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On a Hopf operad containing the Poisson operad
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Abstract A new Hopf operad Ram is introduced, which contains both the
well-known Poisson operad and the Bessel operad introduced previously by
the author. Besides, a structure of cooperad R is introduced on a collection
of algebras given by generators and relations which have some similarity
with the Arnold relations for the cohomology of the type A hyperplane
arrangement. A map from the operad Ram to the dual operad of R is
de�ned which we conjecture to be a isomorphism.
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0 Introduction

The theory of operads has roots in algebraic topology. One well-known way
to build algebraic operads is to start from an operad of topological spaces
and apply the homology functor. A famous example, due to Cohen [4, 5], is
given by the little discs operad whose homology is the Gerstenhaber operad.
The operads de�ned in this way inherit more structure from the diagonal of
topological spaces: they are in fact Hopf operads. This phenomenon is similar to
the existence of a bialgebra structure on the homology of a topological monoid.

This article introduces two algebraic objects. The �rst one is a Hopf operad
called the Ramanujan operad and denoted by Ram, which contains both the
well-known Poisson operad and the Bessel operad introduced in [2]. The second
one is a Hopf cooperad R, which means that the space R(I) associated to a
�nite set I is an associative algebra and the cocomposition maps are morphisms
of algebras.

The operad Ram is conjectured to be isomorphic to the linear dual operad R�

of the cooperad R. A morphism of operad from Ram to R� is de�ned, which
should give the desired isomorphism.
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One motivation for these constructions is an analogy with the case of the Ger-
stenhaber operad. The dual algebras of the coalgebras underlying the Ger-
stenhaber operad can be presented by generators and relations, by a theorem
of Arnold on the cohomology of the complexi�ed hyperplane arrangements of
type A. From this, one can reach a simple description of the dual cooperad of
the Gerstenhaber operad. This alternative dual description of the Gerstenhaber
operad is sketched at the end of the paper.

There seems to be some kind of similar relation between the cooperad R and
some di�erential forms on the complexi�ed hyperplane arrangements of type
A. This relation was already proposed for the Bessel suboperad in [2]. The
algebras underlying R are given by generators and relations which have some
resemblance with the Arnold relations and seem to contain the relations satis�ed
by some simple di�erential forms.

After some preliminary material on operads in the �rst section, the Ramanujan
operad is de�ned in the second section by a distributive law between the com-
mutative operad and an operad mixing the Lie operad and the suspended Griess
operad. This name has been chosen because the dimensions are supposed to be
given by the so-called Ramanujan polynomials [3].

In the next section, the cooperad R is de�ned on a collection of algebras given
by generators and relations. The cocomposition is motivated by the analogy
with the case of the Gerstenhaber operad. Then a morphism from Ram to R�

is de�ned. Some algebras of di�erential forms are introduced, which should be
related to R. Last, a construction is sketched for the Gerstenhaber operad,
which motivated the formula for cocomposition in R.

1 Operads as functors

Because our language for operads di�ers in aspect from the most frequently
used setups, this section gathers conveniently some conventions and de�nitions.

An operad P is a functor from the category of �nite sets and bijections to some
monoidal category (sets or vector spaces for example) together with some extra
structure given by composition maps. Finite sets will be denoted by capital
letters I; J;K and so on. Elements of �nite sets will be denoted by letters
i; j; k and so on. In some sense, i,j ,k can be considered as abstract variables
when they are used to denote elements of an arbitrary �nite set. The symbols
? and # are used as place-holders for composition maps.

Algebraic & Geometric Topology, Volume 3 (2003)



On a Hopf Operad 1259

The composition map �? is de�ned for any two �nite sets I and J as a map
from P(I t f?g) ⊗ P(J) to P(I t J). These composition maps have to satisfy
some natural axioms. Other symbols such as # are used instead of ? when
iterated compositions appear.

A presentation by generators and relations of an operad is given as follows: some
generators labelled by their inputs, with some speci�c symmetry properties with
respect to the symmetric group on these inputs, and some relations involving
compositions of these generators. Consider for example the Lie operad. The
generators are Li;j on any set fi; jg, which stand for the Lie bracket. The
generator Li;j is antisymmetric under the exchange of i and j . The relations
are the Jacobi identities (see (1) below) on any set fi; j; kg, involving generators
on various subsets of cardinality two of fi; j; k; ?g.

2 The Ramanujan operad

In this section, a Hopf operad Ram is de�ned by a distributive law. This is
similar to the usual de�nition of the Gerstenhaber operad by a distributive law
between the commutative operad and the suspended Lie operad.

2.1 The LieGriess operad

The ground �eld is C. The ambient category is the monoidal category of (Z;Z)-
bigraded vector spaces endowed with two di�erentials of respective degree (1; 0)
and (−1; 0). The Koszul sign rules for the symmetry isomorphisms of the tensor
product apply only with respect to the �rst degree. The second degree does
not play any role with respect to signs in the formulas.

One can remark that the second degree coincide in the objects considered here
with the eigenvalue of the Laplacian associated to the pair of opposite di�eren-
tials.

In this section, an operad LieGriess is de�ned which contains the operads Lie
and � Griess de�ning Lie algebras and suspended commutative non-associative
algebras.

The operad LieGriess is generated by the Lie generator Li;j antisymmetric of
degree (0; 1) and the � Griess generator Ωi;j antisymmetric of degree (1; 1)
modulo the following relations.
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First, the Jacobi identity de�ning the Lie operad:X
cycl

Li;? �? Lj;k = 0; (1)

where the summation is over cyclic permutations of i; j; k .

Second, a mixed relation between the Lie generator and the � Griess generator:X
cycl

(Ωi;? �? Lj;k + Li;? �? Ωj;k) = 0: (2)

Note that the � Griess operad is free on its generator, so there is no relation
involving only Ω.

2.2 Distributive law

For the notion of distributive law between operads, see [8].

First recall the Com operad, which is generated by Ei;j symmetric of degree
(0; 0) modulo the relation of associativity:

Ei;? �? Ej;k = Ej;? �? Ek;i: (3)

Then consider the following relations:

Li;? �? Ej;k = Ej;? �? Li;k + Ek;? �? Li;j ; (4)
Ωi;? �? Ej;k = Ej;? �? Ωi;k + Ek;? �? Ωi;j: (5)

Proposition 1 The relations (4) and (5) de�ne a distributive law from
LieGriess �Com to Com �LieGriess . The resulting operad is called Ram.

Proof The relation (4), which is the Leibniz relation, is already known to
de�ne a distributive law from Lie �Com to Com �Lie. The resulting operad is
the Poisson operad.

The relation (5) is also known to be a distributive law from � Griess �Com to
Com �� Griess which de�nes the Bessel operad, see [2].

So there remains only one condition to check, which comes from relation (2).
One has to check that

(Ωi;? �? Lj;# + Ωj;? �? L#;i + Ω#;? �? Li;j+
Li;? �? Ωj;# + Lj;? �? Ω#;i + L#;? �? Ωi;j) �# Ek;‘; (6)

once rewritten using the distributive laws, reduces to zero modulo the relations.
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The result of rewriting is

Ωi;? �? (E‘;# �# Lj;k + Ek;# �# Lj;‘)− Ωj;? �? (E‘;# �# Li;k + Ek;# �# Li;‘)
+ Li;? �? (E‘;# �# Ωj;k + Ek;# �# Ωj;‘)− Lj;? �? (E‘;# �# Ωi;k + Ek;# �# Ωi;‘)
− (E‘;# �# Ω?;k +Ek;# �# Ω?;‘) �? Li;j − (E‘;# �# L?;k +Ek;# �# L?;‘) �? Ωi;j:

This becomes, after a second application of the distributive laws,

(E#;? �? Ωi;‘ + E‘;? �? Ωi;#) �# Lj;k + (E#;? �? Ωi;k + Ek;? �? Ωi;#) �# Lj;‘

− (E#;? �? Ωj;‘ + E‘;? �? Ωj;#) �# Li;k − (E#;? �? Ωj;k + Ek;? �? Ωj;#) �# Li;‘

+ (E#;? �? Li;‘ + E‘;? �? Li;#) �# Ωj;k + (E#;? �? Li;k + Ek;? �? Li;#) �# Ωj;‘

− (E#;? �? Lj;‘ + E‘;? �? Lj;#) �# Ωi;k − (E#;? �? Lj;k + Ek;? �? Lj;#) �# Ωi;‘

− E‘;# �# (Ω?;k �? Li;j + L?;k �? Ωi;j)− Ek;# �# (Ω?;‘ �? Li;j + L?;‘ �? Ωi;j):

Now all 8 terms starting with E#;? annihilates pairwise and one can separate in
what remains terms starting with E‘;# and with Ek;# . Each of these separate
sums is zero modulo relation (2).

The bigraded dimensions of the Ram operad are yet to be computed. As ex-
plained in the introduction, they should be given by the Ramanujan polynomials
[3], which are polynomials in fx; yg de�ned by

 1 = 1; (7)
 n+1 =  n + (x+ y)(n n + x@x n) n � 1: (8)

More precisely, the dimension of the homogeneous component of degree (i; j)
of Ram(f1; 2; : : : ; ng) should be the coe�cient of xiyj−i in  n .

This has been checked for sets with at most four elements. Besides, the parts of
the bigraded dimensions corresponding to the Poisson and Bessel suboperads
are correct, i.e. match the well-known dimensions of Poisson and the dimensions
of Bessel computed in [2].

2.3 Hopf structure

In this section, a coproduct is de�ned which is compatible with composition,
i.e. composition becomes a morphism of coalgebras.

The coproduct � is de�ned on generators by8><>:
�(Ei;j) = Ei;j ⊗ Ei;j;
�(Li;j) = Ei;j ⊗ Li;j + Li;j ⊗ Ei;j;
�(Ωi;j) = Ei;j ⊗ Ωi;j + Ωi;j ⊗ Ei;j :

(9)
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Proposition 2 The coproduct � endows Ram with a structure of Hopf op-
erad.

Proof One has to check the compatibility of � with all relations.

The cases of relations (1), (3) and (4) are well-know from the Hopf structure of
the Poisson operad.

The case of relation (5) is a consequence of the study of the Bessel operad in
[2].

So there remains only to check the compatibility of the relation (2). Its coprod-
uct isX

cycl

(Ei;? �? Ej;k)⊗ (Ωi;? �? Lj;k) + (Ei;? �? Lj;k)⊗ (Ωi;? �? Ej;k)

+ (Ωi;? �? Ej;k)⊗ (Ei;? �? Lj;k) + (Ωi;? �? Lj;k)⊗ (Ei;? �? Ej;k)
+ (Li;? �? Ωj;k)⊗ (Ei;? �? Ej;k) + (Li;? �? Ej;k)⊗ (Ei;? �? Ωj;k)

+ (Ei;? �? Ωj;k)⊗ (Li;? �? Ej;k) + (Ei;? �? Ej;k)⊗ (Li;? �? Ωj;k):

By relations (3) and (2), this becomesX
cycl

(Ei;? �? Lj;k)⊗ (Ωi;? �? Ej;k) + (Ωi;? �? Ej;k)⊗ (Ei;? �? Lj;k)

+ (Li;? �? Ej;k)⊗ (Ei;? �? Ωj;k) + (Ei;? �? Ωj;k)⊗ (Li;? �? Ej;k):

By the distributive laws (4) and (5), this equalsX
cycl

(Ei;? �? Lj;k)⊗ (Ej;? �? Ωi;k) + (Ei;? �? Lj;k)⊗ (Ek;? �? Ωi;j)

+ (Ej;? �? Ωi;k)⊗ (Ei;? �? Lj;k) + (Ek;? �? Ωi;j)⊗ (Ei;? �? Lj;k)
+ (Ej;? �? Li;k)⊗ (Ei;? �? Ωj;k) + (Ek;? �? Li;j)⊗ (Ei;? �? Ωj;k)

+ (Ei;? �? Ωj;k)⊗ (Ej;? �? Li;k) + (Ei;? �? Ωj;k)⊗ (Ek;? �? Li;j):

Consider separately the terms of the form (E � L)⊗ (E � Ω):X
cycl

(Ei;? �? Lj;k)⊗ (Ej;? �? Ωi;k) + (Ei;? �? Lj;k)⊗ (Ek;? �? Ωi;j)

+ (Ej;? �? Li;k)⊗ (Ei;? �? Ωj;k) + (Ek;? �? Li;j)⊗ (Ei;? �? Ωj;k):
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Shifting the cyclic sum givesX
cycl

(Ei;? �? Lj;k)⊗ (Ej;? �? Ωi;k) + (Ei;? �? Lj;k)⊗ (Ek;? �? Ωi;j)

+ (Ei;? �? Lk;j)⊗ (Ek;? �? Ωi;j) + (Ei;? �? Lj;k)⊗ (Ej;? �? Ωk;i);

which is zero. The same is true for terms of the form (E�Ω)⊗(E�L). Therefore
the coproduct of relation (2) is zero and the proposition is proved.

2.4 Two Di�erentials

Here are de�ned two di�erentials which are derivations for the composition and
coderivations for the coproduct.

The di�erentials D and D0 are de�ned on generators by8><>:
D0(Ei;j) = 0;
D0(Li;j) = Ωi;j;

D0(Ωi;j) = 0:

8><>:
D(Ei;j) = 0;
D(Ωi;j) = Li;j;

D(Li;j) = 0:

(10)

Proposition 3 The di�erentials D and D0 can be extended to derivations for
the composition.

Proof It is an easy exercise to check against all relations that the di�erentials
can be extended to derivations.

Proposition 4 The di�erentials D and D0 are coderivations for the coproduct
�.

Proof This follows immediately by checking on generators using relations (9)
and (10).

To summarize the results of this section, the Ram operad is a bigraded Hopf
operad endowed with two di�erentials, which are derivations and coderivations,
i.e. Ram is a Hopf operad in the chosen ambient category.
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3 The cooperad R

3.1 Abstract quotient algebras

Let I be a �nite set. Consider the unital commutative associative algebra R(I)
generated by elements ai;j antisymmetric of degree (0; 1) and bi;j antisymmetric
of degree (1; 1) for all pairs of distinct elements i; j of I modulo the relations

a2
i;j = 0; (11)

ai;jaj;k + aj;kak;i + ak;iai;j = 0; (12)
bi;jaj;k + bj;kak;i + bk;iai;j + ai;jbj;k + aj;kbk;i + ak;ibi;j = 0; (13)

the relations

ai0;i1bi1;i2bi2;i3 : : : bin;i0 = 0; (14)
bi0;i1bi1;i2bi2;i3 : : : bin;i0 = 0; (15)

for n � 1 where i0; i1; i2; : : : ; in are pairwise di�erent elements of I , and the
12-terms relations

babi;j;k;‘ + babi;k;j;‘ + babi;j;‘;k + babi;‘;j;k + babi;k;‘;j + babi;‘;k;j

+ babj;i;k;‘ + babj;k;i;‘ + babj;i;‘;k + babj;‘;i;k + babk;i;j;‘ + babk;j;i;‘ = 0; (16)

bbbi;j;k;‘ + bbbi;k;j;‘ + bbbi;j;‘;k + bbbi;‘;j;k + bbbi;k;‘;j + bbbi;‘;k;j

+ bbbj;i;k;‘ + bbbj;k;i;‘ + bbbj;i;‘;k + bbbj;‘;i;k + bbbk;i;j;‘ + bbbk;j;i;‘ = 0; (17)

where babi;j;k;‘ = bi;jaj;kbk;‘ and bbbi;j;k;‘ = bi;jbj;kbk;‘ for short.

Remark that the 12 terms in relations (16) and (17) correspond to permutations
up to reversal.

Note that the subalgebra of elements of �rst degree 0 (i.e. generated by the
elements ai;j ) has already appeared in the work of Mathieu on the symplectic
and Poisson operads [9] (see also [6, x4.3] and [10]).

Lemma 1 One has

i0;i1 i1;i2 i2;i3 : : : in;i0 = 0; (18)

for n � 1 where i0; i1; i2; : : : ; in are pairwise di�erent elements of I and the
empty boxes are �lled by a and b in an arbitrary way.
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Proof If there is no a at all, equation (18) is just equation (15). If there is
exactly one a, then one can use commutativity to assume without further re-
strictions that this a is the leftmost letter, which gives equation (14). Therefore
one can assume from now on that there are at least two a.

The proof is by recursion on the length n of the cycle. If n = 1, then the
statement is true by relation (11). Assume that n � 2 and the statement is
true for all integers less than n.

The proof is now by another recursion on the shortest chain of b between two
a.

Assume �rst that there are two adjacent a in the cycle, say ai0;i1ai1;i2 . Then one
can use relation (12) to replace ai0;i1ai1;i2 by a sum of two terms in the product.
Each of the two products obtained contains a shorter cycle and therefore vanish.

Assume that there are no adjacent a in the cycle. Consider the shortest chain
of b between two a. One can assume without restriction that one of these
a and one b in the shortest chain are ai0;i1bi1;i2 . By using relation (13), one
can replace ai0;i1bi1;i2 by a sum of �ve terms in the product. Among the �ve
products obtained, four have a shorter cycle and one has a shorter chain of b
between two a. Therefore all these products vanish by recursion.

The recursion on the chain is done. The recursion on n is done.

Lemma 2 The algebras R(I) are �nite-dimensional. The second grading takes
values between 0 and the cardinality of I minus one.

Proof One can map each monomial to a graph on the set I with edges col-
ored by a and b. If this graph has multiple edges, the monomial vanishes by
relation (11) and relations (14) and (15) for n = 1. If this graph has a loop,
the corresponding monomial vanishes by Lemma 1. Therefore only monomials
corresponding to forests of simple trees can be non-zero in R(I). In such a
forest, the number of edges is at most one less than the cardinality of I . As
the generators have second degree 1, the maximal second degree of a non-zero
monomial is therefore bounded by the cardinality of I minus one.

Lemma 3 One has X
�

(aab)� = 0; (19)

where � runs over the set of permutations of fi; j; k; ‘g and

(aab)� = a�(i);�(j)a�(j);�(k)b�(k);�(‘):
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One has X
(i0;i00)

T i
00
i0 = 0; (20)

where T ji = bi;jai;kai;‘

and the sum is over pairs of distinct elements of fi; j; k; ‘g.

Proof Let us call � the �rst sum and T the second sum.

Both statements are proved simultaneously. Consider the simplex with vertex
set fi; j; k; ‘g. To a facet f , one can associate a relation r(f) of type (13) and
a relation s(f) of type (12). To an edge e, one can associate an element a(e)
and an element b(e).

By summing (with appropriate signs) r(f)a(e) over the set of pairs (f; e) where
f is a facet and e an edge such that e 6� f , one gets that � + 2T vanishes.

By summing (with appropriate signs) s(f)b(e) over the set of pairs (f; e) where
f is a facet and e an edge such that e 6� f , one gets that � + T vanishes.

Lemma 4 One has X
�

(abb)� = 0; (21)

where � runs over the set of permutations of fi; j; k; ‘g and

(abb)� = a�(i);�(j)b�(j);�(k)b�(k);�(‘):

Proof Consider the simplex with vertex set fi; j; k; ‘g. To a facet f , one can
associate a relation r(f) of type (13). To an edge e, one can associate an
element b(e).

By summing (with appropriate signs) r(f)b(e) over the set of pairs (f; e) where
f is a facet and e an edge such that e 6� f , one gets that the sum (21)
vanishes.

One can de�ne two di�erentials d and d0 on generators by(
d(ai;j) = bi;j;

d(bi;j) = 0:

(
d0(bi;j) = ai;j;

d0(ai;j) = 0:
(22)
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Proposition 5 The di�erentials d and d0 can be extended to derivations of
the algebra R(I).

Proof The check is quite easy for the di�erential d. For d0 , the only non-trivial
cases are relations (14), (16) and (17).

The case of relation (14) is settled by Lemma 1.

The image by d0 of relation (16) is exactly the sum (19) which vanishes by
Lemma 3.

The image by d0 of relation (17) is the sum of relation (16) and relation (21)
and therefore vanishes by Lemma 4.

3.2 Cocomposition maps

Let I and J be two �nite sets. Motivated by the similar cocomposition (40) for
the dual of the Gerstenhaber operad, one de�nes the cocomposition map �?

I;J

from I t J to (I t f?g; J) on generators by

�?
I;J(ai;j) =

8><>:
ai;j ⊗ 1 if i; j 2 I;
1⊗ ai;j if i; j 2 J;
ai;? ⊗ 1 if i 2 I and j 2 J

(23)

and

�?
I;J(bi;j) =

8><>:
bi;j ⊗ 1 if i; j 2 I;
1⊗ bi;j if i; j 2 J;
bi;? ⊗ 1 if i 2 I and j 2 J:

(24)

Proposition 6 This de�nes morphisms �?
I;J of bidi�erential algebras from

R(I t J) to R(I t f?g) ⊗ R(J).

Proof First one has to check against all relations that �?
I;J can be extended

to a morphism of algebras. By the very simple shape of cocomposition, the
compatibility is clear if all indices involved are in J or if all but maybe one are
in I .

So one can assume that there is at least one index in I and at least two indices
in J . Again compatibility is easy to check for all relations involving at most
three indices. The only non-trivial cases are the relations (14) and (15) and the
12-terms relations (16) and (17).
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Consider �rst the case of relations (14) and (15). More generally, consider any
cycle i0;i1 i1;i2 : : : in;i0 , where boxes are either a or b.

As there is at least one index of the cycle in I and at least two in J , one can
assume without restriction that i0 2 J , i1; : : : ; ik 2 I and ik+1 2 J for some
k � 1. Then the left tensor in the image by �?

I;J of the cycle contains the
cycle ?;i1 i1;i2 : : : ik;? for some a and b in the boxes, and therefore vanishes
by Lemma 1.

Now consider for example the case of (16) with i; j 2 I and k; ‘ 2 J . Its
cocomposition is given by

(bi;j ⊗ 1)(aj;? ⊗ 1)(1 ⊗ bk;‘) + (bi;? ⊗ 1)(a?;j ⊗ 1)(bj;? ⊗ 1)
+ (bi;j ⊗ 1)(aj;? ⊗ 1)(1 ⊗ b‘;k) + (bi;? ⊗ 1)(a?;j ⊗ 1)(bj;? ⊗ 1)
+ (bi;? ⊗ 1)(1 ⊗ ak;‘)(b?;j ⊗ 1) + (bi;? ⊗ 1)(1 ⊗ a‘;k)(b?;j ⊗ 1)
+ (bj;i ⊗ 1)(ai;? ⊗ 1)(1 ⊗ bk;‘) + (bj;? ⊗ 1)(a?;i ⊗ 1)(bi;? ⊗ 1)
+ (bj;i ⊗ 1)(ai;? ⊗ 1)(1 ⊗ b‘;k) + (bj;? ⊗ 1)(a?;i ⊗ 1)(bi;? ⊗ 1)

+ (b?;i ⊗ 1)(ai;j ⊗ 1)(bj;? ⊗ 1) + (b?;j ⊗ 1)(aj;i ⊗ 1)(bi;? ⊗ 1): (25)

This is equal to

(bi;jaj;?)⊗ bk;‘ + (bi;?a?;jbj;?)⊗ 1 + (bi;jaj;?)⊗ b‘;k + (bi;?a?;jbj;?)⊗ 1
+ (bi;?b?;j)⊗ ak;‘ + (bi;?b?;j)⊗ a‘;k + (bj;iai;?)⊗ bk;‘ + (bj;?a?;ibi;?)⊗ 1

+ (bj;iai;?)⊗ b‘;k + (bj;?a?;ibi;?)⊗ 1 + (b?;iai;jbj;?)⊗ 1 + (b?;jaj;ibi;?)⊗ 1: (26)

Using antisymmetry and some relations, this is seen to be zero. The proof in
the remaining cases for (16) and (17) is similar and left to the reader.

This map clearly respects both di�erentials, as can be checked on generators.

Proposition 7 The applications � de�ne a cooperad structure on R.

Proof One has to check on the generators of R(I t J tK) that

(�?
I;Jtf#g ⊗ IdK) ��#

ItJ;K = (IdItf?g ⊗�#
J;K) ��?

I;JtK (27)

and that

(�?
Itf#g;J ⊗ IdK) ��#

ItJ;K = (IdI ⊗ �) � (�#
Itf?g;K ⊗ IdJ) ��?

ItK;J ; (28)

where � is the symmetry isomorphism for R(J)⊗ R(K).
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The proof is case by case according to the indices of the generator. Consider
for example equation (27) and a generator ai;j in R(I t J tK) with i 2 I and
j 2 K . One has on the one hand

(�?
I;Jtf#g ⊗ IdK) ��#

ItJ;K(ai;j) = (�?
I;Jtf#g ⊗ IdK)(ai;# ⊗ 1) = ai;? ⊗ 1⊗ 1:

On the other hand,

(IdItf?g ⊗�#
J;K) ��?

I;JtK(ai;j) = (IdItf?g ⊗�#
J;K)(ai;? ⊗ 1) = ai;? ⊗ 1⊗ 1:

The remaining cases are similar and left to the reader.

3.3 Morphism of operads

Here is de�ned a morphism � from the operad Ram to the dual operad R� of
the cooperad R.

Consider the dual vector space R�(I) of R(I). This vector space is bigraded.
De�ne elements 1� , b�i;j , a

�
i;j in R�(I) as the dual basis (with respect to the

pairing R(I)⊗R�(I)! C) for the components of degree (0; 0), (0; 1) and (1; 1)
respectively.

The map � is de�ned on the generators of Ram by8><>:
Ei;j 7! 1�;
Ωi;j 7! b�i;j;

Li;j 7! a�i;j:

(29)

Proposition 8 This de�nes a map � of Hopf operads from Ram to R� . The
map � intertwines d with D� and d0 with (D0)� .

Proof First, one has to check that this indeed de�nes a morphism of operads,
i.e. the compatibility with relations de�ning Ram.

For example, let us check the compatibility for relation (2). By the bigrading,
it is su�cient to prove that the corresponding linear form vanishes on the dual
bihomogeneous component. First compute the following cocompositions:

�?
fig;fj;kg(ai;jbj;k) = ai;? ⊗ bj;k; (30)

�?
fig;fj;kg(aj;kbk;i) = b?;i ⊗ aj;k; (31)

�?
fig;fj;kg(ak;ibi;j) = 0; (32)

�?
fig;fj;kg(bi;jaj;k) = bi;? ⊗ aj;k; (33)

�?
fig;fj;kg(bj;kak;i) = a?;i ⊗ bj;k; (34)

�?
fig;fj;kg(bk;iai;j) = 0: (35)
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From this, one can deduce a description of the linear forms a�i;? �? b�j;k and
b�i;? �? a�j;k by their values on a basis of the homogeneous component of degree
(1; 2) of R(fi; j; kg).

Now the sum (2) is mapped by � toX
cycl

(
b�i;? �? a�j;k + a�i;? �? b�j;k

�
: (36)

One then checks that this sum vanishes as a linear form.

The proof of compatibility for the other relations is similar.

The intertwining property for di�erentials is clear on the generators Ram(fi; jg)
of Ram. It is also easy to prove that this map is a morphism of coalgebras by
checking on generators of Ram.

That the map � is an isomorphism has been checked for sets with at most three
elements. Furthermore the bigraded dimensions of Ram and R� coincide for
sets with at most four elements. One can therefore ask the following

Question Is � an isomorphism ?

Remark that it follows from the fact that � is a morphism of Hopf operads
that, by transposition, the relations of the algebras underlying R are satis�ed
in the dual algebras of the coalgebras underlying Ram.

3.4 Algebras of di�erential forms

Here, a tentative relation of R with di�erential forms on hyperplane arrange-
ments is proposed.

Let I be a �nite set and CI be the vector space with coordinates (xi)i2I . Let
HI be the union of all hyperplanes xi − xj = 0 for i 6= j in the subspaceP

i2I xi = 0 of CI (this is a type A hyperplane arrangement). Consider the
subalgebra of the algebra of di�erential forms with poles along HI generated
over C by elements ai;j = 1=(xi − xj) and bi;j = d(1=(xi − xj)) for i 6= j (here
d is the de Rham di�erential).

The elements ai;j and bi;j are antisymmetric. There are two natural gradings
on this algebra: the �rst one is by the degree as a di�erential form, the second
one is the homogeneity degree where all variables xi are taken homogeneous of
degree minus one.
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One has the following relations:

ai;jaj;k + aj;kak;i + ak;iai;j = 0;
bi;jaj;k + bj;kak;i + bk;iai;j + ai;jbj;k + aj;kbk;i + ak;ibi;j = 0;

and
bi0;i1bi1;i2bi2;i3 : : : bin;i0 = 0;

for n � 1 where i0; i1; i2; : : : ; in are pairwise di�erent elements of I .

It is plausible that the abstract algebras R(I) introduced before are quotients
of these concrete algebras of di�erential forms. The main problem is to �nd
some geometric reason for the relations of R(I).

3.5 On the Gerstenhaber operad

This section is mainly for motivation and details are therefore omitted.

Recall the topological little discs operad D2 , where D2(I) is the space of disjoint
embeddings of scaled unit discs, bijectively labeled by I , inside a unit disc.
The composition inside a little disc is obtained by replacing this little disc by
a collection of little discs appropriately scaled, see [11] for further details.

The algebra OD2(I) de�ned by

C[xi][(xi − xj)−1][[�i]][�−1
i ] (37)

is an algebraic analog of the algebra of functions on the space D2(I), where the
x variables are the pairwise-di�erent complex coordinates of the centers and
the � variables are the in�nitesimal non-vanishing real radiuses. Assuming that
radiuses are in�nitesimal ensures disjointness of discs. One can easily translate
the composition rule of the topological little discs operad into a cocomposition
rule de�ning a cooperad on the collection of the algebras OD2(I) for all �nite
sets I .

Now the Gerstenhaber operad can be de�ned as the homology of the little discs
operad [7, 4, 5]. As the space D2(I) is homotopy equivalent to the complement
of a complexi�ed hyperplane arrangement of type A, a theorem of Arnold [1]
implies that its cohomology is generated by the classes of the di�erential forms

!i;j = d(log(xi − xj)); (38)

subject only to the relations

!ij!jk + !jk!ki + !ki!ij = 0: (39)
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One can extend the algebraic cocomposition rules for the collection of algebras
OD2(I) obtained before to cocomposition rules for the collection of algebras of
di�erential forms of OD2(I) with respect to the x variables. It is then possible
to restrict these rules to the collection of subalgebras generated by the forms
!i;j . The result is as follows for the cocomposition map �?

I;J from I t J to
(I t f?g; J):

�?
I;J(!i;j) =

8><>:
!i;j ⊗ 1 if i; j 2 I;
1⊗ !i;j if i; j 2 J;
!i;? ⊗ 1 if i 2 I and j 2 J:

(40)

Together with the Arnold relations (39), this provides an algebraic description
of the dual cooperad of the Gerstenhaber operad.
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