor product of bimodules to the composition of
morphisms. We can restate this observation in the language of 2-categories.

Proposition 23 iso is an equivalence between the split Grothendieck category
of GB; the 2-category of geometric H -bimodules, and the linear Temperley-Lieb
category LT L:

To a complex M 2 Ob(Kmn ) of geometric (m;n)-bimodules assign [M ] =P
i(−1)i[M i]; an element of the split Grothendieck group of Smn :

Proposition 24 Let L be an oriented (m;n)-tangle. Isomorphism iso takes
[F(L)] to the Kau�man bracket K(L):

Proof Immediate from our de�nition of F(L):

5.3 Functor interpretations of the invariant

Our invariant of an (m;n)-tangle L is a chain isomorphism class of the complex
F(L) of geometric (m;n)-bimodules, equivalently, an isomorphism class of the
object F(L) of Kmn :

There are at least 4 ways to turn this complex into a functor. Namely, tensoring
with L is a functor

� between categories Kn and Km;
� between categories KnP and KmP ;
� between derived categories Dn and Dm (where we denoted by Dn the

bounded derived category Db(Hn-mod)),

� Between stable categories Hn
k−mod and Hn

k−mod (see the end of Sec-
tion 6.7).
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There are obvious inclusion and localization functors

KnP
 1−! Kn  2−! Dn:

The inclusion functor  1 is fully faithful, but the localization functor  2 is
neither full (surjective on morphisms) nor faithful (injective on morphisms).
The composition  2 1 is fully faithful and makes KnP a full subcategory of Dn:

Functors F(L); for (m;n)-tangles L; commute with functors  1 and  2 :

KnP
 1−−−! Kn  2−−−! Dn??yF(L)

??yF(L)

??yF(L)

KmP
 1−−−! Km  2−−−! Dm:

(32)

The functor  1 induces an inclusion of Grothendieck groups, which is proper
for n > 0 (see Section 6.7), while  2 induces an isomorphism of Grothendieck
groups.

Remark There is a natural way to identify the Grothendieck group G(Kn)
with a Z[q; q−1]-submodule of Inv(n): Here Inv(n) is the space of Uq(sl2)-
invariants in V ⊗2n; the 2n-th tensor power of the fundamental representation.
Identify generators [Z(a)] of G(Kn) with canonical basis vectors in Inv(n) (see
[23], [37] for a study of Lusztig canonical and dual canonical bases in this
space). Then images [Pa] of indecomposable projective Hn -modules go to dual
canonical basis vectors in Inv(n): This correspondence intertwines actions of
the category of tangles on G(Kn) via [F(L)] and on Inv(n) via J 0(L) (see the
introduction for the latter notation).

5.4 Categories and 2-categories

Let K be the 2-category with nonnegative integers as objects and Kmn as the
category of 1-morphisms between n and m: Thus, 1-morphisms of K from n
to m are de�ned as objects of Kmn and 2-morphisms of K are morphisms of
Kmn : One can think of K as the chain homotopy 2-category of the 2-category
GB of geometric H -bimodules.

Our main categories and 2-categories can be collected into a commutative dia-
gram:

ETL F−−−! GB −−−! K ? −−− 2TAN??yFor

??yGr

??yGr

??yFor

T L lin−−−! LT L LT L  −−− OT AN

(33)
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ETL is the Euler-Temperley-Lieb 2-category, de�ned in Section 2.3. 2TAN is
the 2-category of oriented and suitably decorated tangle cobordisms (2-tangles).
The categories T L;LT L; and OT AN are de�ned in Sections 2.2, 2.2, and 3.1,
respectively.

Vertical arrows labelled Gr denote the passage to the (split) Grothendieck cat-
egory of a 2-category. Vertical arrows labelled For forget 2-morphisms and
identify isomorphic 1-morphisms of a 2-category . The result is a category.

The 2-functor F was discussed in Section 2.9, The 2-functor GB ! K is the
inclusion of 2-categories which comes from embeddings of categories Smn � Kmn :

What we really are after is the 2-functor from 2TAN to K denoted by the
question mark. The construction of this functor will be the subject of a follow-
up paper.

6 Biadjoint functors, Frobenius algebras, and ex-
tended topological quantum �eld theories

6.1 Topological quantum �eld theories

An n-dimensional topological quantum �eld theory (TQFT, for short) is a ten-
sor functor from the category of n-dimensional oriented cobordisms to an ad-
ditive tensor category1 T: A TQFT associates an object F (M) of the category
T to a closed oriented (n − 1)-manifold M and a map

F (N) : F (M)! F (M 0) (34)

1In all known examples of TQFTs only the following additive tensor categories
appear:

(1) The category of �nite dimensional vector spaces over a �eld.
(2) The category of bounded complexes of free abelian groups of �nite rank (or of

�nite-dimensional vector spaces) up to chain homotopy.
(3) Mild variations of 1 and 2.

In the original Atiyah’s de�nition [4] the target category for a TQFT is the category
of modules over a (commutative) ring �: This works well for 3-dimensional TQFTs,
but not for the 4-dimensional ones. In the Floer-Donaldson 4-dimensional TQFT the
target category is the category of Z8 -periodic complexes up to chain homotopies of
free abelian groups of �nite rank. To keep dimensions 3 and 4 under the same roof
we weaken Atiyah’s de�nition and only request that the target category is an additive
tensor category.
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to an oriented n-cobordism N with the boundary M t (−M 0): The condition
that F is a tensor functor means, among other things, that

(1) F (M tM 0) �= F (M)⊗F (M 0) and F (N tN 0) = F (N)⊗F (N 0) for closed
oriented (n− 1)-manifolds M;M 0 and oriented n-cobordisms N;N 0:

(2) Reversal of the orientation matches the duality in the category T :

F (−M) �= F (M)�:

(3) F (;) = 1: To the empty (n− 1)-manifold we associate the unit object 1
of T:

(4) If N is a closed n-manifold, F (N) is a morphism 1 ! 1: In typical
examples, HomT (1; 1) is the base �eld or Z; so that F (N) is a �eld-valued
or an integer-valued invariant. To the empty n-manifold we associate the
identity map of 1:

(5) F (N � N 0) = F (N) � F (N 0) where � on the LHS is the composition of
cobordisms and on the RHS of morphisms.

This de�nition of a TQFT is unnecessarily restrictive. In practice, we allow
more flexibility by enriching the category of oriented cobordisms with extra
algebraic data. For instance, in the Witten-Reshetikhin-Turaev theory (see
[57],[48]) an object is a closed oriented surface together with a fractional framing
of the stabilized tangent bundle.

Quite often the situation is even more complicated. The category of cobordisms
is enhanced and then certain objects and/or cobordisms are excluded from
the category. Thus, in the Donaldson-Floer theory an object is an admissible
SO(3)-bundle Q over a 3-manifold M; (admissible = M is a homology sphere
or Q has no reducible flat connections [11]). The admissibility condition sharply
limits pairs (Q;M) allowed as objects.

We refer to generalizations of the �rst kind as decorated TQFTs, of the second
kind as restricted (and decorated) TQFTs.

An n-dimensional genus 0 TQFT is a tensor functor from the category of
(n− 2)-dimensional oriented cobordisms in Rn to an additive tensor category.
A plentitude of interesting examples exists in dimension 3; in which case the
category of cobordisms is usually called the category of tangles. A genus 0
three-dimensional TQFT can be assigned to each �nite-dimensional complex
simple Lie algebra g and an irreducible representation V of g [55]. In this
paper and its predecessor [38] we work towards constructing a 4-dimensional
genus 0 TQFT.
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6.2 TQFT with corners

An n-dimensional TQFT with corners associates an additive category F (K)
to a closed oriented (n−2)-manifold K; a functor F (M) : F (@0M)! F (@1M)
to an oriented (n − 1)-cobordism M; and a natural transformation F (N) :
F (@0N) −! F (@1N) of functors to an oriented n-cobordism N with corners.
This assignment is subject to a wealth of conditions, two of which are

� F is a 2-functor from the 2-category MCn of oriented n-cobordisms with
corners to the 2-category AC of additive categories.

� F restricts to an n-dimensional TQFT. Namely, the category F (;) as-
signed to the empty (n − 2)-manifold is an additive tensor category. A
closed oriented (n − 1)-manifold M is a cobordism between the empty
manifolds, so that F (M) is a functor in the category F (;): Applied to
the unit object of F (;) this functor produces an object of F (;) (call this
object eF (M)). For an n-cobordism N between closed (n−1)-manifolds,
F (N) is a natural transformation between functors F (@0N) and F (@1N):
Evaluated at the unit object of F (;) this natural transformation is a mor-
phism eF (N) : eF (@0N)! eF (@1N):

Varying M and N we obtain an n-dimensional TQFT.

Some other conditions, often taken for granted in the literature, such as

� F is tensor on objects: for (n−2)-manifolds K1;K2 the category F (K1t
K2) is isomorphic to the tensor product of categories F (K1) and F (K2);

� F (K) are semisimple categories, for all (n− 2)-manifolds K;

seem to us too ambiguous or restrictive. Sophisticated examples of combina-
torially de�ned TQFTs (with or without corners) have been found in dimen-
sion 3 only, including the Witten-Reshetikhin-Turaev 3D TQFT with corners
and its generalizations from sl2 to other simple Lie algebras. In the Witten-
Reshetikhin-Turaev TQFT the categories associated to closed (n−2)-manifolds
(i.e. 1-manifolds) are semisimple, but they aren’t in the 2D TQFT with cor-
ners associated to Frobenius algebras (Section 6.4 treats this toy yet illumi-
nating example), and they should not be semisimple in the yet-to-be-found 4D
TQFT with corners (Section 6.5). Likewise, once the semisimplicity condition
is waived, de�ning the tensor product of additive categories in an abstract way
becomes rather hard, and we feel that the condition that F is tensor on objects
is best to be left out for now.
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6.3 Biadjoint functors and TQFT with corners

To an (n − 1)-cobordism M between closed (n − 2)-manifolds K1 and K2 a
TQFT with corners assigns a functor F (M) between categories F (K1) and
F (K2) (for simplicity, we will ignore orientations in our discussion). Denote by
W the cobordism M considered as a cobordism from K2 to K1 . There is a
canonical \contraction" n-cobordism between MW and the (n−1)-cobordism
K2 � [0; 1]; and another canonical \contraction" n-cobordism between WM
and K1 � [0; 1]: Figures 40{42 show how to construct these cobordisms. M is
depicted by an interval, thickened in one place to emphasize nontrivial topology
of M: Multiply M by [0; 1] and then contract K2� [0; 1] to K2: After that fan
out, turning K1 � [0; 1] into K1 � semicircle; and add corners. Dashed lines
show copies of M inside the fan. The result is an n-cobordism between WM
and K1 � [0; 1]:

K
1

K
2

MK
2

K
1

W

Figure 40: Cobordisms W and M

K
2

K
1

K
2

K
1

[0,1]M

M

M

Figure 41: Multiply M by [0; 1] and contract K2 � [0; 1] to K2

TQFT with corners assigns natural transformations

IdF (K1) −! F (W )F (M); F (W )F (M) −! IdF (K1);

IdF (K2) −! F (M)F (W ); F (M)F (W ) −! IdF (K2)

to these n-cobordisms. Relations between these natural transformations say
that the functor F (W ) is left and right adjoint to F (M): We will say that
F (W ) is a two-sided adjoint or a biadjoint functor of F (M): A functor which
has a biadjoint is often called a Frobenius functor.
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Figure 42: Fan out and add corners

Proposition 25 For any (n−1)-cobordism M and any n-dimensional TQFT
with corners F the functor F (M) has a biadjoint.

This rather tautological observation is a powerful hint where to search for
TQFTs with corners (of course, we are primarily interested in the four-dimen-
sional ones):

Find categories with many Frobenius functors.

Our favorite examples are:

(1) Categories of modules over symmetric and Frobenius algebras and their
derived categories.

(2) Categories of highest weight modules over simple Lie algebras and their
derived categories.

(3) Derived categories of coherent sheaves on Calabi-Yau manifolds.

(4) Fukaya-Floer categories of lagrangians in a symplectic manifold.

We discuss these examples at length below. As a warm-up, notice that the
composition of two Frobenius functors is a Frobenius functor, and that invertible
functors are Frobenius.

1a Symmetric algebras Let R be a commutative ring and A an R-algebra.
A is called a symmetric R-algebra if
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� A is a �nitely-generated projective R-module,

� A and A�
def= HomR(A;R) are isomorphic as A-bimodules.

If R is a �eld, an R-algebra A is symmetric if and only if it is �nite-dimensional
over R and there is an R-linear functional Tr : A! R which is nondegenerate
(Tr(xA) = 0) x = 0) and symmetric (Tr(xy) = Tr(yx) for all x; y 2 A).

Examples of symmetric algebras include

� matrix algebras,

� group algebras of �nite groups,

� Hecke algebras of �nite root systems,

� cyclotomic Hecke algebras [45],

� �nite-dimensional quantum groups Uq(g); q a root of unity,

� the Drinfeld double of a �nite-dimensional Hopf algebra [31, Theorem
6.10],

� rings Hn and algebras An (see Sections 2.4, 6.4 and Propositions 32,30),

� trivial extension algebras [43, Proposition 16.60],

� commutative Frobenius algebras (see Section 6.4).

For reasons explained in Section 6.5 we will disregard semisimple symmetric
algebras in favour of the nonsemisimple ones. The matrix algebras over a �eld
are semisimple. The group algebra k[G] of a �nite group G is nonsemisimple
when the characteristic of the �eld k divides the order of G: The Hecke algebra
Hn;q of the root system An−1 is nonsemisimple if q 6= 1 is a root of unity of order
at most n; interesting examples of cyclotomic Hecke algebras are nonsemisimple
[2], commutative Frobenius algebras over C are nonsemisimple except when
isomorphic to C�n: Other algebras in the above list are nonsemisimple except
for several obvious cases. For many examples of semisimple symmetric algebras,
not covered in the list above, we refer the reader to [31].

Warning Algebras of polynomials are not symmetric according to our de�-
nition. However, they are sometimes called symmetric since, as vector spaces,
they are isomorphic to the direct sum of all symmetric powers of a vector space.
We will avoid this usage to escape possible confusion.

Our interest in symmetric algebras is motivated, in particular, by the following:

Proposition 26 If A1 and A2 are symmetric algebras, the functor of tensor-
ing with a sweet (A2; A1)-bimodule N admits a biadjoint functor (tensoring
with N� ).
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See [49] for a proof.

Examples of such functors are

� Induction and restriction functors in �nite Hecke algebras, cyclotomic
Hecke algebras [2], group algebras of �nite groups, �nite-dimensional
quantum groups Uq(g); and direct summands of these functors.

� The functor of tensoring with a �nite-dimensional representation of a
group algebra, or a �nite quantum group, and direct summands of these
functors.

� Tensoring with (m;n)-bimodules F(b); for diagrams b 2 bBm
n (see Sec-

tion 2.6). These bimodules are left Hm - and right Hn -projective. The
tensor product with F(b) functor, treated as a functor between categories
of Hm - and Hn -modules, rather then as a functor between categories of
graded modules, has a biadjoint functor|tensoring with F(W (b)):

� Tensoring with (Am; An)-bimodules FA(b); for b 2 bCmn (see Section 6.4).

More generally, if (N; d) is a bounded complex of sweet (A2; A1)-bimodules,
the functor of tensoring with (N; d); considered as a functor between derived
categories, or as a functor between categories of complexes up to chain homo-
topies, admits a biadjoint [49]. If D is a diagram of an (m;n)-tangle, tensoring
with the complex F(D) is a functor betweeen derived categories or chain ho-
motopy categories of Hn;Hm -modules. It has a biadjoint functor{tensoring
with F(D!); where D! is the mirror image of D (when we work with modules
which are not graded).

1b Frobenius algebras These are close relatives of symmetric algebras. An
R-algebra A is called Frobenius over R if the restriction functor A-mod −!
R-mod has a 2-sided adjoint functor. This amounts to the condition that
induction and coinduction functors Ind;Coind : R-mod −! A-mod given by

Ind(M) = A⊗RM; Coind(M) = HomR(A;M)

are isomorphic. We refer the reader to [31, Section 1.3] for a detailed discussion.
If R is a �eld, A is Frobenius i� there is a nondegenerate functional Tr : A −!
R; i.e. Tr is R-linear and Tr(xA) = 0 implies x = 0 for x 2 A:
Notice the di�erence between symmetric and Frobenius algebras over a �eld:
a symmetric algebra admits a symmetric nongenerate functional, Tr(xy) =
Tr(yx): In particular, any symmetric algebra is Frobenius. Examples of Frobe-
nius, but not, in general, symmetric, algebras are

� universal enveloping algebras of restricted Lie algebras [7],
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� �nite-dimensional Hopf algebras,

� NilCoxeter algebras [36],

� 0-Hecke algebras [17],

� cohomology algebra H�(M;R) of a closed oriented manifold M; where
R is a �eld. H�(M;R); however, is a symmetric superalgebra,

� algebras Ext�(G;G) where G is a coherent sheaf on a Calabi-Yau variety
(a smooth projective algebraic variety with the trivial canonical class).

If A1 and A2 are Frobenius algebras and N a sweet (A1; A2)-bimodule then
N is quite often Frobenius even when A1 and A2 are not symmetric.

For instance, let A be a Hopf algebra and V a �nite-dimensional representation
of A: The representation V have left and right dual representations V � and
V �; both isomorphic as vector spaces to HomC(V;C); but with di�erent left
A-module structures:

af(x) = f(S(a)x); a 2 A; f 2 V �; x 2 V
af(x) = f(S−1(a)x); a 2 A; f 2 V �; x 2 V;

where S is the antipode of A:

The functor TV (M) = V ⊗M of tensoring (over the ground �eld) an A-module
on the left with V has a left adjoint functor TV � and a right adjoint functor
TV � : If S2 is an inner automorphism of H then V � and V � are isomorphic as
H -modules, and the functor TV is Frobenius. Examples are:

� S2 = Id in any commutative or cocommutative Hopf algebra [54, Proposi-
tion 4.0.1]. Functors TV and their direct summands (in particular, trans-
lation functors) are used extensively to study representations of these
Hopf algebras [29].

� S2 is an inner automorphism in the quantum group Uq(g):

Any �nite-dimensional Hopf algebra A is Frobenius, but not necessarily sym-
metric. Even if S2 is inner, A might not be symmetric. For instance, the
universal enveloping algebra of a restricted Lie algebra g is symmetric if and
only if tr(ad(x)) = 0 for any x 2 g [20].

The functor TV is equivalent to the functor of tensoring (over A) with a sweet
A-bimodule V⊗A: Often TV decomposes into direct sum of many functors, each
of them Frobenius. Thus, for A a universal enveloping algebra of a restricted Lie
algebra there are quite a few Frobenius functors in the category of A-modules.
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Remark If A1; A2 are arbitrary rings and N an (A1; A2)-bimodule, N is
called a Frobenius bimodule if the tensor product functor N⊗? : A2-mod −!
A1-mod admits a biadjoint, see [31, Chapter 2] for more.

2 The category O Projective functors in the category O are Frobenius.
The Zuckerman functors are almost Frobenius.

If V is a �nite-dimensional representation of a Lie algebra g; let TV be the
functor of tensoring with V (this is a functor in the category of U(g)-modules).
It has a biadjoint functor TV � : Let g be a �nite-dimensional simple Lie algebra
(over C), Z the center of U(g): Let C be the category of �nitely-generated
U(g)-modules on which Z acts through a �nite-dimensional quotient. C de-
composes into a direct sum of categories, one for each maximal ideal of Z:
The category C� associated to a maximal ideal � consists of modules annihi-
lated by some power of this ideal. Let P� : C ! C� be the projection functor
onto this direct summand. Then TV : C ! C decomposes into in�nite direct
sum �

�;�0
P�0TV P�: Each summand has a biadjoint functor P�TV �P�0 : Often these

direct summands can be further decomposed into a direct sum. A direct sum-
mand of a functor TV : C ! C is a called a projective functor [9]. A projective
functor is Frobenius.

The rather large category of Z -�nite U(g)-modules has a relatively small sub-
category, often called the category O . Let h � b be a Cartan and Borel
subalgebras of g: The category O of highest weight modules is a full sub-
category of �nitely-generated U(g)-modules which consists of h-diagonalizable
U(b) locally-�nite modules [9].

Just like C; the category O decomposes into an in�nite direct sum of subcat-
egories O�; over all maximal ideals � of Z: O is stable under tensoring with
a �nite-dimensional module. Restrictions of projective functors to O also have
biadjoints.

Let p � b be a parabolic subalgebra and Op the subcategory of O which
consists of locally U(p)-�nite modules. The inclusion functor Ip of Op into O
admits a left adjoint functor Qp; which to a highest weight module assigns its
maximal U(p)-�nite quotient, and a right adjoint functor Γp which assigns to
a module its maximal U(p)-�nite submodule.

Γp and its right derived functor RΓp are often called Zuckerman functors, while
Qp and its left derived functor LQp are sometimes called Bernstein functors.
Functor isomorphisms

RΓp[d] �= LQp; Qp �= RdΓp
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tell us that in the derived category of O the left adjoint to Ip is isomorphic to
the right adjoint, up to the shift by d; where d = dim(m)−dim(h) and m is the
Levi subalgebra of p: If the left adjoint of a functor is isomorphic to the right
adjoint after a composition with an invertible functor, we say that the functor
is almost Frobenius. In particular, the inclusion functor Ip : Db(Op) ! Db(O)
and the Zuckerman functor RΓp are almost Frobenius.

Proposition 25, modi�ed for decorated TQFT with corners, tells us that functors
F (M) are almost Frobenius, rather than just Frobenius. Therefore, categories
associated to (n−2)-manifolds in n-dimensional decorated TQFTs with corners
should have many Frobenius and/or almost Frobenius functors.

More examples of almost Frobenius functors:

� Functors F(b); for b 2 Bm
n ; as functors between categories Hn -mod and

Hm -mod of graded modules. The left adjoint of F(b) is isomorphic to
F(W (b))fk− lg; the right adjoint is isomorphic to F(W (b))fl−kg; where
l is the number of arcs connecting top endpoints of b and k is the number
of arcs connecting bottom endpoints of b:

� Whenever we are working with graded symmetric algebras, the functor of
the tensor product with a graded sweet bimodule will be almost Frobenius
(as a functor between categories of graded modules).

� Same for di�erential graded symmetric algebras.

3 Coherent sheaves on Calabi-Yau manifolds Let X and Y be smooth
complex projective varieties. Denote by D(X) the bounded derived category
of the abelian category of coherent sheaves on X:

Convolution with a complex K of coherent sheaves on D(X � Y ) is a functor
CK from D(X) to D(Y ): This functor takes a complex of sheaves on X; pulls
it back to X � Y; tensors by K; and pushes forward to Y (all pulls, pushes
and tensorings are derived). The left and right adjoint functors to CK are
convolutions with K�⊗��X!X [dimX] and K�⊗��Y !Y [dimY ]; where K� is the
dual of K; �X ; �Y are projections from X�Y onto its factors, and !X ; !Y are
canonical line bundles on X and Y (see [14],[10] and references therein).

If the line bundles ��X!X and ��Y !Y are trivial when restricted to the support
of sheaf K; the functor of convolution with K will have isomorphic (up to shift
by dimX − dimY in the derived category) left and right adjoint functors. In
particular, if X;Y are Calabi-Yau varieties, so that !X ; !Y are trivial, then
convolution with any complex of sheaves K on X � Y has isomorphic (up to a
shift) left and right adjoint functors. That’s plenty of almost Frobenius functors
to choose from.
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4 Fukaya-Floer categories It is expected that for a symplectic manifold
M , subject to suitable conditions, the Fukaya A1 -category of lagrangian sub-
manifolds in M can be made into an A1 -triangulated category F (M) (see
[41],[24],[25]).

Convolution with a lagrangian submanifold L in the direct product M �N of
symplectic manifolds will de�ne a pair of A1 -functors F (M)! F (N); F (N)!
F (M): These A1 -functors will be biadjoint, up to shifts in the grading.

When M and N are symplectic Calabi-Yau manifolds, these examples of almost
biadjoint functors will be mirror dual to functors of convolution with bounded
complexes of coherent sheaves on the direct product of algebraic Calabi-Yau
varieties.

5 Convolutions with smooth sheaves Let f : Y ! X be a continuous
map of good topological spaces, and k a �eld. Consider the categories of sheaves
of k -vector spaces on Y and X and their derived categories Db(Y ) and Db(X):
In the following discussion all functors are assumed derived.

The direct image functor f� : Db(Y ) ! Db(X) has a left adjoint functor f�;
and the direct image with proper supports f! has a right adjoint functor f !

(see [28], for instance). If f is proper then f� �= f!; so that f� has left and
right adjoint functors. Further assume that f is a locally-trivial �bration with
a �ber{smooth closed orientable manifold U of dimension n; and that the
�bration is orientable, i.e. �bers Ux can be oriented in a compatible way as x
varies over X: Then

f ! �= f�[n];

and f� is an almost Frobenius functor.

In interesting examples Y is �bered over X in two di�erent ways and we get
a Frobenius functor in the category Db(Y ): For instance, Let X be the variety
of full flags in Cn; Xi variety of partial flags with the subspace of dimension
i omitted from the flag, and Yi = X �Xi X: Then Yi is a locally-trivial P1

�bration over X in two ways, X
f1 − Yi

f2−! X; and de�nes a convolution
functor f2�f�1 in Db(X): This functor is Frobenius, with a biadjoint f1�f�2 [2]:

The localization theorem of Beilinson-Bernstein implies that this example of
Frobenius and almost Frobenius functors is essentially equivalent to the Zuck-
erman functors example discussed earlier.

We see that derived categories of modules over symmetric algebras, of category
O , of coherent sheaves on Calabi-Yau varieties and Fukaya-Floer categories

Algebraic & Geometric Topology, Volume 2 (2002)



726 Mikhail Khovanov

admit many biadjoint functors. In Section 6.5 we point out that quite often
these categories have natural braid group actions, easily passing our test: to
have a lot of invertible and biadjoint functors. What remains to be done is
the much harder work of sifting through the universe of Frobenius algebras and
Calabi-Yau varieties to �nd the precious ones that provide invariants of link
cobordisms (we believe that Frobenius rings Hn constitute the �rst nontrivial
example). This problem will be addressed elsewhere.

6.4 2D TQFT with corners

Let R be a commutative ring. A 2-dimensional topological quantum �eld theory
over R is a tensor functor from the category M of 2-cobordisms between 1-
manifolds to the category of R-modules. 1-manifolds are assumed oriented,
compact and closed, cobordisms are oriented, compact 2-manifolds. 2D TQFTs
over R are in a bijection with commutative Frobenius algebras over R (see [1],
[6, Section 4.3]).

Any commutative Frobenius algebra is symmetric, so that there is a chain of
inclusions of sets:

Commutative
Frobenius
algebras

� Symmetric
algebras

� Frobenius
algebras

A commutative Frobenius R-algebra A de�nes a 2D TQFT

FA :M−! R-mod

that associates A⊗n (the tensor product is over R) to a 1-manifold di�eomor-
phic to n circles and maps

mA : A⊗A −! A; �A : R −! A; Tr : A −! R

to the cobordisms depicted in Figure 2.

Examples of commutative Frobenius algebras are:

(1) The algebra Heven(M;R) of even-dimensional cohomology groups of an
even-dimensional closed oriented manifold M; where R is a �eld.

(2) The local algebra of a �nite-multiplicity holomorphic map Cn ! Cn [3,
Section 5.11].

(3) Finite direct sums and tensor products of commutative Frobenius R-
algebras.
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(4) The trivial extension algebra [26] of a �nite-dimensional commutative
algebra.

A 2D TQFT with corners over R associates

� an additive R-linear category F (K) to an oriented 0-manifold K;

� an R-linear functor F (M) : F (@0M) −! F (@1M) to a 1-dimensional
oriented cobordism M;

� a natural transformation F (N) : F (@0N) −! F (@1N) to a 2-dimensional
oriented cobordism N:

Surprisingly, we were unable to �nd any examples of 2D TQFTs with corners in
the literature, and decided to construct some here, especially since they turned
out to be remarkably similar to the 2-functor, described in Section 2.9, from
the 2-category of surfaces in R3 to the 2-category of bimodules and bimodule
maps.

We will build a restricted 2D TQFT with corners from a commutative Frobe-
nius R-algebra A: The specialization of this TQFT with corners to closed
1-manifolds and cobordisms between them is the TQFT FA mentioned above.

An oriented 0-manifold consists of several points with orientations, that is,
several points with plus and minus signs assigned to them. To simplify, we
consider only 0-manifolds with the same number of plus and minus points.
Any such manifold is di�eomorphic to 2n points, of which n are plus points
and n are minus. We �x one manifold for each n and denote it by n: In our
�gures we’ll always place the plus points to the left of the minus points.

We will use the same rule as the one for oriented tangles (Section 3.1) to induce
orientations on the boundaries of an oriented 1-cobordism. Figure 43 is a
diagram of a (2; 3)-cobordism (intersections should be ignored).

A 1-cobordism from n to m will also be called a (m;n)-cobordism. We call
basic a 1-cobordism which does not contain circles. There are (n + m)! basic
(m;n)-cobordisms.

Denote by dCob
m

n the set of (m;n)-cobordisms, by Cobmn the set of basic (m;n)-
cobordisms, and by Cobn the set of basic (n; 0)-cobordisms. Let W be the
involution W : dCob

m

n −! dCob
n

m that turns a 1-cobordism upside-down and
changes all orientations to make cobordisms W (b) and b composable, as de-
picted in Figure 44.

Let Vertn be the identity 1-cobordism from n to n; and S(b); for b 2 Cobn;
the standard \contraction" 2-cobordism from bW (b) to Vertn:
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Figure 43: A 1-cobordism from 3 to 2

b W (b)

Figure 44: Involution W

These notations mimic the ones from Section 2, and the analogy is nearly com-
plete. Instead of flat tangles we are looking at oriented 1-cobordisms, instead
of surfaces in R3 we are looking at oriented 2-manifolds with corners, consid-
ered as cobordisms between 1-manifolds with boundary. We denote by M our
2-category of oriented 2-cobordisms with corners.

For each n � 0 de�ne an R-algebra An by

An
def= �

a;b2Cobn
b(An)a; b(An)a

def= FA(W (b)a): (35)

W (b)a is a closed 1-manifold, and we can apply the functor FA to it. The mul-
tiplication in An is induced by 2-cobordisms IdW (c)S(b)Ida from W (c)bW (b)a
to W (c)a:

c(An)b ⊗ b(An)a −−−! c(Hn)a??y�= ??y�=
FA(W (c)b) ⊗ FA(W (b)a) h−−−! FA(W (c)a)
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Here h = FA(IdW (c)S(b)Ida):

To a 1-cobordism a 2 dCob
m

n we associate an (Am; An)-bimodule FA(a) by

FA(a) def= �
b2Cobn;c2Cobm

cFA(a)b; cFA(a)b
def= FA(W (c)ab);

the bimodule structure is de�ned analogously to the one in Section 2.7. All
results and constructions of Section 2.7 have their counterparts:

Proposition 27 (1) For a 1-cobordism a 2 bCmn the bimodule FA(a) is a
sweet (Am; An)-bimodule.

(2) A 2-cobordism S induces a homomorphism of bimodules

FA(@0S) −! FA(@1S): (36)

The homomorphism assigned to the composition of 2-cobordisms equals
the composition of homomorphisms.

(3) For 1-cobordisms a 2 dCob
m

n and b 2 dCob
k

m bimodules FA(b)⊗Am FA(a)
and FA(ba) are canonically isomorphic.

These results amount to:

Proposition 28 FA is a 2-functor from the 2-category M of oriented 2-
cobordisms with corners to the 2-category BA of sweet An; n � 0 bimodules
and bimodule homomorphisms.

Here BA is a 2-category with objects{nonnegative integers, 1-morphisms from
n to m{sweet (Am; An)-bimodules and 2-morphisms{homomorphisms of bi-
modules. We call BA the 2-category of sweet A-bimodules.

FA is a restricted 2D TQFT with corners that to the 0-manifold n associates
the category of left An -modules, to a 1-cobordism a the functor of tensor
product with the bimodule FA(a); and to a 2-cobordism S the natural trans-
formation of functors induced by the bimodule homomorphism (36).

As a special case of Proposition 25 we obtain:

Proposition 29 For a 1-cobordism b 2 dCob
m

n the functor FA(W (b)) is left
and right adjoint to the functor FA(b):

An has a nondegenerate symmetric trace Trn : An ! R de�ned by Trn(x) = 0
if x 2 b(An)a and b 6= a; and Trn(x) = Tr⊗n(x) if x 2 a(An)a: Namely,
a(An)a �= A⊗n and we de�ne the trace on a(An)a to be the tensor product of
trace functions Tr : A! R:
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Proposition 30 An is a symmetric R-algebra.

The proof is similar to that of Proposition 32.

This elementary construction of 2D TQFTs with corners warmly welcomes sym-
metric nonsemisimple algebras. Symmetric algebras can be thought of as tools
for producing biadjoint functors. If A = A; the ring introduced in Section 2.1,
An contains Hn as a subring, so that the 2D TQFT with corners FA carries
in it the structure that categori�es the Kau�man bracket of tangles.

6.5 Triangulated categories, mapping class groups, and four-
dimensional topological quantum �eld theories

An n-dimensional TQFT with corners associates a category to a closed oriented
(n−2)-manifold K: The mapping class group of K; i.e., the group of connected
components of the di�eomorphism group of K must act on the category F (K):

The only examples of 2D TQFT with corners that we know of are the ones
described in Section 6.4. The oriented 0-manifold m is a union of m positively
oriented and m negatively oriented points, the mapping class group Map(m)
of m permutes these points preserving their orientations, and is isomorphic to
the product Sm�Sm of two symmetric groups. Map(m) acts naturally on the
algebra Am; and, therefore, on the category Am -mod that the 2D TQFT FA
associates to the 0-manifold m: There is nothing mysterious about his action.

When n = 3 the category F (K) is associated to a one-manifold K; a disjoint
union of circles. The orientation-preserving mapping class group of a circle is
trivial. The mapping class group of the union of m circles is Sm: In the famous
example of the Witten-Reshetikhin-Turaev TQFT the category F (S1) assigned
to the circle is semisimple, with �nite number of (isomorphism classes of) simple
objects. The category assigned to the union of m circles is the m-tensor power
of F (S1); with the mapping class group acting by permutations. We see that in
dimension 3 the mapping class group action on F (K) is equally unremarkable.

A 4-dimensional TQFT with corners should associate an additive category
F (K) to an oriented closed surface K: The mapping class group Map(K) of
K; a large and complicated group, must act on F (K): It is hard to come up
with interesting actions of mapping class groups on categories. For starters,
we will argue that mapping class groups of surfaces do not appear naturally as
automorphism groups of abelian categories. Abelian categories are primarily
associated to algebraic or topological structures: to an algebra A we associate
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the category of A-modules, to a topological space X the category of sheaves
Sh(X) on X; to a ringed space the category of sheaves of modules, etc. In
each of these cases all or nearly all automorphisms of the abelian category come
from symmetries of the original object: from automorphisms of the algebra A;
homeomorphisms of the space X; etc.

These symmetry groups are unrelated to mapping class groups of surfaces. The
group of automorphisms of an algebra is typically a mixture of a �nite group and
a connected algebraic group. The group of homeomorphisms or di�eomorphisms
of a surface K does indeed quotients onto the mapping class group Map(K) of
K: However, if K has genus greater than 1; this quotient map does not admit
a section.

Our objection to abelian categories as candidates for F (K); for a surface K;
grows even stronger if these abelian categories are semisimple. If k is a �eld
and C a semisimple k -linear category, a k -linear automorphism of C can do
nothing but permute simple objects. An action of the mapping class group of K
on C amounts to a homomorphism to a symmetric group. Such simple action
is unlikely to lead to a sophisticated 4D TQFT that we are searching for.

We believe that this informal argument destroys any hope of constructing 4-
dimensional TQFTs of Donaldson-Floer-Seiberg-Witten variety directly from
abelian categories (the 4-dimensional relatives [44] of the 3-dimensional Dijkgr-
aaf-Witten TQFT [19], built from a �nite group, associate semisimple categories
to surfaces, but these TQFTs are toy models).

Things appear much brighter when we consider instead derived categories of
abelian categories, and, more generally, triangulated categories. A very strong
positive indicator that triangulated categories are related to 4-dimensional
TQFTs would be provided by a triangulated category C with a faithful ac-
tion of the mapping class group of a genus g closed oriented surface, and such
that the Grothendieck group of C has �nite rank. Examples are not known at
present2. Interesting examples are available, however, of derived categories with
a faithful action of the braid group. These actions do not come from actions
on the underlying abelian categories. We list several examples below.

I The �rst example of a braid group action on a derived category came up
about 20 years ago, in the early days of the geometric representation theory,
but until recently remained an unpublished folk theorem.

2Not counting cheats of the following kind: choose a faithful representation V (if
you can �nd one) of the mapping class group. There is a faithful action of the mapping
class group on the exterior algebra �V of V; therefore, on the category of �V -modules
and on the derived category Db(�V -mod):
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Let G be a simply-connected simple complex Lie group and B a Borel subgroup.
For each simple root � the flag variety X = G=B �bers over G=P� with
�ber P1; where P� � B is the minimal parabolic subgroup associated to �:
Denote this �bration by p� : X ! G=P�: Let Y 0� � X � X be the subset
f(x1; x2)jp�(x1) = p�(x2); x1 6= x2g and j� : Y 0� ,! X �X the inclusion. Let
F� be the sheaf on X �X which is the direct image under j� of the constant
sheaf on Y 0�: Let Db(X) be the bounded derived category of sheaves of complex
vector spaces on X: Let Ri be the functor in Db(X) of convolution with F�:

Denote by B(G) the generalized braid group associated to the Dynkin diagram
of G:

Proposition 31 Functors Ri are invertible and generate an action of the braid
group B(G) on the category Db(X):

See [50] for a proof and [47] for a related discussion.

Db(X) is a very large category. Let D be the full subcategory of Db(X)
which consists of objects with �nite-dimensional constructible cohomology rel-
ative to the strati�cation of X by orbits of the left multiplication action of B
(the Schubert strati�cation). This is a \small" category, in the sense that its
Grothendieck group has �nite rank, and D is isomorphic to the derived cate-
gory of modules over a �nite-dimensional algebra (and to the derived category
of a regular block of the category O). It is not hard to see that the above action
of the braid group preserves D:

The following generalization of this action to actions on derived categories
of sheaves on partial flag varieties seems to be new. For a sequence n =
(n1; : : : ; nk) of positive integers denote by X(n) the variety of partial flags
in Cn; where n = n1 + � � �+ nk :

X(n) = f0 = L0 � L1 � � � � � Lk−1 � Lk = Cn;dimLi = n1 + � � � + nig:

Denote by sin the sequence n with entries ni and ni+1 transposed. Let Y �
X(n)�X(sin) be the subset

f(L0; L1; : : : ; Lk)� (L0; : : : ; Li−1; L
0
i; Li+1; : : : ; Lk); Li \ L0i = Li−1g:

In other words, the two partial flags coincide except at the i-th term while
Li; L

0
i are in general position.

Consider the sheaf on X(n)�X(sin) which is the direct image of the constant
sheaf on Y under the inclusion Y � X(n) � X(sin): Convolution with this
sheaf is an invertible functor between derived categories of sheaves on X(n)
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and X(sin) (for real flag varieties this is Exercise III.15 in [33]). Denote by eX
the disjoint union of X(m); over all possible permutations m of n: For each
i; 1 � i � k − 1; we get a functor Ri in the derived category of sheaves on eX:
These functors generate a braid group action.

Let Or be a regular block of the category O for sln and �i : Or ! Or trans-
lation across the i-th wall functor. �i is the composition of two biadjoint
functors, translations on and o� the i-th wall, and there is a natural transfor-
mation �i −! Id: Denote by �0i the functor in the derived category Db(Or)
which is the cone of this morphism of functors. Let Γi be the Zuckerman func-
tor of taking the maximal U(pi)-locally �nite submodule, where pi � b is the
i-th minimal parabolic subalgebra. There is a morphism of functors Γi −! Id;
which is just the inclusion of the submodule into the module. The cone of the
induced morphism of derived functors RΓi −! Id is a functor in Db(Or); which
we denote by �

00
i : Functors �0i; �

00
i ; 1 � i � n− 1 generate two commuting braid

group actions in Db(Or):

II A 2n-string braid � is an (n; n)-tangle, so that to � we can associate the
complex F(�) of sweet (Hn;Hn)-bimodules (Theorem 2). The tensor product
with this complex is an invertible functor in the category KnP of complexes of
projective Hn -modules, as well as in the derived category of Hn -modules. We
see that these categories admit a highly nontrivial braid group action.

III A simpler example of braid group actions was found in [52] and [39] and
later considered in [53] and [27]. To a �nite graph Γ one associates a �nite-
dimensional algebra A(Γ); the quadratic dual of the Gelfand-Ponomarev alge-
bra of Γ (see [27]). The braid group associated to the graph Γ acts in the derived
category of the category of A(Γ)-modules. It is proved in [39] that when Γ is
the chain of length n the braid group of Γ (isomorphic to the (n+ 1)-stranded
braid group) acts faithfully in the derived category Db(A(Γ)-mod):

IV Suppose that there is an action of a group H in the derived category of
modules over an algebra A; and that the action is given explicitly: there is an
invertible functor Fg; for each g 2 H; of tensoring with a bounded complex
C(g) of A-bimodules which are right A-projective, and there are homotopy
equivalences of complexes C(g)⊗AC(h) �= C(gh) of A-bimodules for any g; h 2
H: Let A(n) be the cross-product of A⊗n and the group ring of the symmetric
group Sn :

A(n) def= A⊗n ⊗Z Z[Sn]; (a1 ⊗ s1)(a2 ⊗ s2) = a1s1(a2)⊗ s1s2;
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where ai 2 A⊗n; si 2 Sn and Sn acts on A⊗n by permutations. The complex
C(g) gives rise to the complex

C(g)(n) def= C(g)⊗n ⊗Z Z[Sn]

of A(n) -bimodules, and there are homotopy equivalences

C(g)(n) ⊗A(n) C(h)(n) �= C(gh)(n):

We obtain an action of H in the derived category of A(n) -modules.

The cross-product algebra A(n) can be viewed as the n-th symmetric power of
A; and categories A(n) -mod and Db(A(n)-mod) as n-th symmetric powers of
categories A-mod and Db(A-mod): Then our informal rule is:

A group action on a category gives rise to actions on all symmetric powers of
the category.

This can also be applied to group actions in the derived categories of sheaves.
If H acts explicitly on the derived category D(X) of sheaves on X; via con-
volutions with complexes of sheaves C(g) on X �X; then H also acts in the
derived categories of Sn -equivariant sheaves on X�n; for all n: Here X could
be a manifold, a strati�ed space, a scheme, and D(X) the derived category of
sheaves, or the category of cohomologically constructible complexes of sheaves,
or the derived category of coherent sheaves on X:

It is particularly interesting to apply this construction to the action in example
III of the a�ne braid group B(Γ) in the derived category of A(Γ)-modules, for
an a�ne simply-laced Dynkin diagram Γ: The algebra A(Γ) is Morita equiva-
lent to the cross-product �(G) of the exterior algebra on 2 generators and the
group algebra G of the �nite subroup of SU(2) associated to Γ via the McKay
correspondence [27]. In turn, the Koszul dual S(G) of �(G) is the cross-product
of the polynomial algebra on 2 generators and the group algebra of G: The de-
rived category of �nitely-generated S(G)-modules is equivalent to the derived

category of coherent sheaves on the minimal resolution X(G) = C̃2=G of a
simple singularity C2=G [32].

The action of the a�ne braid group B(Γ) in the derived category of A(Γ)-
modules induces, through these derived equivalences, an action in the derived
category of coherent sheaves on X(G); and, therefore, in the derived category
of Sn -equivariant coherent sheaves on X(G)�n:

At the same time, we get a�ne braid group actions in the derived categories of
modules over cross-product algebras A(Γ)(n);�(G)(n); and S(G)(n):
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Algebras S(G)(n) can be viewed as cross-products of a polynomial algebra on
2n generators and group algebras of �nite groups Gn; where Gn is the cross-
product of G�n and Sn: Group algebras of Gn appeared in [22] (Warning:
Their Γn is our Gn; while we use Γ to denote an a�ne Dynkin diagram),
algebras S(G)(n) appeared in [56]. Weiqiang Wang [56] conjectured that cat-
egories of coherent sheaves on the Hilbert scheme of n-points on X(G) and
of �nitely-generated modules over S(G)(n) are derived equivalent. If true, this
would imply that our action of the a�ne braid group in the derived category of
coherent sheaves on X(G) gives rise to actions in the derived categories of co-
herent sheaves on Hilbert schemes of X(G): Similar braid group actions should
exist in the derived categories of coherent sheaves on Nakajima quiver varieties,
lifting the known action [46, Section 9] of Weyl groups on cohomology groups
of quiver varieties.

In addition, we expect that a derived equivalence between categories of coher-
ent sheaves on two algebraic surfaces induces a derived equivalence between
categories of coherent sheaves on Hilbert schemes of these surfaces.

V Rouquier conjectured [51] that there are braid group actions in derived
categories of regular blocks of representations of algebraic groups and of modules
over group algebras of symmetric groups over �elds of �nite characteristic.

This abundance of braid group actions enhances our beliefs that triangulated
and derived categories are the right place to search for 4-dimensional TQFTs,
and that quantum invariants of link cobordisms and surfaces in R4 hide in
derived categories of the category O , categories of modules over Frobenius
algebras, and categories of coherent sheaves on Nakajima varieties.

6.6 Commutative Frobenius algebras and the Temperley-Lieb
2-category

All constructions and results of Sections 2.1,2.4{2.9 admit a straightforward
generalization from the ring A to an arbitrary commutative Frobenius R-
algebra A:

As outlined in Section 6.4, A gives rise to a 2-dimensional TQFT FA: Instead
of the ring Hn consider the R-algebra Hn

A :

Hn
A = �

a;b2Bn
FA(W (b)a)

with the multiplication de�ned via elementary cobordisms in the same manner
as for Hn:
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To a 1-morphism a 2 bBm
n from n to m in the Temperley-Lieb 2-category we

associate an (Hn
A;H

m
A )-bimodule

FA(a) = �
c2Bm;b2Bn

FA(W (c)ab)

and to 2-morphisms associate bimodule maps. In this way we get a 2-functor
from the Temperley-Lieb 2-category TL to the 2-category of (Hm

A ;H
n
A)-bimod-

ules, over all n;m � 0:

Constructions and results of Sections 3 and 4, however, do not admit any easy
extensions from A to other commutative Frobenius algebras (except for the
algebra A in [38] and anything obtained by base change from A).

6.7 Hn is a symmetric ring

Let Tr : Hn ! Z be the Z-linear map given by

� Tr(x) = 0 if x 2 a(Hn)b and a 6= b;

� on a(Hn)a = A⊗n the trace map is de�ned as �⊗n : A⊗n ! Z:

This is a symmetric functional, Tr(xy) = Tr(yx); and we’ll prove below that
Tr is nondegenerate, that is, it makes Hn into a symmetric ring:

Proposition 32 Hn is a symmetric ring.

Proof Notice that Hn is a free abelian group. We’ll �nd a basis I of Hn and
an involution � of I such that for x; y 2 I

Tr(xx�) = 1; Tr(xy) = 0 if y 6= x�:

That would imply symmetricity of Hn:

De�ne I as the union of bases aIb of a(Hn)b; over all a and b: We have a(Hn)b �=
A⊗m where m is the number of circles in the closed diagram W (a)b: De�ne
aIb as the product basis in A⊗m; its elements are products of 1;X 2 A:

The involution � will take an element of aIb to an element of bIa: To de�ne �
notice that there is a natural contraction cobordism between W (b)aW (a)b and
the empty diagram. Since

F(W (b)aW (a)b) �= F(W (b)a)⊗F(W (a)b) �= b(Hn)a ⊗ a(Hn)b;

this cobordisms de�nes a nondegenerate bilinear pairing

b(Hn)a ⊗ a(Hn)b −! Z: (37)
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The pairing, in fact, is the restriction of

Hn ⊗Hn m−! Hn Tr−! Z

to b(Hn)a ⊗ a(Hn)b � Hn �Hn:

The basis bIa is dual to aIb relative to the pairing (37). If x 2 aIb; a product
of 1’s and X ’s, then de�ne x� as the opposed product, namely, we substitute
X for 1 and 1 for X in the product for x; and treat this product as an element
of b(Hn)a �= A⊗m �= a(Hn)b:

Proposition 33 The ring Hn has in�nite homological dimension if n > 0:

Proof The abelian group Hom(Pa; Pb) (where we consider all homomorph-
isms, not only the grading-preserving ones) has even rank for any indecompos-
able projectives Pa; Pb: Therefore, an Hn -module isomorphic, as an abelian
group, to Z; does not admit a �nite length projective resolution.

Of course, H0 = Z and Z has homological dimension 1:

To conclude this section, we would like to point out the relation of the ring
Hn to meander determinants of Francesco, Golinelli and Guitter [21]. Let k be
a characteristic 0 �eld. Until the end of this section we denote the k -algebra
Hn ⊗Z k by Hn

k ; and by Hn
k -mod the category of �nite-dimensional left Hn

k -
modules. Unlike previous sections, we consider modules which are not graded.
As before, we denote by Pa; a 2 Bn indecomposable projective modules.

Let G be the Grothendieck group of Hn
k -mod and G0 its subgroup generated

by projective modules. G0 is a proper subgroup of G; since dim Hom(Pa; Pb)
is even for any a; b:

The Cartan matrix C of Hn
k is the Bn �Bn -matrix with entries

cab = dim Hom(Pa; Pb):

Notice that every entry is a power of 2: This matrix is the q = 1 specialization
of the meander matrix in [21]. Its determinant was computed in [21] and equals

nY
i=1

(i+ 1)cn;i ; cn;i =
�

2n
n− i

�
− 2
�

2n
n− i− 1

�
+
�

2n
n− i− 2

�
; (38)

where the convention is that
(
k
j

�
= 0 if j < 0:

In particular, the determinant is not 0; which implies that G0 is a �nite index
subgroup of G; and the index is given by the product in (38).
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Hn
k is a symmetric and, therefore, a Frobenius k -algebra. We can form the

stable category Hn
k−mod; the quotient of Hn

k -mod by morphisms which fac-
tor through a projective module. This is a triangulated category [26] with the
Grothendieck group isomorphic to G=G0: Thus, the meander determinant ac-
quires a strange homological interpretation as the order of the Grothendieck
group of Hn

k−mod:

To each diagram D of an (m;n)-tangle L we associated a complex F(D) of
sweet (m;n)-bimodules. This complex de�nes a functor between stable cat-
egories Hn

k−mod and Hm
k −mod; and induces an action (in the weak sense,

i.e. via isomorphism classes of functors) of the category of tangles on stable
categories of Hn

k -modules.
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