ISSN 1472-2739 (on-line) 1472-2747 (printed)

Algebraic & Geometric Topology Volume 3 (2003) 777{789 Published: 24 August 2003

The Chess conjecture

Rustam Sadykov

Abstract We prove that the homotopy class of a Morin mapping $f: P^p !$ Q^q with p - q odd contains a cusp mapping. This a rmatively solves a strengthened version of the Chess conjecture [5],[3]. Also, in view of the Saeki-Sakuma theorem [10] on the Hopf invariant one problem and Morin mappings, this implies that a manifold P^p with odd Euler characteristic does not admit Morin mappings into \mathbb{R}^{2k+1} for $p - 2k + 1 \leq 1/3/7$.

AMS Classi cation 57R45; 58A20, 58K30

Keywords Singularities, cusps, fold mappings, jets

1 Introduction

Let *P* and *Q* be two smooth manifolds of dimensions *p* and *q* respectively and suppose that p = q. The singular points of a smooth mapping $f: P \neq Q$ are the points of the manifold *P* at which the rank of the di erential *d* of the mapping *f* is less than *q*. There is a natural strati cation breaking the singular set into nitely many strata. We recall that the kernel rank $kr_x(f)$ of a smooth mapping *f* at a point *x* is the rank of the kernel of *d* at *x*. At the rst stage of the strati cation every stratum is indexed by a non-negative integer i_1 and de ned as

$$i_1(f) = f \times 2P j kr_x(f) = i_1g$$

The further strati cation proceeds by induction. Suppose that the stratum $_{n-1}(f) = {}^{l_1 imes i_{n-1}}(f)$ is de ned. Under assumption that $_{n-1}(f)$ is a submanifold of P, we consider the restriction f_{n-1} of the mapping f to $_{n-1}(f)$ and de ne

$$I_{1}, I_{n}(f) = f \times 2$$
 $n-1(f) j kr_{X}(f_{n-1}) = i_{n}g$

Boardman [4] proved that every mapping f can be approximated by a mapping for which every stratum n(f) is a manifold.

We abbreviate the sequence $(i_1; ...; i_n)$ of *n* non-negative integers by *I*. We say that a point of the manifold *P* is an *I*-singular point of a mapping *f* if

c Geometry & Topology Publications

it belongs to a singular submanifold ${}^{l}(f)$. There is a class of in a sense the simplest singularities, which are called *Morin*. Let I_1 denote the sequence (p - q + 1; 0) and for every integer k > 1, the symbol I_k denote the sequence (p - q + 1; 1; ...; 1; 0) with k non-zero entries. Then Morin singularities are singularities with symbols I_k . A Morin mapping is an I_k -mapping if it has no singularities of type I_{k+1} . For k = 1; 2 and 3, points with the symbols I_k are called *fold*, *cusp* and *swallowtail singular points* respectively. In this terminology, for example, a fold mapping is a mapping which has only fold singular points.

Given two manifolds *P* and *Q*, we are interested in nding a mapping *P* ! *Q* that has as simple singularities as possible. Let f: P ! Q be an arbitrary general position mapping. For every symbol *I*, the \mathbb{Z}_2 -homology class represented by the closure $\overline{I(f)}$ does not change under general position homotopy. Therefore the homology class $[\overline{I(f)}]$ gives an obstruction to elimination of *I*-singularities by homotopy.

In [5] Chess showed that if p-q is odd and k = 4, then the homology obstruction corresponding to I_k -singularities vanishes. Chess conjectured that in this case every Morin mapping f is homotopic to a mapping without I_k -singular points.

We will show that the statement of the Chess conjecture holds. Furthermore we will prove a stronger assertion.

Theorem 1.1 Let P and Q be two orientable manifolds, p - q odd. Then the homotopy class of an arbitrary Morin mapping f: P ! Q contains a cusp mapping.

Remark The standard complex projective plane $\mathbb{C}P^2$ does not admit a fold mapping [9] (see also [1], [12]). This shows that the homotopy class of f may contain no mappings with only I_1 -singularities.

Remark The assumption on the parity of the number p - q is essential since in the case where p - q is even homology obstructions may be nontrivial [5].

Remark We refer to an excellent review [11] for further comments. In particular, see Remark 4.6, where the authors indicate that Theorem 1.1 does not hold for non-orientable manifolds.

In [10] (see also [7]) Saeki and Sakuma describe a remarkable relation between the problem of the existence of certain Morin mappings and the Hopf invariant

one problem. Using this relation the authors show that if the Euler characteristic of *P* is odd, *Q* is almost parallelizable, and there exists a cusp mapping $f: P \nmid Q$, then the dimension of *Q* is 1/2/3/4/7 or 8.

Note that if the Euler characteristic of P is odd, then the dimension of P is even. We obtain the following corollary.

Corollary 1.2 Suppose the Euler characteristic of P is odd and the dimension of an almost parallelizable manifold Q is odd and di erent from 1/3/7. Then there exist no Morin mappings from P into Q.

2 Jet bundles and suspension bundles

Let *P* and *Q* be two smooth manifolds of dimensions *p* and *q* respectively. *A* germ at a point $x \ 2 \ P$ is a mapping from some neighborhood about *x* in *P* into *Q*. Two germs are *equivalent* if they coincide on some neighborhood of *x*. The class of equivalence of germs (or simply the germ) at *x* represented by a mapping *f* is denoted by $[f]_x$.

Let *U* be a neighborhood of *x* in *P* and *V* be a neighborhood of y = f(x) in *Q*. Let

$$U: (U; x) ! (\mathbb{R}^{p}; 0) \text{ and } V: (V; y) ! (\mathbb{R}^{q}; 0)$$

be coordinate systems. Two germs $[f]_x$ and $[g]_x$ are *k*-equivalent if the mappings V f U^{-1} and V g U^{-1} , which are defined in a neighborhood of $0 \ 2 \ \mathbb{R}^p$, have the same derivatives at $0 \ 2 \ \mathbb{R}^p$ of order *k*. The notion of *k*-equivalence is well-defined ned, i.e. it does not depend on choice of representatives of germs and on choice of coordinate systems. A class of *k*-equivalent germs at *x* is called a *k*-jet. The set of all *k*-jets constitute a set $J^k(P; Q)$. The projection $J^k(P; Q) \ P \ Q$ that takes a germ $[f]_x$ into a point $x \ f(x)$ turns $J^k(P; Q)$ into a bundle (for details see [4]), which is called the *k*-jet bundle over $P \ Q$.

Let *y* be a point of a manifold and *V* a neighborhood of *y*. We say that two functions on *V* lead to the same local function at *y*, if at the point *y* their partial derivatives agree. Thus a local function is an equivalence class of functions de ned on a neighborhood of *y*. The set of all local functions at the point *y* constitutes an algebra of jets F(y). Every smooth mapping f: (U; x) ! (V; y) de nes a homomorphism of algebras f: F(y) ! F(x). The maximal ideal m_y of F(y) maps under the homomorphism f to the maximal ideal $m_x = F(x)$.

The restriction of f to m_y and the projection of $f(m_y) = m_x$ onto $m_x = m_x^{k+1}$ lead to a homomorphism

$$f_{k:x}: m_{v} ! m_{x} = m_{x}^{k+1}$$

It is easy to verify that *k*-jets of mappings (U; x) ! (V; y) are in bijective correspondence with algebra homomorphisms m_y ! $m_x = m_x^{k+1}$. That is why we will identify a *k*-jet with the corresponding homomorphism.

The projections of P = Q onto the factors induce from the tangent bundles TP and TQ two vector bundles and over P = Q. The latter bundles determine a bundle HOM(; ;) over P = Q. The ber of HOM(; ;) over a point x = y is the set of homomorphisms Hom(x; y) between the bers of the bundles and . The bundle determines the *k*-th symmetric tensor product bundle k over P = Q, which together with leads to a bundle $HOM({}^{k};)$.

Lemma 2.1 The k-jet bundle contains a vector subbundle C^k isomorphic to $HOM(\binom{k}{2})$.

Proof De ne C^k as the union of those *k*-jets $f_{k;x}$ which take m_y to m_x^k . With each $f_{k;x} \ge C^k$ we associate a homomorphism (for details, see [4, Theorem 4.1])

$$\frac{|x + \frac{\pi}{2} x}{k} m_y = m_y^2 ! \mathbb{R}$$
(1)

which sends $v_1 :::: v_k$ into the value of $v_1 :::: v_k$ at a function representing $f_{k;x}()$: In view of the isomorphism $m_y = m_y^2$ $Hom(_y; \mathbb{R})$, the homomorphism (1) is an element of $Hom({}^k {}_{x;y})$. It is easy to verify that the obtained correspondence C^k ! $HOM({}^k {}_{x;y})$ is an isomorphism of vector bundles. \Box

Corollary 2.2 There is an isomorphism $J^{k-1}(P; Q) = C^k = J^k(P; Q)$.

Proof Though the sum of two algebra homomorphisms may not be an algebra homomorphism, the sum of a homomorphism $f_{k;x} 2 J^k(P; Q)$ and a homomorphism $h 2 C^k$ is a well de ned homomorphism of algebras $(f_{k;x} + h) 2 J^k(P; Q)$. This de nes an action of C^k on $J^k(P; Q)$. Two *k*-jets and map under the canonical projection

$$J^k(P;Q) -! J^k(P;Q) = C^k$$

onto one point if and only if and have the same (k - 1)-jet. Therefore $J^k(P; Q) = C^k$ is canonically isomorphic to $J^{k-1}(P; Q)$.

Remark The isomorphism $J^{k-1}(P; Q) = C^k = J^k(P; Q)$ constructed in Corollary 2.2 is not canonical, since there is no canonical projection of the *k*-jet bundle onto C^k .

In [8] Ronga introduced the bundle

$$S^{k}(;) = HOM(;) HOM(;) ::: HOM(k;);$$

which we will call the k-suspension bundle over P Q.

Corollary 2.3 The *k*-jet bundle is isomorphic to the *k*-suspension bundle.

3 Submanifolds of singularities

There are canonical projections $J^{k+1}(P; Q) \neq J^k(P; Q)$, which lead to the innite dimensional jet bundle $J(P; Q) := \lim J^k(P; Q)$. Let f: P ! Q be a smooth mapping. Then at every point x = f(x) of the manifold P = Q, the mapping f determines a k-jet. The k-jets de ned by f lead to a mapping $j^k f$ of P to the k-jet bundle. These mappings agree with projections of $\lim J^k(P; Q)$ and therefore de ne a mapping jf: P ! J(P; Q), which is called the jet extension of f. We will call a subset of J(P; Q) a submanifold of the jet bundle if it is the inverse image of a submanifold of some *k*-jet bundle. A function on the jet bundle is said to be *smooth* if locally is the composition of the projection onto some k-jet bundle and a smooth function on $J^{k}(P, Q)$. In particular, the *jf* of a smooth function on J(P, Q) and a jet extension *jf* is composition smooth. A tangent to the jet bundle vector is a di erential operator. A tangent to J(P; Q) bundle is defined as a union of all vectors tangent to the jet bundle.

Suppose that at a point $x \ 2 \ P$ the mapping f determines a jet z. Then the di erential of jf sends di erential operators at x to di erential operators at z, that is d(jf) maps T_xP into some space D_z tangent to the jet bundle. In fact, the space D_z and the isomorphism $T_xP \ ! \ D_z$ do not depend on representative f of the jet z. Let denote the composition of the jet bundle projection and the projection of P Q onto the rst factor. Then the tangent bundle of the jet space contains a subbundle D, called *the total tangent bundle*, which can be identi ed with the induced bundle TP by the property: for any vector eld v on an open set U of P, any jet extension jf and any smooth function on J(P; Q), the section V of D over $^{-1}(U)$ corresponding to v satis es the equation

 $V \quad jf = v(jf)$:

We recall that the projections P = Q onto the factors induce two vector bundles and over P = Q which determine a bundle HOM(;). There is a canonical isomorphism between the 1-jet bundle and the bundle HOM(;). Consequently 1-jet component of a k-jet z at a point $x \ 2P$ de nes a homomorphism h: $T_xP \ ! \ T_yQ$, y = z(x). We denote the kernel of the homomorphism h by $K_{1;z}$. Identifying the space T_xP with the ber D_z of D, we may assume that $K_{1;z}$ is a subspace of D_z . Hence at every point $z \ 2 \ J(P; Q)$ we have a space $K_{1;z}$. Boardman showed that the union i = i(P; Q) of jets z with $dim K_{1;z} = i$ is a submanifold of J(P; Q).

Suppose that we have already de ned a submanifold $n-1 = i_1, \dots, i_{n-1}$ of the jet space. Suppose also that at every point $Z 2_{n-1}$ we have already de ned a space $K_{n-1/Z}$. Then the space $K_{n/Z}$ is de ned as $K_{n-1/Z} \setminus T_{Z-n-1}$ and n is de ned as the set of points $Z 2_{n-1}$ such that $\dim K_{n/Z} = i_n$. Boardman proved that the sets n are submanifolds of J(P; Q). In particular every submanifold n comes from a submanifold of an appropriate nite dimensional k-jet space. In fact the submanifold with symbol I_n is the inverse image of the projection of the jet space onto n-jet bundle. To simplify notation, we denote the projections of n to the k-jet bundles with k n by the same symbol n.

Let us now turn to the *k*-suspension bundle. Following the paper [4], we will de ne submanifolds \sim^{1} of the *k*-suspension bundle.

A point of the *k*-suspension bundle over a point x y 2 P Q is the set of homomorphisms $h = (h_1; ...; h_k)$, where $h_i 2 Hom(\stackrel{i}{x}; y)$. For every *k*-suspension *h* we will de ne a sequence of subspaces $T_x P = K_0 K_1 ... K_k$. Then we will de ne the singular set $\sim^{i_1,...,i_n}$ as

$$\sim^{i_1, \dots, i_n} = f h j dim K_j = i_j \text{ for } j = 1, \dots, n g$$

We start with de nition of a space K_1 K_0 and a projection of $P_0 = T_y Q$ onto a factor space Q_1 . The h_1 -component of h is a homomorphism of K_0 into P_0 . We de ne K_1 and Q_1 as the kernel and the cokernel of h_1 :

$$0 -! K_1 -! K_0 -! P_0 -! Q_1 -! 0$$

The cokernel homomorphism of this exact sequence gives rise to a homomorphism $Hom(K_1; P_0)$! $Hom(K_1; Q_1)$, coimage of which is denoted by P_1 . The sequence of the homomorphisms

$$Hom(K_1 \ K_1; P_0)$$
 ! $Hom(K_1; Hom(K_1; P_0))$! $Hom(K_1; P_1)$

takes the restriction of h_2 on K_1 K_1 to a homomorphism (h_2) : $K_1 ! P_1$. Again the spaces K_2 and Q_2 are respectively de ned as the kernel and the cokernel of the homomorphism (h_2) .

The de nition continues by induction. In the *n*-th step we are given some spaces K_i ; Q_i for i = n, spaces P_i for i = n - 1 and projections

$$Hom(K^{n-1}; P_0) ! P_{n-1};$$

 $P_{n-1} ! Q_n;$

where K^{n-1} abbreviates the product K_{n-1} ... K_1 .

First we de ne P_n as the coimage of the composition

$$Hom(K^{n}; P_{0})$$
 ! $Hom(K_{n}; Hom(K^{n-1}; P_{0}))$! $Hom(K_{n}; Q_{n})$;

where the latter homomorphism is determined by the two given projections. Then we transfer the restriction of the homomorphism h_{n+1} on K_n K^n to a homomorphism $(h_{n+1}): K_n ! P_n$ using the composition

$$Hom(K_n \ K^n; P_0)$$
 ! $Hom(K_n; Hom(K^n; P_0))$! $Hom(K_n; P_n)$:

Finally we de ne K_{n+1} and Q_{n+1} by the exact sequence

$$0 -! \quad K_{n+1} -! \quad K_n \stackrel{(h_{n+1})}{-!} P_n -! \quad Q_{n+1} -! \quad 0:$$

In the previous section we established a homeomorphism between the bers of the *k*-jet bundle and *k*-suspension bundle. Suppose that neighborhoods of points $x \ 2 \ P$ and $y \ 2 \ Q$ are equipped with coordinate systems. Then every *k*-jet *g* which takes *x* to *y* has the canonical decomposition into the sum of *k*-jets g_i , i = 1; ...; k, such that in the selected coordinates the partial derivatives of the jet g_i at *x* of order $\neq i$ and *k* are trivial. In other words the choice of local coordinates determines a homeomorphism

$$J^{k}(P; Q)j_{X-y} ! C^{1}j_{X-y} ::: C^{k}j_{X-y}:$$
(2)

Since $C^{i}j_{x-y}$ is isomorphic to $Hom(\stackrel{i}{x}; y)$, we obtain a homeomorphism between the bers of the *k*-jet bundle and *k*-suspension bundle.

Remark From [4] we deduce that this homeomorphism takes the singular submanifolds I to ${}^{-I}$. Suppose that a k-jet z maps onto a k-suspension $h = (h_1; ...; h_k)$. The homomorphisms fh_ig depends not only on z but also on choice of coordinates in U_i . However Boardman [4] showed that the spaces K_i , Q_i , P_i and the homomorphisms (h_i) de ned by h are independent from the choice of coordinates.

Lemma 3.1 For every integer k = 1, there is a homeomorphism of bundles r_k : $J^k(P; Q) ! S^k(;)$ which takes the singular sets l to ${}^{\sim l}$.

Proof Choose covers of P and Q by closed discs. Let U_1 ; ..., U_t be the closed discs of the product cover of P = Q. For each disc U_i , choose a coordinate system which comes from some coordinate systems of the two disc factors of U_i . We will write J^k for the k-jet bundle and $J^k j_{U_i}$ for its restriction on U_i . We adopt similar notations for the k-suspension bundle. The choice of coordinates in U_i leads to a homeomorphism

Let f'_{ig} be a partition of unity for the cover fU_{ig} of P Q. We de ne r_k : $J^k ! S^k$ by

$$\Gamma_k = {}^{\prime} 1 1 + {}^{\prime} 2 2 + \dots + {}^{\prime} k k$$

Suppose that $U_i \setminus U_j$ is nonempty and z is a k-jet at a point of $U_i \setminus U_j$. Suppose

$$_{i}(z) = (h'_{1}; ...; h'_{k})$$
 and $_{i}(z) = (h'_{1}; ...; h'_{k})$:

Then by the remark preceding the lemma, the homomorphisms (h_s^i) and (h_s^j) coincide for all s = 1; ...; k. Consequently, r_k takes l to $\sim l$.

The mapping r_k is continuous and open. Hence to prove that r_k is a homeomorphism it su ces to show that r_k is one-to-one.

For k = 1, the mapping r_k is the canonical isomorphism. Suppose that r_{k-1} is one-to-one and for some di erent *k*-jets z_1 and z_2 , we have $r_k(z_1) = r_k(z_2)$. Since r_{k-1} is one-to-one, the *k*-jets z_1 and z_2 have the same (k - 1)-jet components. Hence there is $v \ 2 \ C^k$ for which $z_1 = z_2 + v$. Here we invoke the fact that C^k has a canonical action on \mathcal{J}^k .

For every *i*, we have $_{i}(Z_{1}) = _{i}(Z_{2}) + _{i}(V)$. Therefore

$$r_k(z_1) = r_k(z_2) + r_k(v):$$
(3)

The restriction of the mapping r_k to C^k is a canonical identi cation of C^k with $HOM({}^k{}_k; \cdot)$. Hence $r_k(v) \notin 0$. Then (3) implies that $r_k(z_1) \notin r_k(z_2)$.

Corollary 3.2 There is an isomorphism of bundles r: J(P; Q) ! S(;) which takes every set n isomorphically onto \sim_n .

The space $J^{k}(P; Q)$ may be also viewed as a bundle over P with projection

$$: J^{k}(P; Q) ! P Q ! P$$

Let f: P ! Q be a smooth mapping. Then at every point p 2 P the mapping f de nes a k-jet. Consequently, every mapping f: P ! Q gives rise to a section $j^k f: P ! J^k(P;Q)$; which is called *the* k-extension of f or the k-jet

The Chess conjecture

section a orded by f. The sections $fj^k fg_k$ determined by a smooth mapping f commute with the canonical projections $J^{k+1}(P; Q) \not = J^k(P; Q)$. Therefore every smooth mapping $f: P \not = Q$ also de nes a section $jf: P \not = J(P; Q)$, which is called the jet extension of f.

A smooth mapping f is *in general position* if its jet extension is transversal to every singular submanifold l. By the Thom Theorem every mapping has a general position approximation.

Let f be a general position mapping. Then the subsets $(jf)^{-1}({}^{l})$ are submanifolds of P. Every condition $kr_x(f_{n-1}) = i_n$ in the denition of ${}^{l}(f)$ can be substituted by the equivalent condition $\dim K_{n;x}(f) = i_n$, where the space $K_{n;x}(f)$ is the intersection of the kernel of df at x and the tangent space $T_{x-n-1}(f)$. Hence the sets $(jf)^{-1}({}^{l})$ coincide with the sets ${}^{l}(f)$. In particular the jet extension of a mapping f without l-singularities does not intersect the set l .

Let r = r(P; Q) J(P; Q) denote the union of the regular points and the Morin singular points with indexes of length at most r.

Theorem 3.3 (Ando-Eliashberg, [2], [6]) Let $f: P^p ! Q^q, p q 2$, be a continuous mapping. The homotopy class of the mapping f contains an l_r -mapping, r = 1, if and only if there is a section of the bundle r.

Note that every general position mapping $f: P^p ! Q^q, q = 1$, is a fold mapping. That is why for q = 1, Theorem 1.1 holds and we will assume that q = 2.

Let \sim_r denote the subset of the suspension bundle corresponding to the set $_r(P; Q) = J(P; Q)$. Every mapping $f: P \mid Q$ de nes a section jf of J(P; Q). The composition $r \mid (jf)$ is a section of S(P; Q). In view of Lemma 3.1 the Ando-Eliashberg Theorem implies that to prove that the homotopy class of a mapping f contains a cusp mapping, it su ces to show that the section of the suspension bundle de ned by f is homotopic to a section of the bundle $\sim_2 S(; \cdot)$.

4 **Proof of Theorem 1.1**

We recall that in a neighborhood of a fold singular point x, the mapping f has the form

$$T_{i} = t_{i}; \quad i = 1/2; ...; q - 1;$$

$$Z = Q(x); \quad Q(x) = k_{1}^{2} \quad ... \quad k_{p-q+1}^{2};$$
(4)

If *x* is an I_r -singular point of *f* and r > 1, then in some neighborhood about *x* the mapping *f* has the form

$$T_{i} = t_{i}; \quad i = 1; 2; ...; q - r;$$

$$L_{i} = l_{i}; \quad i = 2; 3; ...; r;$$

$$Z = Q(x) + \bigvee_{t=2}^{\times} l_{t} k^{t-1} + k^{r+1}; \quad Q(x) = k_{1}^{2} \quad ... \quad k_{p-q}^{2};$$
(5)

Let f: P ! Q be a Morin mapping, for which the set $_2(f)$ is nonempty. We de ne the section $f_i: P ! Hom(i;)$ as the *i*-th component of the section r(jf) of the suspension bundle S(;) ! P. Over $\overline{_2(f)}$ the components f_1 and f_2 de ned by the mapping f determine the bundles $K_i; Q_i, i = 1/2$ and the exact sequences

$$0 -! \quad K_1 -! \quad TP -! \quad TQ -! \quad Q_1 -! \quad 0;$$

$$0 -! \quad K_2 -! \quad K_1 -! \quad HOM(K_1; Q_1) -! \quad Q_2 -! \quad 0:$$

From the latter sequence one can deduce that the bundle Q_2 is canonically isomorphic to $HOM(K_2; Q_1)$ and that the homomorphism

$$K_1 = K_2 \quad K_1 = K_2 - ! \quad Q_1;$$
 (6)

which is defined by the middle homomorphism of the second exact sequence, is a non-degenerate quadratic form (see Chess, [5]). Since the dimension of $K_1 = K_2$ is odd, the quadratic form (6) determines a canonical orientation of the bundle Q_1 . In particular the 1-dimensional bundle Q_1 is trivial. This observation also belongs to Chess [5].

Assume that the bundle K_2 is trivial. Then the bundle Q_2 being isomorphic to $HOM(K_2; Q_1)$ is trivial as well. Let

h:
$$K_2$$
 ! HOM(K_2 ; Q_2) HOM(K_2 K_2 ; Q_1)

be an isomorphism over 2(f) and h: P ! HOM(3;) an arbitrary section, the restriction of which on ${}^{3}K_{2}$ over 2(f) followed by the projection given by $! Q_{1}$, induces the homomorphism \hbar . Then the section of a suspension bundle whose rst three components are $f_{1}; f_{2}$ and h is a section of the bundle \sim_{2} . Since for i > 0 the bundle HOM(i;) is a vector bundle, we have that the composition r(jf) is homotopic to the section s and therefore the original mapping f is homotopic to a cusp mapping.

Now let us prove the assumption that K_2 is trivial over 2(f).

Lemma 4.1 The submanifold 2(f) is canonically cooriented in the submanifold 1(f).

Algebraic & Geometric Topology, Volume 3 (2003)

786

Proof For non-degenerate quadratic forms of order *n*, we adopt the convention to identify the index with the index $n - \cdot$. Then the index *ind* Q(x) of the quadratic form Q(x) in (4) and (5) does not depend on choice of coordinates.

With every I_k -singular point x by (4) and (5) we associate a quadratic mapping of the form Q(x). It is easily veri ed that for every cusp singular point yand a fold singular point x of a small neighborhood of y, we have $Q(x) = Q(y) = k_{p-q+1}^2$. Moreover, if x_1 and x_2 are two fold singular points and there is a path joining x_1 with x_2 which intersects 2(f) transversally and at exactly one point, then $ind Q(x_1) - ind Q(x_2) = 1$. In particular, the normal bundle of 2(f) in 1(f) has a canonical orientation.

Lemma 4.2 Over every connected component of $_2(f)$ the bundle K_2 has a canonical orientation.

Proof At every point $x 2 \overline{2(f)}$ there is an exact sequence

 $0 -! \quad K_{3;x} -! \quad K_{2;x} -! \quad HOM(K_{2;x}; Q_{2;x}) -! \quad Q_{3;x} -! \quad 0:$

If the point *x* is in fact a cusp singular point, then the space $K_{3;x}$ is trivial and therefore the sequence reduces to

 $0 -! K_{2;x} -! HOM(K_{2;x}; Q_{2;x}) -! 0$

and gives rise to a quadratic form

 $K_{2:x} = K_{2:x} - ! \quad Q_{2:x} = HOM(K_{2:x}; Q_{1:x}):$

This form being non-degenerate orients the space $HOM(K_{2;x}, O_{1;x})$. Since $Q_{1;x}$ has a canonical orientation, we obtain a canonical orientation of $K_{2;x}$.

Let $: [-1,1]! - \frac{1}{2}(f)$ be a path which intersects the submanifold of non-cusp singular points transversally and at exactly one point.

Lemma 4.3 The canonical orientations of K_2 at (-1) and (1) lead to di erent orientations of the trivial bundle K_2 .

Proof If necessary we slightly modify the path so that the unique intersection point of and the set 3(f) is a swallowtail singular point. Then the statement of the lemma is easily veri ed using the formulas (5).

Now we are in position to prove the assumption.

Lemma 4.4 The bundle K_2 is trivial over 2(f).

Proof Assume that the statement of the lemma is wrong. Then there is a closed path : $S^1 ! \frac{1}{2(f)}$ which induces a non-orientable bundle K_2 over the circle S^1 .

We may assume that the path intersects the submanifold 3(f) transversally. Let t_1 ; ...; t_k ; $t_{k+1} = t_1$ be the points of the intersection $\sqrt{3(f)}$. Over every interval $(t_i; t_{i+1})$ the normal bundle of 2(f) in 1(f) has two orientations. One orientation is given by Lemma 4.1 and another is given by the canonical orientation of the bundle K_2 . By Lemma 4.3 if these orientations coincide over $(t_{i-1}; t_i)$, then they di er over $(t_i; t_{i+1})$. Therefore the number of the intersection points is even and the bundle K_2 is trivial. Contradiction.

Remark The statement similar to the assertion of Lemma 4.4 for the jet bundle $\mathcal{J}(P; Q)$ is not correct. The vector bundle \mathcal{K}_2 over $\overline{I_2} = \mathcal{J}(P; Q)$ is non-orientable. This follows for example from the study of topological properties of I_r in [2, x4].

References

- P. Akhmetev, R. Sadykov, A remark on elimination of singularities for mappings of 4-manifold into 3-manifold, Top. Appl., 131 (2003), 51-55.
- [2] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan, 37 (1985), 471-487; Erratum 39 (1987), 537.
- [3] V. I. Arnol'd, V. A. Vasil'ev, V. V. Goryunov, O. V. Lyashenko, Dynamical systems VI. Singularities, local and global theory, Encyclopedia of Mathematical Sciences - Vol. 6 (Springer, Berlin, 1993).
- [4] J. M. Boardman, Singularities of di erentiable maps, Publ. Math., 33 (1967), 21-57.
- [5] D. S. Chess, A note on the classes [S^k₁(f)], Proc. Symp. Pure Math., 40 (1983), 221-224.
- [6] J. M. Eliashberg, Surgery of singularities of smooth mappings, Math. USSR Izv., 6 (1972), 1302-1326.
- [7] S. Kikuchi, O. Saeki, *Remarks on the topology of folds*, Proc. Amer. Math. Soc., 123 (1995), 905-908.
- [8] F. Ronga, Le calculus des classes duales singularites de Boardman d'ordre deux, Comment. Math. Helv., 47 (1972), 15-35.
- [9] O. Saeki, Notes on the topology of folds, J. Math. Soc. Japan, v.44, 3 (1992), 551-566.

Algebraic & Geometric Topology, Volume 3 (2003)

788

- [10] O. Saeki, K. Sakuma, *Maps with only Morin singularities and the Hopf invariant one problem*, Math. Proc. Camb. Phil. Soc., 124 (1998), 501-511.
- [11] **O. Saeki, K. Sakuma**, *Elimination of Singularities: Thom Polynomials and Beyond*, London Math. Soc., Lecture Notes Ser. 263.
- [12] **K. Sakuma**, *A note on nonremovable cusp singularities*, Hiroshima Math. J., 31 (2001), 461-465.

University of Florida, Department of Mathematics, 358 Little Hall, 118105, Gainesville, Fl, 32611-8105, USA

Email: sadykov@math.ufl.edu

Received: 18 February 2003 Revised: 23 July 2003