ISSN 1472-2739 (on-line) 1472-2747 (printed)

Algebraic & Geometric Topology Volume 3 (2003) 905{920 Published: 29 September 2003

On the slice genus of links

Vincent Florens Patrick M. Gilmer

Abstract We de ne Casson-Gordon -invariants for links and give a lower bound of the slice genus of a link in terms of these invariants. We study as an example a family of two component links of genus h and show that their slice genus is h, whereas the Murasugi-Tristram inequality does not obstruct this link from bounding an annulus in the 4-ball.

AMS Classi cation 57M25; 57M27

Keywords Casson-Gordon invariants, link signatures

1 Introduction

A knot in S^3 is slice if it bounds a smooth 2-disk in the 4-ball B^4 . Levine showed [Le] that a slice knot is algebraically slice, i.e. any Seifert form of a slice knot is metabolic. In this case, the Tristram-Levine signatures at the prime power order roots of unity of a slice knot must be zero. Levine showed also that the converse holds in high odd dimensions, i.e. any algebraically slice knot is slice. This is false in dimension 3: Casson and Gordon [CG1, CG2, G] showed that certain two-bridge knots in S^3 , which are algebraically slice, are not slice knots. For this purpose, they de ned several knot and 3-manifold invariants, closely related to the Tristram-Levine signatures of associated links. Further methods to calculate these invariants were developed by Gilmer [Gi3, Gi4], Litherland [Li], Gilmer-Livingston [GL], and Naik [N]. Lines [L] also computed some of these invariants for some bered knots, which are algebraically slice but not slice. The slice genus of a link is the minimal genus for a smooth oriented connected surface properly embedded in B^4 with boundary the given link.

The Murasugi-Tristram inequality (see Theorem 2.1 below) gives a lower bound on the slice genus of a link in terms of the link's Tristram-Levine signatures and related nullity invariants. The second author [Gi1] used Casson-Gordon invariants to give another lower bound on the slice genus of a knot. In particular

c Geometry & Topology Publications

he gave examples of algebraically slice knots whose slice genus is arbitrarily large. We apply these methods to restrict the slice genus of a link.

We study as an example a family of two component links, which have genus h Seifert surfaces. Using Theorem 4.1, we show that these links cannot bound a smoothly embedded surface in B^4 with genus lower than h, while the Murasugi-Tristram inequality does not show this. In fact there are some links with the same Seifert form that bound annuli in B^4 . We work in the smooth category.

The second author was partially supported by NSF-DMS-0203486.

2 Preliminaries

2.1 The Tristram-Levine signatures

Let *L* be an oriented link in S^3 , with components, and *S* be the Seifert pairing corresponding to a connected Seifert surface *S* of the link. For any complex number with $j \ j = 1$, one considers the hermitian form $S := (1 - 1) S + (1 - 1) S^T$. The Tristram signature *L*(1) and nullity $n_L(1)$ of *L* are de ned as the signature and nullity of *S*. Levine de ned these same signatures for knots [Le]. The Alexander polynomial of *L* is $L(t) := \text{Det}(S - t(S)^T)$. As is well-known, *L* is a locally constant map on the complement in S^1 of the roots of *L* and n_L is zero on this complement. If L = 0; it is still true that the signature and nullity are locally constant functions on the complement of some nite collection of points.

The Murasugi-Tristram inequality allows one to estimate the slice genus of L, in terms of the values of L() and $n_L()$.

Theorem 2.1 [M, T] Suppose that L is the boundary of a properly embedded connected oriented surface F of genus g in B^4 . Then, if is a prime power order root of unity, we have

$$j_{L}()j + n_{L}() \quad 2g + -1$$

2.2 The Casson-Gordon -invariant

In this section, for the reader convenience, we review the de nition and some of the properties of the simplest kind of Casson-Gordon invariant. It is a reformulation of the Atiyah-Singer -invariant.

Algebraic & Geometric Topology, Volume 3 (2003)

906

Let M be an oriented compact three manifold and $: H_1(M) ! \mathbb{C}$ be a character of nite order. For some $q \ge \mathbb{N}$, the image of is contained a cyclic subgroup of order q generated by $= e^{2i} = q$. As $\operatorname{Hom}(H_1(M); C_q) = [M; B(C_q)]$, it follows that induces q-fold covering of M, denoted \overline{M} , with a canonical deck transformation. We will denote this transformation also by : If maps onto C_q ; the canonical deck transformation sends x to the other endpoint of the arc

that begins at x and covers a loop representing an element of $()^{-1}()$.

As the bordism group $_{3}(B(C_q)) = C_q$, we may conclude that *n* disjoint copies of *M*, for some integer *n*, bounds bound a compact 4-manifold *W* over $B(C_q)$. Note *n* can be taken to be *q*: Let \widehat{W} be the induced covering with the deck transformation, denoted also by , that restricts to on the boundary. This induces a $\mathbb{Z}[C_q]$ - module structure on $C(\widehat{W})$, where the multiplication by $2\mathbb{Z}[C_q]$ corresponds to the action of on \widehat{W} :

The cyclotomic eld $\mathbb{Q}(C_q)$ is a natural $\mathbb{Z}[C_q]$ -module and the twisted homology $H^t(W; \mathbb{Q}(C_q))$ is defined as the homology of

$$C(W) \mid_{\mathbb{Z}[C_q]} \mathbb{Q}(C_q)$$
:

Since $\mathbb{Q}(C_q)$ is flat over $\mathbb{Z}[C_q]$, we get an isomorphism

$$H^{t}(W; \mathbb{Q}(C_{q})) \land H(\overline{W}) = \mathbb{Z}[C_{q}] \mathbb{Q}(C_{q})$$

Similarly, the twisted homology $H^t(M; \mathbb{Q}(C_q))$ is defined as the homology of

$$C(M) = \mathbb{Z}[C_q] \mathbb{Q}(C_q)$$

Let e be the intersection form on $H_{2}(\widehat{W};\mathbb{Q})$ and de ne

$$(W): H_2^t(W; \mathbb{Q}(C_q)) \quad H_2^t(W; \mathbb{Q}(C_q)) ! \quad \mathbb{Q}(C_q)$$

so that, for all a; b in $\mathbb{Q}(C_q)$ and x; y in $H_2(\widehat{W})$,

$$(W)(x \quad a; y \quad b) = \overline{ab} \sum_{i=1}^{M} e(x; i y)^{-i};$$

where *a* ! *a* denotes the involution on $\mathbb{Q}(C_a)$ induced by complex conjugation.

De nition 2.2 The Casson-Gordon -invariant of (M_i) and the related nullity are

$$(M;) := \frac{1}{n} \operatorname{Sign}((W)) - \operatorname{Sign}(W)$$
$$(M;) := \dim H_1^t(M; \mathbb{Q}(C_q)):$$

If U is a closed 4-manifold and : $H_1(U)$! C_q we may de ne (U) as above. One has that modulo torsion the bordism group $_4(B(C_q))$ is generated by the constant map from CP(2) to $B(C_q)$: If is trivial, one has that Sign((U)) = Sign(U): Since both signatures are invariant under cobordism, one has in general that Sign((U)) = Sign(U): The independence of (M;) from the choice of W and n follows from this and Novikov additivity. One may see directly that these invariants do not depend on the choice of q. In this way Casson and Gordon argued that (M;) is an invariant. Alternatively one may use the Atiyah-Singer G-Signature theorem and Novikov additivity [AS].

We now describe a way to compute (M_{i}^{*}) for a given surgery presentation of (M_{i}^{*}) .

De nition 2.3 Let K be an oriented knot in S^3 . Let A be an embedded annulus such that $@A = K [K^{\emptyset} \text{ with } lk(K; K^{\emptyset}) = f$. A *p*-cable on K with *twist* f is de ned to be the union of oriented parallel copies of K lying in A such that the number of copies with the same orientation minus the number with opposite orientation is equal to p.

Let us suppose that M is obtained by surgery on a framed link $L = L_1 [[L]$ with framings f_1, \ldots, f . One shows that the linking matrix of L with framings in the diagonal is a presentation matrix of $H_1(M)$ and a character on $H_1(M)$ is determined by $p_i = (m_{L_i}) 2 C_q$ where m_{L_i} denotes the class of the meridian of L_i . Let $p = (p_1, \ldots, p)$. We use the following generalization of a formula in [CG2, Lemma (3.1)], where all p_i are assumed to be 1, that is given in [Gi2, Theorem(3.6)].

Proposition 2.4 Suppose maps onto C_q . Let L^{\emptyset} with ${}^{\emptyset}$ components be the link obtained from L by replacing each component by a non-empty algebraic p_i -cable with twist f_i along this component. Then, if $e^{2ir} = q$, for (r; q) = 1, one has

$$(M; {}^{r}) = {}_{L^{\theta}}() - \operatorname{Sign}() + 2\frac{r(q-r)}{q^{2}}p^{>} p;$$
$$(M; {}^{r}) = {}_{L^{\theta}}() - {}^{\theta} + :$$

The following proposition collects some easy additivity properties of the - invariant and the nullity under the connected sum.

Proposition 2.5 Suppose that M_1 ; M_2 are connected. Then, for all $i \in H^1(M_i; C_q)$, i = 1/2, we have

$$(M_1 \# M_2; 1 = 2) = (M_1; 1) + (M_2; 2);$$

On the slice genus of links

If both *i* are non-trivial, then

(

$$M_1 \# M_2; \ _1 \ _2) = (M_1; \ _1) + (M_2; \ _2) + 1;$$

If one *i* is trivial, then

$$(M_1 \# M_2; 1 = 2) = (M_1; 1) + (M_2; 2)$$

Proposition 2.6 For all $2 H_1(S^1 \ S^2; C_q)$, we have

 $(S^1 \quad S^2; \) = 0$ If $\neq 0$, then $(S^1 \quad S^2; \) = 0$: If = 0, then $(S^1 \quad S^2; \) = 1$:

Proposition 2.6 for non-trivial can be proved for example by the use of Proposition 2.4, since S^1 S^2 is obtained by surgery on the unknot framed 0. However it is simplest to derive this result directly from the de nitions.

2.3 The Casson-Gordon -invariant

In this section, we recall the denition and some of the properties of the Casson-Gordon -invariant. Let C_1 denote a multiplicative in nite cyclic group generated by t: For $+: H_1(M) \mathrel{!} C_q \quad C_1$, we denote $: H_1(M) \mathrel{!} C_q$ the character obtained by composing + with projection on the rst factor. The character + induces a $C_q \quad C_1$ -covering \widehat{M}_1 of M.

Since the bordism group $_{3}(B(C_{q} \ C_{1})) = C_{q'}$ bounds a compact 4-manifold W over $B(C_{q} \ C_{1})$ Again n can be taken from to be q.

If we identify $\mathbb{Z}[C_q \quad C_1]$ with the Laurent polynomial ring $\mathbb{Z}[C_q][t; t^{-1}]$, the eld $\mathbb{Q}(C_q)(t)$ of rational functions over the cyclotomic eld $\mathbb{Q}(C_q)$ is a flat $\mathbb{Z}[C_q \quad C_1]$ -module. We consider the chain complex $C(\widehat{W}_1)$ as a $\mathbb{Z}[C_q \quad C_1]$ -module given by the deck transformation of the covering. Since W is compact, the vector space $H_2^t(W; \mathbb{Q}(C_q)(t)) \stackrel{\prime}{} H_2(\widehat{W}_1) = \mathbb{Z}[C_q][t; t^{-1}] \mathbb{Q}(C_q)(t)$ is nite dimensional.

We let \mathcal{J} denote the involution on $\mathbb{Q}(C_q)(t)$ that is linear over \mathbb{Q} sends t^i to t^{-i} and i to -i: As in [G], one de nes a hermitian form, with respect to \mathcal{J} ,

$$H_2^t(W; \mathbb{Q}(C_q)(t)) = H_2^t(W; \mathbb{Q}(C_q)(t)) ! = \mathbb{Q}(C_q)(t)$$

such that

$$(x \ a; y \ b) = J(a) \ b \xrightarrow{X \ y}_{i2\mathbb{Z} \ j=1} f_{+}(x; t^{i} \ j y)^{-j} t^{-i}$$

Here f_+ denotes the ordinary intersection form on \widehat{W}_1 : Let $W(\mathbb{Q}(C_q)(t))$ be the Witt group of non-singular hermitian forms on nite dimensional $\mathbb{Q}(C_q)(t)$ vector spaces. Let us consider $H_2^t(W; \mathbb{Q}(C_q)(t)) = (\text{Radical}(+))$. The induced form on it represents an element in $W(\mathbb{Q}(C_q)(t))$; which we denote w(W). Furthermore, the ordinary intersection form on $H_2(W; \mathbb{Q})$ represents an element of $W(\mathbb{Q})$. Let $w_0(W)$ be the image of this element in $W(\mathbb{Q}(C_q)(t))$.

De nition 2.7 The Casson-Gordon -invariant of (M_{i}^{+}) is

$$(M_{i}^{+}) := \frac{1}{n} w(W) - w_{0}(W) 2 W(\mathbb{Q}(C_{q})(t)) \mathbb{Q}.$$

Suppose that *nM* bounds another compact 4-manifold W^{\emptyset} over $B(C_q \quad C_1)$. Form the closed compact manifold over $B(C_q \quad C_1)$, $U := W [W^{\emptyset}$ by gluing along the boundary. By Novikov additivity, we get $w(U) - w_0(U) = w(W) - w_0(W) - w(W^{\emptyset}) - w_0(W^{\emptyset})$. Using [CF], the bordism group $_4(B(C_q \quad C_1))$, modulo torsion, is generated by CP(2), with the constant map to $B(C_q \quad C_1)$. We have that $w(CP(2)) = w_0(CP(2))$. Since w(U), and $w_0(U)$ only depend on the bordism class of U over $B(C_q \quad C_1)$, it follows that $w(U) = w_0(U)$ and

 (M_{i}^{+}) is independent of the choice of W. Using the above techniques, one may check (M_{i}^{+}) is independent of n.

If $A \ge W(\mathbb{Q}(C_q)(t))$; let A(t) be a matrix representative for A. The entries of A(t) are Laurent polynomials with coe cients in $\mathbb{Q}(C_q)$. If is in $S^1 \subset \mathbb{C}$, then $A(\cdot)$ is hermitian and has a well de ned signature (A). One can view

(A) as a locally constant map on the complement of the set of the zeros of det A(). As in [CG1], we re-de ne (A) at each point of discontinuity as the average of the one-sided limits at the point.

We have the following estimate [Gi3, Equation (3.1)].

Proposition 2.8 Let $+: H_1(M) ! C_q C_1$ and $: H_1(M) ! C_q$ be + followed by the projection to C_q . We have

 j_{1} (M_{i}^{+}) - $(M_{i}^{-})j$ (M_{i}^{-}) :

2.4 Linking forms

Let M be a rational homology 3-sphere with linking form

$$I: H_1(M) \quad H_1(M) \mathrel{!} \mathbb{Q} = \mathbb{Z}:$$

We have that / is non-singular, that is the adjoint of / is an isomorphism $: H_1(M) \not : Hom(H_1(M); \mathbb{Q} = \mathbb{Z})$. Let $H_1(M)$ denote $Hom(H_1(M); \mathbb{C})$: Let

denote the map $\mathbb{Q}=\mathbb{Z}$! \mathbb{C} that sends $\frac{a}{b}$ to $e^{\frac{2-ia}{b}}$: So we have an isomorphism /: $H_1(M)$! $H_1(M)$ given by $x \mathbb{V}$ (x): Let : $H_1(M)$ $H_1(M)$! $\mathbb{Q}=\mathbb{Z}$ be the dual form de ned by (/x; /y) = -l(x; y).

De nition 2.9 The form is metabolic with metabolizer H if there exists a subgroup H of $H_1(M)$ such that $H^? = H$.

Lemma 2.10 [Gi1] If M bounds a spin 4-manifold W then $= \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ where $_2$ is metabolic and $_1$ has an even presentation with rank dim $H_2(W; \mathbb{Q})$ and signature Sign(W). Moreover, the set of characters that extend to $H_1(W)$ forms a metabolizer for $_2$.

2.5 Link invariants

Let $L = L_1 [$ [L be an oriented link in S^3 . Let N_2 be the two-fold covering of S^3 branched along L and L be the linking form on $H_1(N_2)$, see previous section.

We suppose that the Alexander polynomial of L satis es

Hence, N_2 is a rational homology sphere. Note that if $_L(-1) \neq 1$, then $H_1(N_2;\mathbb{Z})$ is non-trivial.

De nition 2.11 For all characters in $H_1(N_2)$, the Casson-Gordon - invariant of *L* and the related nullity are (see De nition 2.2):

$$(L;) := (N_2;);$$

 $(L;) := (N_2;):$

Remark 2.12 If *L* is a knot, then De nition 2.11 coincides with (L_{i}) de ned in [CG1, p.183].

3 Framed link descriptions

In this section, we study the Casson-Gordon -invariants of the two-fold cover M_2 of the manifold M_0 described below.

Let $S^3 - T(L)$ be the complement in S^3 of an open tubular neighborhood of L in S^3 and P be a planar surface with boundary components.

Let *S* be a Seifert surface for *L* and *i* for i = 1; ...; be the curves where *S* intersects the boundary of $S^3 - T(L)$. We de ne M_0 as the result of gluing $P = S^1$ to $S^3 - T(L)$, where P = 1 is glued along the curves *i*. Let be a point in the boundary of *P*.

A recipe for drawing a framed link description for M_0 is given in the proof of Proposition 3.1.

Proposition 3.1

 $H_1(M_0)$ ' \mathbb{Z} \mathbb{Z}^{-1} ' hmi \mathbb{Z}^{-1} ;

where m denotes the class of S^1 in $P = S^1$.

Proof Form a 4-manifold X by gluing $P D^2$ to D^4 along S^3 in such a way that the total framing on L agrees with the Seifert surface S. The boundary of this 4-manifold is M_0 . We can get a surgery description of M_0 in the following way: pick -1 paths of S joining up the components of L in a chain. Deleting open neighborhoods of these paths in S gives a Seifert surface for a knot L^{\emptyset} obtained by doing a fusion of L along bands that are neighborhoods of the original paths. Put a circle with a dot around each of these bands (representing a 4-dimensional 1-handle in Kirby's [K] notation), and the framing zero on L^{\emptyset} . This describes a handlebody decomposition of X:

One can then get a standard framed link description of M_0 by replacing the circle with dots with unknots T_1 ; ...; T_{-1} framed zero. This changes the 4-manifold but not the boundary. Note also that $lk(T_i; T_j) = 0$ and $lk(T_i; L^{\ell}) = 0$ for all i = 1; ...; -1. Hence $H_1(M_0)$ ' \mathbb{Z} and *m* represents one of the generators.

We now consider an in nite cyclic covering M_1 of M_0 , de ned by a character $H_1(M_0)$! $C_1 = hti$ that sends m to t and the other generators to zero. Let us denote by M_2 the intermediate two-fold covering obtained by composing this character with the quotient map C_1 ! C_2 sending t to -1. Let m_2 denote the loop in M_2 given by the inverse image of m. A recipe for drawing a framed link description for M_2 is given in the proof of Remark 3.3.

On the slice genus of links

Proposition 3.2 There is an isomorphism between $H_1(N_2)$ and the torsion subgroup of $H_1(M_2)$, which only depends on *L*: Moreover

$$H_1(M_2)$$
 ' $H_1(N_2)$ \mathbb{Z} ' $H_1(N_2)$ hm $_2$ i \mathbb{Z} $^{-1}$:

Proof Let *R* be the result of gluing *P* D^2 to S^3 / along *L* 1 S^3 1 using the framing given by the Seifert surface. Thus R is the result of adding - 1 1-handles to S^3 / and then one 2-handle along L^{ℓ} , as in the proof above. Then X in the proof above can be obtained by gluing D^4 to R along S^3 0. Since D^2 is the double branched cover of itself along the origin, Pis the double branched cover of itself along P = 0. Let R_2 denote the double branched cover of R that is obtained by gluing P D^2 to N_2 / along a 1: We have that $@R_2 = -N_2 t M_2$, neighborhood of the lift of *L* 1 S^3 where R_2 is the result of adding -1 1-handles to N_2 / and then one 2-handle along the lift L^{ℓ} : Moreover this lift of L^{ℓ} is null-homologous in N_2 : It follows that $H_1(R_2)$ is isomorphic to $H_1(N_2) = \mathbb{Z}^{-1}$; with the inclusion of N_2 into R_2 inducing an isomorphism i_N of $H_1(N_2)$ to the torsion subgroup of $H_1(R_2)$: Turning this handle decomposition upside down we have that R_2 is the result of adding to M_2 / one 2-handle along a neighborhood of m_2 and then -1 3-handles. It follows that $H_1(R_2) \quad \mathbb{Z} = H_1(R_2) \quad hm_2 i$ is isomorphic to $H_1(M_2)$ with the inclusion of M_2 in R_2 inducing an isomorphism i_M of the torsion subgroup $H_1(M_2)$ to the torsion subgroup of $H_1(R_2)$: Thus $(i_M)^{-1}$ i_N is an isomorphism from $H_1(N_2)$ to the torsion subgroup of $H_1(M_2)$ and this isomorphism is constructed without any arbitrary choices.

Remark 3.3 We could have proved Proposition 3.1 in a similar way to the proof of Proposition 3.2. We could have also proved Proposition 3.2 (except for the isomorphism only depending on L) in a similar way to the proof of Proposition 3.1 as follows. We can da surgery description of M_2 from a surgery description of N_2 . The procedure of how to visualize a lift of L and the surface S in N_2 is given in [AK]. One considers the lifts of the paths chosen in the proof of Proposition 3.1, on the lift of S: One then fuses the components of the lift of L along these paths, obtaining a lift of L^{ℓ} : The surgery description of M_2 is obtained by adding to the surgery description of N_2 the lift of L^{ℓ} with zero framing together with -1 more unknotted zero-framed components encircling each fusion. The linking matrix of this link is a direct sum of that of N_2 and a zero matrix.

Let i_T denote the inclusion of the torsion subgroup of $H_1(M_2)$ into $H_1(M_2)$; and let : $H_1(N_2)$! $H_1(M_2)$ denote the monomorphism given by i_T (i_M)⁻¹ i_N :

Theorem 3.4 Let $+: H_1(M_2) ! C_q C_1 :$ Let $: H_1(N_2) ! C_q$ be + composed with the projection to C_q : We have that:

$$j_{1}((M_{2}; +)) - (L;)j (L;) + :$$

Remark 3.5 If *L* is a knot, then $(M_2; +)$ coincides with (L; -) defined in [CG1, p.189].

Proof of Theorem 3.4 We use the surgery description of M_2 given in Remark 3.3. Let P be given by the surgery description of M_2 but with the component corresponding to L^{ℓ} deleted. Hence,

$$P = N_2 J_{(-1)} S^1 S^2$$

+ induces some character ${}^{\ell}$ on $H_1(P)$.

According to Section 2.3, we let $-2 H^1(M_2; C_q)$ and $-\ell 2 H^1(P; C_q)$ denote the characters + and ℓ followed by the projection $C_q C_1 ! C_q$. Using Propositions 2.5 and 2.6, one has that

$$(P_{2}^{-1}) = (L_{2}^{-1}) \text{ and } (P_{2}^{-1}) = (L_{2}^{-1}) + -1$$

Moreover, since M_2 is obtained by surgery on L^{ℓ} in P, it follows from [Gi3, Proposition (3.3)] that

$$j (P_{j} - \emptyset) - (M_{2}_{j} - j)j + j (M_{2}_{j} - P_{j} - P_{j})j = 1 \text{ or}$$

 $j (L_{j}) - (M_{2}_{j} - j)j + j (M_{2}_{j} - P_{j}) - (L_{j}) - 1 + 1j = 1.$

Thus

$$j(L;) - (M_2;) j (L;) + - (M_2;)$$

Finally, one gets, by Theorem 2.8,

$$j_{1}((M_{2}; +)) - (L;)j \quad j_{1}((M_{2}; +)) - (M_{2}; -)j + j (M_{2}; -) - (L;)j$$
$$(M_{2}; -) + (L;) + - (M_{2}; -) = (L;) + : \Box$$

4 The slice genus of links

See Section 2.5 for notations.

Theorem 4.1 Suppose *L* is the boundary of a connected oriented properly embedded surface *F* of genus *g* in B^4 ; and that $_L(-1) \neq 0$. Then, $_L$ can be written as a direct sum $_1$ 2 such that the following two conditions hold:

1) $_1$ has an even presentation of rank 2g + -1 and signature $_L(-1)$, and $_2$ is metabolic.

2) There is a metabolizer for $_2$ such that for all characters of prime power order in this metabolizer,

j(L;) + (-1)j (L;) + 4g + 3 - 2;

Proof We let $b_i(X)$ denote the ith Betti number of a space X. We have $b_1(F) = 2g + -1$:

Let W_0^{\emptyset} , with boundary M_0^{\emptyset} , be the complement of an open tubular neighborhood of F in B^4 . By the Thom isomorphism, excision, and the long exact sequence of the pair $(B^4; W_0^{\emptyset})$; W_0^{\emptyset} has the homology of S^1 wedge $b_1(F)$ 2-spheres. Let W_2^{\emptyset} with boundary M_2^{\emptyset} be the two-fold covering of W_0^{\emptyset} . Note that if F is planar, $M_0^{\emptyset} = M_0$; and $M_2^{\emptyset} = M_2$ (see Section 3).

Let V_2 be the two-fold covering of B^4 with branched set F. Note that V_2 is spin as $W_2(V_2)$ is the pull-up of a class in $H^2(B^4;\mathbb{Z}_2)$, by [Gi5, Theorem 7], for instance. The boundary of V_2 is N_2 . As in [Gi1], one calculates that $b_2(V_2) = 2g + -1$. One has Sign $(V_2) = L(-1)$ by [V].

By Lemma 2.10, $_{L}$ can be written as a direct sum $_{1}$ $_{2}$ as in condition 1) above, such that the characters on $H_{1}(N_{2})$ that extend to $H_{1}(V_{2})$ form a metabolizer H for $_{2}$. We now suppose 2 H and show that Condition 2) holds for :

We also let denote an extension of to $H_1(V_2)$ with image some cyclic group C_q where q is a power of a prime integer (possibly larger than those corresponding to the character on $H_1(N_2)$). Of course $2 H^1(V_2; C_q)$ restricted to W_2^{\emptyset} extends restricted to M_2^{\emptyset} . We simply denote all these restrictions by .

Let W_1^{\emptyset} denote the in nite cyclic cover of W_0^{\emptyset} . Note that W_2^{\emptyset} is a quotient of this covering space. induces a C_q -covering of V_2 and thus of W_2^{\emptyset} . If we pull the C_q -covering of W_2^{\emptyset} up to W_1^{\emptyset} , we obtain $\widehat{W}_1^{\emptyset}$, a $C_q - C_1$ -covering of W_2^{\emptyset} . If we identify properly $F - S^1$ in M_2^{\emptyset} ; this covering restricted to $F - S^1$ is given by

a character $H_1(F \ S^1)' \ H_1(F) \ H_1(S^1) \ ! \ C_q \ C_1$ that maps $H_1(F)$ to zero in C_1 , $H_1(S^1)$ to zero in C_q and isomorphically onto C_1 . For this note: since $\operatorname{Hom}(H_1(F);\mathbb{Z}) = H^1(F) = [F;S^1]$, we may de ne di eomorphisms of $F \ S^1$ that induce the identity on the second factor of $H_1(F \ S^1) \ H_1(F) \ \mathbb{Z}$; and send $(x;0) \ 2 \ H_1(F) \ \mathbb{Z}$; to $(x; f(x)) \ 2 \ H_1(F) \ \mathbb{Z}$; for any $f \ 2 \ \operatorname{Hom}(H_1(F);\mathbb{Z})$: As in [Gi1], choose inductively a collection of g disjoint curves in the kernel of that form a metabolizer for the intersection form on $H_1(F) = H_1(@F)$. By taking a tubular neighborhood of these curves in F, we obtain a collection of $S^1 \ I$ embedded in F. Using these embeddings we can attach round 2-handles $(B^2 \ I) \ S^1$ along $(S^1 \ I) \ S^1$ to the trivial cobordism $M_2^{\emptyset} \ I$ and obtain a cobordism between M_2 and M_2^{\emptyset} .

Let $U = W_2^{\emptyset} [M_2^{\emptyset}]$ with boundary M_2 . The $C_q = C_1$ -covering of W_2^{\emptyset} extends uniquely to U. Note that may also be viewed as the result of attaching round 1-handles to $M_2 = I$:

As in [Gi1], Sign(W_2^{\emptyset}) = Sign(V_2). Since the intersection form on is zero, we get Sign(U) = Sign(W_2^{\emptyset}) = Sign(V_2) = $_L(-1)$. The C_q C_1 -covering of , restricted to each round 2-handle is q copies of B^2 / \mathbb{R} attached to the trivial cobordism $\widehat{M}_1^{\emptyset}$ / along q copies of S^1 / \mathbb{R} . Using a Mayer-Vietoris sequence, one sees that the inclusion induces an isomorphism (which preserves the Hermitian form)

$$H_{2}^{t}(U; \mathbb{Q}(C_{q})(t)) ' H_{2}^{t}(W_{2}^{\theta}; \mathbb{Q}(C_{q})(t)):$$

Thus, if $W(W_2^{\emptyset})$ denotes the image of the intersection form on $H_2^t(W_2^{\emptyset}; \mathbb{Q}(C_q)(t))$ in $W(\mathbb{Q}(C_q)(t))$, we get $_1((M_2; +)) = _1(W(W_2^{\emptyset})) - _L(-1)$.

If *q* is a prime power, we may apply Lemma 2 of [Gi1] and conclude that $H_i(\widehat{W}_1^{\ell}; \mathbb{Q})$ is nite dimensional for all $i \notin 2$. Thus, $H_i^t(W_2^{\ell}; \mathbb{Q}(C_q)(t))$ is zero for all $i \notin 2$. Since the Euler characteristic of W_2^{ℓ} with coe cients in $\mathbb{Q}(C_q)(t)$ coincides with those with coe cients in \mathbb{Q} , we get dim $H_2^t(W_2^{\ell}; \mathbb{Q}(C_q)(t)) = (W_2^{\ell}) = 2 \ (W_0^{\ell}) = 2(1 - (F)) = 2b_1(F)$. Thus $j_{-1}((M_2; +) + L(-1)j_{-1}) = 2b_1(F)$. Hence,

$$j (L;) + {}_{L}(-1)j \quad j (L;) - {}_{1}((M_{2};)^{+})j + {}_{1}((M_{2};)^{+}) + {}_{L}(-1)j$$

$$(L;) + {}_{2}(2g + {}_{-1}) = (L;) + 4g + 3 - 2 \text{ by Theorem 3.4.} \square$$

5 Examples

Let $L = L_1 [L_2]$ be the link with two components of Figure 1 and *S* be the Seifert surface of *L* given by the picture. The squares with *K* denote two

parallel copies with linking number 0 of an arc tied in the knot K. Note that L is actually a family of examples. Speci c links are determined by the choice of two parameters: a knot K and a positive integer h: Since S has genus h, the slice genus of L is at most h.

Figure 1: The link L

One calculates that $_{L}() = 1$, and $n_{L}() = 0$ for all . Thus, the Murasugi-Tristram inequality says nothing about the slice genus of L. In fact, if K is a slice knot, then one can surger this surface to obtain a smooth cylinder in the 4-ball with boundary L. Thus there can be no arguments based solely on a Seifert pairing for L that would imply that the slice genus is non-zero.

Theorem 5.1 If $\kappa(e^{2i}) = 2h$ or $\kappa(e^{2i}) = -2h - 2$; then *L* has slice genus *h*.

Proof Using [AK], a surgery presentation of N_2 as surgery on a framed link of 2h + 1 components can be obtained from the surface *S* (see Figure 2).

Let Q be the 3-manifold obtained from the link pictured in Figure 2. Here \mathcal{K}^{\emptyset} denotes \mathcal{K} with the string orientation reversed. Since RP(3) is obtained by surgery on the unknot framed 2, we get:

$$N_2 = RP(3) \#_h Q$$

The linking matrix of the framed link of the surgery presentation of N_2 is

$$= [2] \stackrel{L}{\longrightarrow} \begin{array}{c}h & 0 & 3\\ 3 & 0\end{array}$$
 is a presentation matrix of $(H_1(N_2) \not; \downarrow)$; we obtain
$$H_1(N_2) \quad \not \mathbb{Z}_2 \stackrel{\bigvee}{\longrightarrow} \begin{array}{c}2h\mathbb{Z}_3\end{array}$$

Figure 2: Surgery presentation of Q

and $_{L}$ is given by the following matrix, with entries in \mathbb{Q} = \mathbb{Z} :

$$[1=2] \stackrel{\bigwedge}{\longrightarrow} \begin{array}{c} h & 0 & 1=3 \\ 1=3 & 0 \end{array}$$

By Theorem 4.1, if *L* bounds a surface of genus h - 1 in B^4 , then *L* must be decomposed as 1 2 where:

1) $_1$ has an even presentation matrix of rank 2h - 1, and signature 1 (all we really need here is that it has a rank 2h - 1 presentation.)

2) $_2$ is metabolic and for all characters of prime power order in some metabolizer of $_2$, the following inequality holds:

()
$$j(L;) + 1j - (L;) + 4h$$

As $\mathbb{Z}_2 \stackrel{L}{=} {}^{2h}\mathbb{Z}_3$ does not have a rank 2h - 1 presentation, $_2$ is non-trivial. As metabolic forms are de ned on groups whose cardinality is a square, $_2$ is de ned on a group with no 2-torsion. Thus the metabolizer contains a non-trivial character of order three satisfying $_L(;) = 0$:

The rst homology of Q is $\mathbb{Z}_3 = \mathbb{Z}_3$, generated by, say, m_1 and m_2 , positive meridians of these components. Each of these components is oriented counterclockwise. We rst work out (Q_i^{-}) and (Q_i^{-}) for characters of order three. Let $_{(a_1;a_2)}$ denote the character on $H_1(Q)$ sending m_j to $e^{\frac{2i-a_j}{3}}$, where the a_j take the values zero and 1:

We use Proposition 2.4 to compute $(Q_{(1,0)})$ and $(Q_{(1,0)})$ assuming that K is trivial. For this, one may adapt the trick illustrated on a link with 2 twists between the components [Gi2, Fig (3.3), Remark (3.65b)]. In the case K is the unknot, we obtain

$$(Q_{(1,0)}) = 1$$
 and $(Q_{(1,0)}) = 0$:

It is not di cult to see that inserting the knots of the type K changes the result as follows (note that K and K^{ℓ} have the same Tristram-Levine signatures):

 $(Q_{i-(1,0)}) = 1 + 2 \kappa (e^{2i-3})$ and $(Q_{i-(1,0)}) = 0$:

These same values hold for the characters (-1,0) and (0,-1) by symmetry. Using Proposition 2.4

$$(Q; (1:1)) = -1 - 24 = 9 + 4 \kappa (e^{2 i = 3}); \qquad (Q; (1:1)) = 0$$

 $(Q; (1;-1)) = 4 + 24 = 9 + 4 \kappa (e^{2i=3})$ and (Q; (1;-1)) = 1:

One also has

 $(Q_{(0,0)}) = 0$ and $(Q_{(0,0)}) = 0$:

Any order three character on N_2 that is self annihilating under the linking form is given as the sum of the trivial character on RP(3) and characters of type (0,0), (1,0) and (0,1) on Q and characters of type (1,1) + (1,-1) on Q#Q. Using Proposition 2.5, one can calculate (L_2^{-1}) and (L_2^{-1}) for all these characters \Box . It is now a trivial matter to check that for every non-trivial character with $(\gamma^{-1}) = 0$, the inequality (*) is not satis ed. \Box

References

- [AK] Akbulut, S., Kirby, R., Branched covers of surfaces in 4-manifolds, Math. Ann. 252, 111-131 (1980).
- [AS] Atiyah, M. F., Singer, I. M., *The index of elliptic operators. 111*, Ann. of Math.
 (2) 87, 546-604 (1968).
- [CF] Conner, P. E., Floyd, E.E., *Di erential Periodic Maps*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 33, Springer-Verlag, (1964).
- [CG1] Casson, A. J., Gordon, C. Mc A., *Cobordism of classical knots*, Progr. Math., 62, A La Recherche de la Topologie Perdue, Birkhauser, Boston, MA, 181{199 (1986).
- [CG2] Casson, A. J., Gordon, C. Mc A., On slice knots in dimension three, Proc. Symp. in Pure Math. XXX, 2, 39-53 (1978).
- [Gi1] Gilmer, P. M., On the slice genus of knots, Invent. Math. 66, 191-197 (1982).
- [Gi2] Gilmer, P. M., Con gurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264, 353-380 (1981).
- [Gi3] Gilmer, P. M., *Slice knots in S*³, Quart. J. Math. Oxford **34**, 305-322 (1983).
- [Gi4] Gilmer, P. M., *Classical knot and link concordance*, Comment. Math. Helv. **68**, 1-19 (1993).

- [Gi5] Gilmer, P. M., Signatures of singular branched covers, Math. Ann. 295 (4), 643(659 (1993).
- [GL] Gilmer, P. M., Livingston, C., *The Casson-Gordon invariant and link concordance*, Topology **31**, **(3)**, 475{492 (1992).
- [G] Gordon, C. McA., Some aspects of classical knot theory, Knot theory (Proc. Sem., Plans-sur-Bex, 1977), Lecture Notes in Math., 685, Springer Verlag, Berlin, 1-60 (1978).
- [K] Kirby, R. C., *The Topology of 4-manifolds*, Lecture Notes in Math **1374** Springer Verlag, Berlin (1989).
- [Le] Levine, J., *Knot cobordism groups in codimension two*, Comment. Math. Helv. **44** 229{244 (1969).
- [L] Lines D., Cobordisme de noeuds bres et de leur monodromie, Knots, braids and singularities (Plans-sur-Bex, 1982), 147{173, Monogr. Enseign. Math., 31, Enseignement Math., Geneva, (1983).
- [Li] Litherland, R. A., Cobordism of satellite knots, Four-Manifold Theory (Durham, N.H., 1982), Contemp. Math., 35, Amer. Math. Soc., Providence, RI, 327{362 (1984).
- [M] Murasugi, K., On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117, 387{422 (1965).
- [N] Naik, S. Casson-Gordon invariants of genus one knots and concordance to reverses, J. Knot Theory Rami cations 5, 661{677 (1996).
- [T] Tristram, A. G., Some cobordism invariants for links, Proc, Camb. Philos. Soc., 66, 251-264 (1969).
- [V] Viro, O. Ja. Branched coverings of manifolds with boundary, and invariants of links. I, Math. USSR-Izv. 7 1239{1256 (1973).

Laboratoire I.R.M.A. Universite Louis Pasteur Strasbourg, France and Department of Mathematics, Louisiana State University Baton Rouge, LA 70803, USA

Email: vincent.florens@irma.u-strasbg.fr and gilmer@math.lsu.edu