Algebraic & Geometric Topology Volume 3 (2003) 1037{1050 Published: 12 October 2003

On the domain of the assembly map in algebraic K{theory

Arthur C. Bartels

Abstract We compare the domain of the assembly map in algebraic K { theory with respect to the family of nite subgroups with the domain of the assembly map with respect to the family of virtually cyclic subgroups and prove that the former is a direct summand of the later.

AMS Classi cation 19D50; 19A31, 19B28

Keywords K{theory, group rings, isomorphism conjecture

1 Introduction

In algebraic K{theory assembly maps relate the algebraic K{theory of a group ring R to the algebraic K{theory of R and the group homology of . In the formulation of Davis and Lück [DL98] there is for every family of subgroups F of an assembly map

$$H^{\text{Or}} (E (F); \mathbf{K}R^{-1}) ! K (R)$$
 (1.1)

and these maps are natural with respect to inclusions of families of subgroups. The notation is reviewed in more detail in Section 2. The Isomorphism Conjecture of Farrell{Jones [FJ93] for algebraic K{theory (and $R = \mathbb{Z}$) states that (1.1) is an isomorphism, provided that F = VC is the family of virtually cyclic subgroups. This conjecture has been proven for di erent classes of groups, cf. [FJ93] [FJ98]. Arbitrary coe cient rings are considered in [BFJR]. The assembly map is also studied with F = FIN the family of nite subgroups or F the family consisting of the trivial subgroup. For the trivial family there are injectivity results for di erent classes of groups, cf. [BHM93], [CP95]. Both results have been extended to injectivity results for F = FIN, see [Ros03] and recent work of Lück{Reich{Rognes{Varison}}

In this paper we study the map

$$H^{\text{Or}}$$
 (E (FIN); $\mathbf{K}R^{-1}$) ! H^{Or} (E (VC); $\mathbf{K}R^{-1}$): (1.2)

c Geometry & Topology Publications

It has been conjectured in [FJ93, p.260] (for $R = \mathbb{Z}$) that this map is split injective. In various cases this follows from the above mentioned results. The purpose of this paper is to verify this conjecture in general.

Theorem 1.3 The map (1.2) is split injective for arbitrary groups and rings.

In general the left hand side of (1.2) is much better understood than the right hand side, cf. [Lü02]. Thus modulo the isomorphism conjecture Theorem 1.3 may be viewed as splitting a well understood factor from the K{theory of the group ring.

For virtually cyclic groups Theorem 1.3 asserts that the assembly map for the family FIN is split injective. This is a special case of [Ros03]. The language of Or {spectra from [DL98] allows us to extend this splitting to the more general setting in (1.2).

There is a corresponding splitting result for L{theory: If we use L^{-1} {theory and R and are such that $K_{-i}(RV) = 0$ for all virtually cyclic subgroups V of and su ciently large *i*, then (1.2) remains split injective. This assumption is satis ed if $R = \mathbb{Z}$ by [FJ95]. We will not give the details of the proof of this L{ theory statement. The proof is however completely analogous to the K{theory case. The extra assumption is needed to obtain a suitable compatibility with in nite products, see 4.4. The L{theory statements needed for this transition are provided in [CP95, Section 4].

I want to thank Tom Farrell, Wolfgang Lück and Erik Pedersen for helpful comments.

2 Equivariant homology theories

First let us briefly x conventions on spectra. A spectrum \mathbb{E} is given by a sequence $(E_n)_{n 2\mathbb{N}}$ of pointed spaces and structure maps $E_n ! E_{n+1}$. A map of spectra is a sequence of maps $E_n ! F_n$ (for $n 2\mathbb{N}$) that commutes with the structure maps. A map of spectra is said to be a weak equivalence if it induces an isomorphism of (stable) homotopy groups. Two spectra \mathbb{E} and \mathbb{F} are said to be weakly equivalent if there is a zig-zag of weak equivalence

$$\mathbb{E} \xrightarrow{'} \mathbb{A} \xleftarrow{'} \cdots \xrightarrow{'} \mathbb{F}$$

connecting \mathbb{E} to \mathbb{F} .

Algebraic & Geometric Topology, Volume 3 (2003)

Let be a group. The *Orbit Category* Or has as objects the homogeneous spaces =H and as morphisms {equivariant maps =H ! =K [Bre67]. An Or {spectrum is a functor from Or to the category of spectra. A map of Or {spectra is a natural transformation. A map of Or {spectra is called a weak equivalence if it is a weak equivalence evaluated at every =H. Two Or {spectra are said to be weakly equivalent if they are connected by a zig-zag of weak equivalences. Our main example of an Or {spectrum is given by algebraic K{theory: for a ring R there is an Or {spectrum $\mathbf{K}R^{-1}$ whose value on =H is the K{theory spectrum of the group ring RH. This functor has been constructed in [DL98, Section 2]. In this paper we will denote spectra by blackboard bold letters (like \mathbb{E}) and Or {spectra by boldface letters (like \mathbf{E}).

Associated to an Or {spectrum \mathbf{E} is a functor from {CW{complexes to spectra. Its value on a {space X is given by the *balanced smash product*

$$\mathbb{H}^{\mathrm{Or}}(X; \mathbf{E}) = \begin{array}{c} X_{+}^{H} \wedge_{\mathrm{Or}} \mathbf{E}(=H) \\ = \\ X_{+}^{H} \wedge \mathbf{E}(=H) = \end{array}$$
(2.1)

where is the equivalence relation generated by (x ; y) (x; y) for $x \ge X_+^K ; y \ge \mathbf{E}(=H)$ and :=H ! =K (cf. [DL98, Section 5]). The homotopy groups of $\mathbb{H}^{\mathrm{Or}}(X; \mathbf{E})$ will be denoted by $H^{\mathrm{Or}}(X; \mathbf{E})$ and give an equivariant homology theory [DL98, 4.2].

A family of subgroups of is a collection of subgroups of that is closed under conjugation and taking subgroups. For such a family F there is a classifying space E(F), namely a {CW{complex characterized (up to {homotopy equivalence}) by the property that $E(F)^H$ is contractible if $H \ 2F$ and empty otherwise. Given an Or {spectrum \mathbf{E} there is for any such family of subgroups F the assembly map $\mathbb{H}^{Or}(E(F); \mathbf{E}) \ \mathbb{H}^{Or}(pt; \mathbf{E}) = \mathbf{E}(=), \text{ cf. [DL98, Section 5]}$. This construction is natural in the family F and in this paper we will compare di erent families.

We will need the following recognition principle, cf. [DL98, 6.3 2.]. A $\{F \in CW \}$ CW $\{complex, is a \} \{CW \}$ CW $\{complex with isotropy groups contained in F. \}$

Lemma 2.2 Let **E** ! **F** be a map of Or {spectra. Let *F* be a family of subgroups of such that $\mathbf{E}(=F)$! $\mathbf{F}(=F)$ is a weak equivalence for all *F* 2 *F*. Then

 \mathbb{H}^{Or} (X; E) ! \mathbb{H}^{Or} (X; F)

is a weak equivalence for any {F{CW{complex.

It will be useful for us to iterate the construction of Or {spectra, i.e. de ne an Or {spectrum using the homology with respect to a di erent Or {spectrum.

Lemma 2.3 Let X; Y be {*CW*{complexes and **K** be an Or {spectrum. De ne an Or {spectrum **E** by

$$\mathbf{E}(=H) = \mathbb{H}^{\mathrm{Or}} (=H Y; \mathbf{K}):$$

Then

$$\mathbb{H}^{\mathrm{Or}} (X; \mathbf{E}) = \mathbb{H}^{\mathrm{Or}} (X Y; \mathbf{K})$$

Proof In the following formula =H will always correspond to the rst n Or and =K to the second.

$$\mathbb{H}^{\text{Or}} (X; \mathbf{E}) = X_{+}^{H} \wedge_{\text{Or}} (=H Y)_{+}^{K} \wedge_{\text{Or}} \mathbf{K} (=K)$$

$$= X_{+}^{H} \wedge_{\text{Or}} (=H Y)_{+}^{K} \wedge_{\text{Or}} \mathbf{K} (=K)$$

$$= X_{+}^{H} \wedge_{\text{Or}} (=H)_{+}^{K} \wedge Y_{+}^{K} \wedge_{\text{Or}} \mathbf{K} (=K)$$

$$= (X_{+}^{K} \wedge Y_{+}^{K}) \wedge_{\text{Or}} \mathbf{K} (=K)$$

$$= \mathbb{H}^{\text{Or}} (X Y; \mathbf{K}) :$$

In the second, third and fourth line the rst $^{O}_{Or}$ is a balanced smash product with a space, that is similarly de ned as (2.1). The homeomorphism from the third to the fourth line comes about as follows. There is a natural *G*{action on $X_{+}^{H} ^{O}_{Or}$ (=H)₊ (where *G* acts by multiplication on =H, see [DL98, 7.1]) and by [DL98, 7.4.1] a natural *G*{homeomorphism

$$X_{+}^{H} \wedge_{Or} (=H)_{+} = X_{+}$$

Moreover, it is not hard to check that,

$$X_{+}^{H} \sim_{\text{Or}} (=H)_{+}^{K} = (X_{+}^{H} \sim_{\text{Or}} (=H)_{+})^{K}$$

Therefore,

$$X_{+}^{H} \circ_{Or} (=H)_{+}^{K} = X_{+}^{K}$$

We nish this section with a formal splitting criterion.

Proposition 2.4 Let \mathbf{E} ! \mathbf{F} ! \mathbf{G} be maps of Or {spectra. Let F G be families of subgroups of . Assume that \mathbf{E} is weakly equivalent to =H \mathbf{V} \mathbb{H}^{Or} (=H E (F); \mathbf{K}) for some Or {spectrum \mathbf{K} . Assume moreover that $\mathbf{E}(=F)$! $\mathbf{F}(=F)$ and $\mathbf{E}(=G)$! $\mathbf{G}(=G)$ are weak equivalences for all F 2 F and G 2 G. Then

$$H^{\text{Or}}$$
 (E (F); F) ! H^{Or} (E (G); F)

is split injective.

Algebraic & Geometric Topology, Volume 3 (2003)

Proof Consider the following commutative diagram.

By the rst assumption and 2.3 we have

$$\begin{split} \mathbb{H}^{\mathrm{Or}} & (E \ (F); \mathbf{E}) & \prime & \mathbb{H}^{\mathrm{Or}} \ (E \ (F) & E \ (F); \mathbf{K}); \\ \mathbb{H}^{\mathrm{Or}} & (E \ (G); \mathbf{E}) & \prime & \mathbb{H}^{\mathrm{Or}} \ (E \ (G) & E \ (F); \mathbf{K}): \end{split}$$

Now *F G* implies that both *E* (*F*) *E* (*F*) and *E* (*G*) *E* (*F*) are { homotopy equivalent to *E* (*F*). Thus is a weak equivalence. The second assumption and 2.2 imply that the maps labeled $_i$ are also weak equivalences.

3 Homotopy xed points

A useful tool in proving injectivity results for assembly maps are homotopy xed points, cf. [CP95]. Given an action of a group on a space X the homotopy xed points with respect to F are by de nition,

$$X^{h_F} = \operatorname{Map} (E(F);X)$$
:

We will also need actions of on spectra. By de nition acts on a spectrum \mathbb{E} , by acting (pointed) on each E_n compatible with the structure maps. This allows to take (homotopy) xed points level wise. We will call a map X! Y a weak Or {equivalence, if it is {equivariant and induces a weak equivalence on all xed point sets.

Proposition 3.1 Let A; B be Or {spectra with a {action (i.e. functors from Or to spectra with {action}) and F G two families of subgroups of . Assume that there is a {equivariant map of Or {spectra A ! B such that the following holds.

(1) There is an Or {spectrum **K** such that the Or {spectra **A** and $=\mathcal{H} \mathcal{V}$ \mathbb{H}^{Or} ($=\mathcal{H} \in (F)$; **K**) are weakly equivalent.

(2) For all G 2 G there are weak Or {equivalences

$$\mathbf{A}(=G) \quad ' \quad \operatorname{Map}_{G}(\ ; \mathbb{A}_{0}(G))$$
$$\mathbf{B}(=G) \quad ' \quad \operatorname{Map}_{G}(\ ; \mathbb{B}_{0}(G))$$

for spectra $\mathbb{A}_0(G)$; $\mathbb{B}_0(G)$ with a *G*{action. Moreover, there is a *G*{map $\mathbb{A}_0(G) \ ! \ \mathbb{B}_0(G)$ compatible with the {map $\mathbf{A}(=G) \ ! \ \mathbf{B}(=G)$.

(3) For all $G \ge G$ the induced map $\mathbb{A}_0(G)^G \mathrel{!} \mathbb{B}_0(G)^{h_F G}$ is a weak homotopy equivalence. (Here F is viewed as the obvious family of subgroups of G it induces.)

Then the map H^{Or} (E (F); **B**) ! H^{Or} (E (G); **B**) is split injective.

In our application in Section 5 F will be the family of nite subgroups and G will be the family of virtual cyclic subgroups. In order to prove 3.1, we need three lemmata. They will be used to relate xed points of **B** (and **A**) to homotopy xed points of **B**. The proof of the rst lemma is straightforward.

Lemma 3.2 Let H be a subgroup of , X a {space and Y an H{space. Then there is a natural homeomorphism

$$Map (X; Map_H(; Y)) = Map_H(X; Y): \square$$

Lemma 3.3 Let *H* be a subgroup of and *Y* be an *H*{space. Let $S = Map_H(:Y)$. Then

 $Y^H = S$ and Y^{h_FH} , S^{h_F} ;

If moreover $H \ge F$ then

$$S ' S^{h_F}$$
:

Proof Using 3.2 we have

$$S = \operatorname{Map} (pt; S)$$

$$= \operatorname{Map} (pt; \operatorname{Map}_{H}(; Y))$$

$$= \operatorname{Map}_{H}(pt; Y)$$

$$= Y^{H}:$$

$$S^{h_{F}} = \operatorname{Map} (E (F); S)$$

$$= \operatorname{Map} (E (F); \operatorname{Map}_{H}(; Y))$$

$$= \operatorname{Map}_{H}(E (F); Y)$$

$$' \operatorname{Map}_{H}(EH(F); Y)$$

$$= Y^{h_{F}H}:$$

Algebraic & Geometric Topology, Volume 3 (2003)

To prove the last assertion, observe that if $H \ge F$, then EH(F) is a point and $Y^{h_F H} = Y^H$. Therefore $S^{h_F} \land S$.

Lemma 3.4 For $F \ge F$ and $G \ge G$ the induced maps

are homotopy equivalences.

Proof The rst homotopy equivalence follows easily from 3.1 (2) and the second part of 3.3. The second map is by 3.1 (2) and the rst part of 3.3 equivalent to $\mathbb{A}_0(G)^G \not = \mathbb{B}_0(G)^{h_F G}$ and a homotopy equivalence by 3.1 (3).

Proof of Proposition 3.1 Set $\mathbf{E} = \mathbf{A}$, $\mathbf{F} = \mathbf{B}$ and $\mathbf{G} = \mathbf{B}^{h_F}$. In order to apply 2.4, we need to check that $\mathbf{A}(=G)$! $\mathbf{B}(=G)^{h_F}$ and $\mathbf{A}(=F)$! $\mathbf{B}(=F)$ are weak equivalences for $G \ 2 \ G$ and $F \ 2 \ F$. This a consequence of 3.4.

4 Controlled algebra

Let Z be a topological space and R be a ring, Controlled algebra is concerned with categories of R{modules over Z ($M = \sum_{z \ge Z} M_z$) and R{module maps over Z ($= (\sum_{z \ge Z^0} M_z^0 M_z^0 M_z)$). We will need an equivariant version of this theory that has been studied in [BFJR]. Let be a group and X be a {space. The equivariant continuous control condition $E_{cc}(X)$ (consisting of subsets of $(X = [1, 7))^2$ is defined in [BFJR, 2.5]. Let $p: Y \neq X$ be a continuous { map. We de ne a category C(Y; p) of R{modules over Y[1; 7): Its objects are locally nite (see [BFJR, Section 2.2]) free R{modules M = $M_{(v::t)}$ subject to the condition that there is a compact subset K(depending on Υ M) such that $M_{(y_i \ | \ t)} = 0$ unless $(y_i) \ 2 \ K$. Morphisms $= ((y_i \ | \ t) \ y_i) \ \theta_i(y_i)$ are required to satisfy the following condition: there is $E \ 2 E_{cc}(X)$ (depending on) such that $(y; ;t); (y^0; \theta; t^0) = 0$ unless $((p(y); t); (p(y^0); t^0)) 2 E$. Note that this de nition depends on the group action we have in mind. The objects of the full subcategory $C_0(Y; p) = C(Y; p)$ have by denition support in Y [1;], i.e. for every module *M* there is > 0 such that $M_{y_{i},t} = 0$ unless t . This inclusion is a Karoubi ltration ([CP95, 1.27]) and we denote the quotient by D(Y; p). The group acts on all these categories. The xed point category D(Y; p) appeared in [BFJR]. We abbreviate

$$\mathbb{K}(p) = \mathbb{K}^{-1} D(Y; p)$$

If $p = id_X$ we will write $\mathbb{K}(X)$ for $\mathbb{K}(id_X)$. An important application of controlled algebra has been the construction of homology theories [PW89]. The following equivariant version of this result is proven in [BFJR, Section 5 and 6.2].

Theorem 4.1 The functor

$$X \not \!\!\! I \quad \mathbb{K}(X)$$

from {CW{complexes to spectra is weakly equivalent to

We will later on need the following simple observation.

Lemma 4.2 $\mathbb{K}(X \ Y \ ! \ Y) \ ! \ \mathbb{K}(Y)$ is a weak Or {homotopy equivalence.

Proof It is not hard to check that $D^H(X \ Y; X \ Y \ Y)$ $! \ D^H(Y; id_Y)$ is an equivalence of categories for any subgroup H.

The next lemma will later on be the key ingredient in checking condition 3.1 (2).

Lemma 4.3 Let p: X ! Y = H be a {map. Let $X_0 = p^{-1}(Y \text{ feHg})$ and denote by $p_0^H: X_0 ! Y$ the H{map induced by p. Then there is a weak Or {equivalence

$$\mathbb{K}(\rho)$$
 ' Map_H(; $\mathbb{K}(\rho_0^H)$):

Proof For U = H let $X[U] = p^{-1}(Y \cup U)$ and $p[U] = pj_{X[U]}$. For a subgroup F we abbreviate $C^{F}[U] = D^{F}(X[U]; p[U])$. Clearly $\mathbb{K}(p_{0}^{H}) = \mathbb{K}^{-1} C[eH]$. The continuous control condition $E_{cc}(Y = H)$ separates in particular di erent path components. Therefore we get

$$D(X;p) = \int_{H2}^{1} C[H]:$$

Projections induce a map

、 /

We have to show that this map is a weak Or $\{$ equivalence. Let F be a subgroup of \cdot . Again, the continuous control condition implies

$$D^{F}(X;p) = \int_{F H2Fn = H}^{I} C^{F}[F H]:$$

Algebraic & Geometric Topology, Volume 3 (2003)

Using the fact that \mathbb{K}^{-1} commutes with xed points and up to weak equivalence with in nite products [Car95] we obtain

$$(\mathbb{K}^{-1} D(X; p))^{F} = \mathbb{K}^{-1} \mathcal{D}^{F} (X; p)$$

$$' \qquad \mathbb{K}^{-1} \mathcal{C}^{F} [F \ H]:$$

$$F \ H2Fn \ =H$$

Moreover,

$$\mathbb{K}^{-1} C^{F}[F \ H] = \mathbb{K}^{-1} C^{F \setminus H^{-1}}[H]$$

$$= (\mathbb{K}^{-1} C[H])^{F \setminus H^{-1}}$$

$$= \mathbb{K}^{-1} C[f \ H] \stackrel{F}{:}$$

$$f \ H2F(H)$$

(Here F(H) denotes the F {orbit of H in =H.) We nish the argument by observing that

$$\overset{Y}{\mathbb{K}^{-1}} \overset{F}{C} \begin{bmatrix} H \end{bmatrix}^{F} = \overset{Y}{\mathbb{K}^{-1}} \overset{Y}{C} \begin{bmatrix} F \end{bmatrix}^{F} : \square$$

$$\overset{H2}{\mathbb{H}^{2}} \overset{H2}{\mathbb{H}^{2}} \overset{F}{\mathbb{H}^{2}} \overset{H2}{\mathbb{H}^{2}} \overset{H2}{\mathbb{H}^{2}$$

Remark 4.4 In the proof above we used the compatibility of K {theory with in nite products from [Car95]. At this point the L {theory version of our splitting result needs the additional assumption stated in the introduction. It is explained in [CP95, p. 756] that for additive categories with involutions A_n there is a weak equivalence

$$\mathbb{L}^{-1} \stackrel{\forall}{\longrightarrow} A_n = \stackrel{\forall}{\longrightarrow} \mathbb{L}^{-1} A_n;$$

provided there is i_0 independent of n such that $K_{-i}A_n = 0$ for all $i = i_0$. Thus, an L{theory version of 4.3 needs an additional assumption. A sumption is that $K_{-i}RH = 0$ for all sumption is the formula of i.

Under su cient control conditions, there is no di erence between xed points and homotopy xed points. This is an important ingredient in the proof of injectivity of assembly maps in [CP95] and [Ros03]. We will need the following version of this result.

Lemma 4.5 Let X be a cocompact {*CW*{complex with isotropy groups contained in a family of subgroups F. Then the obvious map

 $\mathbb{K}(X)$! $\mathbb{K}(X)^{h_F}$

is a homotopy equivalence.

Proof This is [Ros03, 6.2]. One proceeds by induction on the equivariant cells of X. The induction step uses 4.3 and 3.3.

The following result is closely related to [Ros03, 7.1]. Using what is sometimes called the descent principle it can be used to show split injectivity of (1.2) in the base case, i.e. for virtually cyclic $\$. (The point of the descent principle is that it requires only knowledge about xed points of nite subgroups.) The in nite cyclic and the in nite dihedral group act properly on \mathbb{R} . Virtually cyclic groups map either onto the integers or the in nite dihedral group ([FJ95, 2.5]), and act therefore also properly on \mathbb{R} . The restriction of this action to nite subgroups is either trivial or factors through the action of \mathbb{Z} =2 by a reflection.

Proposition 4.6 Consider \mathbb{R} with the aforementioned proper action of a virtual cyclic group V. If H is a nite subgroup of V, then

$$\mathbb{K}(\mathbb{R})^{H} ! \mathbb{K}(\mathbb{R} ! pt)^{H}$$

is a weak equivalence.

In order to prove this we will need a slightly di erent construction of D(Y; p)for a continuous {map p: Y ! X where X carries a {equivariant metric *d*. De ne the subcategory $\mathcal{C}(Y; p)$ C(Y; p) whose morphisms have to satisfy the additional condition, that there is > 0 (depending on) such that $(y_i; j_i) (y_i^{\theta}; \theta_i; t^{\theta}) = 0$ unless $d(p(y); p(y^{\theta}))$. The corresponding inclusion $\mathcal{C}(Y; p)$ is again a Karoubi ltration. It is not to hard to check, that $\mathcal{C}_0(Y;p)$ its quotient D(Y; p) is equivalent to D(Y; p) and that this is compatible with {actions, cf. [BFJR, 8.8]. However, one has to be a little careful with the the de nitions to get this even before taking xed points. In particular, it is at this point important that all $E \ 2 E_{cc}(X)$ are required to be -invariant, [BFJR, 2.5(iii)].

Lemma 4.7 The \mathcal{K} {theory of $\mathcal{C}^{\mathcal{H}}(\mathbb{R}; \mathrm{id}_{\mathbb{R}})$ vanishes under the assumption of 4.6. (Here we consider the standard metric on \mathbb{R} .)

Proof Let $x_0 \ 2 \ \mathbb{R}$ be a xed point for the action of H. We will need various full subcategories of $\mathcal{C}^H(\mathbb{R}; \mathrm{id}_{\mathbb{R}})$. Let S be the full subcategory whose objects have support in $[x_0 - x_0 +]$ V [1; 7) for some $> 0; S_+$ be the full subcategory whose objects have support in $[x_0, x_0 +]$ V [1; 7) for some $x_0 + 1$ for $x_0 + 1$

> 0; S_- be the full subcategory whose objects have support in $[x_0 - \frac{1}{2}x_0]$ V = [1, 7] for some > 0; C_+ be the full subcategory whose objects have

Algebraic & Geometric Topology, Volume 3 (2003)

support in $[x_0; 1)$ V [1; 1); C_- be the full subcategory whose objects have support in $(-1; x_0]$ V [1; 1). Then S $C^H(\mathbb{R}; \mathrm{id}_{\mathbb{R}})$, S_+ C_+ and $S_ C_$ are Karoubi ltrations and we denote the quotient categories by \mathcal{O} , \mathcal{O}_+ and \mathcal{O}_- . It is not hard to check that the rst of these quotients is equivalent to the direct sum of the two later. The K {theory of \mathcal{O} is therefore the sum of the K {theories of \mathcal{O}_+ and \mathcal{O}_- . Applying \mathbb{K}^{-1} to Karoubi ltrations gives a homotopy bration by [CP95, 1.28]. Putting all this together, we see that it su ces to show that the K {theory of each of our ve full subcategories is trivial. The map $(x; v; t) \not V$ $((x - x_0) = 2 + x_0; v; t + 1)$ induces an Eilenberg swindle on S, S_+ and S_- ; the maps $(x; v; t) \not V$ (x + 1; v; t) and $(x; v; t) \not V$ (x - 1; v; t)induce Eilenberg swindles on C_+ and C_- .

Note that it is important to use the category C rather than C for this argument. For example, the corresponding subcategory S of $C^{H}(\mathbb{R}; id_{\mathbb{R}})$ is not a Karoubi ltration.

Proof of 4.6 Let *p* denote the projection \mathbb{R} ! *pt*. We will use the following diagram.

$$\begin{array}{ccc} \mathcal{C}_{0}(\mathbb{R}; \mathrm{id}_{\mathbb{R}})^{H} \longrightarrow \mathcal{C}(\mathbb{R}; \mathrm{id}_{\mathbb{R}})^{H} \longrightarrow \mathcal{D}(\mathbb{R}; \mathrm{id}_{\mathbb{R}})^{H} \\ F_{1} \middle| & F_{2} \middle| & F_{3} \middle| \\ \mathcal{C}_{0}(\mathbb{R}; \rho)^{H} \longrightarrow \mathcal{C}(\mathbb{R}; \rho)^{H} \longrightarrow \mathcal{D}(\mathbb{R}; \rho)^{H} \end{array}$$

It is not hard to check that F_1 is an equivalence of categories. The K {theory of $\mathcal{C}(\mathbb{R}; \mathrm{id}_{\mathbb{R}})^H$ vanishes by 4.7. The map $(x; v; t) \not P(x; v; t+1)$ gives an Eilenberg swindle on $\mathcal{C}(\mathbb{R}; p)^H$ and its K {theory also vanishes. As used before, applying \mathbb{K}^{-1} to Karoubi ltrations gives a homotopy bration by [CP95, 1.28]. Thus F_3 induces an isomorphism in K {theory. The result follows, since $\mathcal{D}(\mathbb{R}; q) = \mathcal{D}(\mathbb{R}; q)$ for any q as noted before 4.7.

5 The coe cient spectra

This section contains the proof of Theorem 1.3 from the introduction. As before, we x a ring R and a group \cdot . For a subgroup H of let

$$p_{=H}$$
: =H E (FIN) ! =H

be the obvious projections. We de ne two Or spectra A and B by

$$\mathbf{A}(=H) = \mathbb{K}(=H \in (FIN)),$$
$$\mathbf{B}(=H) = \mathbb{K}(p_{=H}):$$

Both, **A** and **B** are naturally equipped with a $\{action. There is an obvious$ {equivariant map of Or $\{spectra A \mid B.$

We will show that these spectra satisfy the hypothesis of 3.1 with respect to the families FIN VC. For 3.1 (1) this follows from 4.1, where **K** is the algebraic K{theory Or {spectrum $\mathbf{K}R^{-1}$. In 5.1 we will prove that 3.1 (2) is satis ed. The nal condition 3.1 (3) will follow from 5.2. Moreover, it is an easy consequence of 4.1 and 4.2 that **B** is weakly equivalent to $\mathbf{K}R^{-1}$ and therefore Theorem 1.3 will be a consequence of the splitting result 3.1.

For a subgroup *H* of let

Here res^H denotes the forgetful functor from {spaces to H{spaces.

The next statement is an immediate consequence of 4.3 and veri es 3.1 (2).

Lemma 5.1 There are natural weak Or equivalences

$$\mathbf{A}(=H) = \operatorname{Map}_{H}(:\mathbb{E}_{0}(H));$$
$$\mathbf{B}(=H) = \operatorname{Map}_{H}(:\mathbb{E}_{0}(H)): \square$$

Finally, we verify 3.1 (3).

Proposition 5.2 For V 2 VC the obvious map

$$\mathbb{A}_{0}(V)^{V} = \mathbb{K}(\operatorname{res}^{V} E \ (F/N))^{V}$$

$$\downarrow$$

$$\mathbb{B}_{0}(V)^{h_{F}V} = \mathbb{K}(\operatorname{res}^{H}(E \ (F/N) \ ! \ pt))^{h_{F/N}V}$$

is a homotopy equivalence.

Proof We can choose $EV(FIN) = \mathbb{R}$ with the proper action used towards the end of the previous section. We will use the following commutative diagram.

Algebraic & Geometric Topology, Volume 3 (2003)

The maps labeled *i* and *i* are all homotopy equivalences: 0 by the fact that res ${}^{V}E(FIN)$ is also an EV(FIN) and 4.1 and 1 by 4.5. To study the maps labeled *i* we need a fact about homotopy xed points: if an equivariant map induces a homotopy equivalence on xed points for nite subgroups, then it induces a homotopy equivalence on homotopy xed points with respect to FIN, see [Ros03, 4.1]. Thus 1 is a homotopy equivalence by 4.2. The map $\mathbb{K}(\mathbb{R}) \ \mathbb{K}(\mathbb{R} \ pt)$ induces a homotopy equivalence on xed points under all nite subgroups of *V* by 4.6 and therefore 0 is also a homotopy equivalence.

References

- [BFJR] A. Bartels, F. T. Farrell, L. E. Jones, and H. Reich. On the isomorphism conjecture in algebraic K {theory. to appear in *Topology*.
- [BHM93] M. Bökstedt, W. C. Hsiang, and I. Madsen. The cyclotomic trace and algebraic K {theory of spaces. *Invent. Math.*, 111(3):465{539, 1993.
- [Bre67] G. E. Bredon. *Equivariant cohomology theories*. Springer-Verlag, Berlin, 1967.
- [Car95] G. Carlsson. On the algebraic K { theory of in nite product categories. K { Theory, 9(4):305{322, 1995.
- [CP95] G. Carlsson and E. K. Pedersen. Controlled algebra and the Novikov conjectures for K { and L {theory. *Topology*, 34(3):731{758, 1995.
- [DL98] J. F. Davis and W. Lück. Spaces over a category and assembly maps in isomorphism conjectures in K{ and L{theory. K{*Theory*, 15(3):201{252, 1998.
- [FJ93] F. T. Farrell and L. E. Jones. Isomorphism conjectures in algebraic K {theory. J. Amer. Math. Soc., 6(2):249{297, 1993.
- [FJ95] F. T. Farrell and L. E. Jones. The lower algebraic *K* {theory of virtually in nite cyclic groups. *K* {*Theory*, 9(1):13{30, 1995.
- [FJ98] F. T. Farrell and L. E. Jones. Rigidity for aspherical manifolds with $_1$ *GL_m(R)*. *Asian J. Math.*, 2(2):215{262, 1998.
- [Lü02] W. Lück. Chern characters for proper equivariant homology theories and applications to K{ and L{theory. J. Reine Angew. Math., 543:193{234, 2002.
- [PW89] E. K. Pedersen and C. A. Weibel. K {theory homology of spaces. In Algebraic topology (Arcata, CA, 1986), pages 346{361. Springer, Berlin, 1989.

[Ros03] D. Rosenthal. Splitting with continuous control in algebraic K {theory. arXi v: math. AT/0309106

SFB 478, Westfälische Wilhelms-Universität 48149 Münster, Germany

Email: bartelsa@math.uni-muenster.de

Received: 17 Febuary 2003 Revised: 7 September 2003

Algebraic & Geometric Topology, Volume 3 (2003)