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Abstract We show that a large class of formal groups can be realised
functorially by even periodic ring spectra. The main advance is in the
construction of morphisms, not of objects.
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1 Introduction

Let FG be the category of formal groups (of the sort usually considered in
algebraic topology) over a�ne schemes. Thus, an object of FG consists of a
pair (G;S), where S is an a�ne scheme, G is a formal group scheme over S ,
and a coordinate x can be chosen such that OG ’ OS [[x]] as OS -algebras. A
morphism from (G0; S0) to (G1; S1) is a commutative square

G0
~p

//

��

G1

��

S0 p
// S1

such that the induced map G0 −! p�G1 is an isomorphism of formal group
schemes over S0 .

Next, recall that an even periodic ring spectrum is a commutative and asso-
ciative ring spectrum E such that E1 = 0 and E2 contains a unit (which
implies that E ’ �2E as spectra). Here we are using the usual notation
Ek = Ek(point) = �−kE . We write EPR for the category of even periodic ring
spectra. (Everything here is interpreted in Boardman’s homotopy category of
spectra; there are no E1 or A1 structures.)

Given an even periodic ring spectrum E , we can form the scheme SE :=
spec(E0) and the formal group scheme GE = spf(E0CP1) over SE . This
construction gives rise to a functor Γ: EPRop −! FG.
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188 N.P. Strickland

It is a natural problem to try to de�ne a realisation functor R : FG −! EPRop

with ΓR(G;S) ’ (G;S), or at least to do this for suitable subcategories of FG.
For example, if we let LFG denote the category of Landweber exact formal
groups, and put LEPR = fE 2 EPR j Γ(E) 2 LFGg, one can show that
the functor Γ: LEPRop −! LFG is an equivalence; this is essentially due to
Landweber, but details of this formulation are given in [5, Proposition 8.43].
Inverting this gives a realisation functor for LFG, and many well-known spectra
are constructed using this. In particular, this gives various di�erent versions of
elliptic cohomology, based on various universal families of elliptic curves over
rings such as Z[1

6 ; c4; c6][�−1].

It is hard to say more than this unless we invert the prime 2. We therefore
make a blanket assumption:

Assumption 1.1 From now on, all rings are assumed to be Z[1
2 ]-algebras. In

particular, we only consider schemes S for which 2 is invertible in OS . We use
the symbol MU for the spectrum that would normally be called MU [1

2 ].

The other main technique for constructing realisations is the modernised version
of Baas-Sullivan theory [2, 4]. This starts with a strictly commutative ring
spectrum R, and an algebra A� over ��R, and it constructs a homotopically
commutative R-algebra spectrum A with ��A = A� , provided that A� has
good structural properties. Firstly, we assume as always that 2 is invertible in
A� . Given this, the construction will work if A� is a localised regular quotient
(LRQ) of R� , in other words it has the form A� = (S−1��R)=I , where S is
a multiplicative set and I is an ideal generated by a regular sequence. The
construction can also be extended to cover the case where A� is a free module
over an LRQ of ��R.

We can apply this taking R to be the periodic bordism spectrum

MP =
_
n2Z

�2nMU [1
2 ]

(we will verify in the appendix that this can be constructed as a strictly commu-
tative ring). Given a formal group (G;S) we can choose a coordinate x, which
gives a formal group law F de�ned over OS , and thus a ring map �0MP −! OS ,
making OS into a �0MP -algebra. If this algebra has the right properties, then
we can use the Baas-Sullivan approach to construct E with Γ(E) ’ (G;S). It
is convenient to make the following ad hoc de�nition:

De�nition 1.2 A ring R is standard if 2 is invertible in R and R is either a
�eld or a ring of the form T−1Z (for some set T of primes).
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Realising formal groups 189

An easy argument given below shows that the above method can construct
realizations for all formal groups over standard rings. Unfortunately, this con-
struction is not obviously functorial: it depends on a choice of coordinate, and
morphisms of formal groups do not generally preserve coordinates. The main
result of this paper is to show that with suitable hypotheses we can nonetheless
de�ne a functor.

The basic point is to consider the situation where we have several di�erent
coordinates, say x0; : : : ; xr on a �xed formal group G. In a well-known way,
this makes OS into an algebra over the ring �0(MP (r+1)), and we can ask
whether this can be realized topologically by an MP (r+1) -algebra; the question
will be made more precise in Section 3. We say that G is very good if the
question has an a�rmative answer for all r � 0 and all x0; : : : ; xr .

Theorem 1.3 All formal groups over standard rings are very good.

This will be proved as Corollary 3.15.

For our sharpest results, we need a slightly more complicated notion. We say
that a coordinate x0 is multirealisable if for any list x1; : : : ; xr of additional
coordinates, the question mentioned above has an a�rmative answer. We say
that G is good if it admits a multirealisable coordinate. Of course, G is very
good i� every coordinate is multirealisable. We write GFG for the category of
good formal groups (considered as a full subcategory of FG). The details are
given in De�nition 3.12.

Theorem 1.4 Let x be a coordinate on a formal group (G;S), and suppose
that the classifying map �0MP −! OS makes OS into a localised regular quo-
tient of �0MP . Then x is multirealisable, and so G is good.

This will be proved as Proposition 3.14.

Corollary 1.5 At odd primes, the formal groups associated to 2-periodic
versions of BP , P (n), B(n), E(n), K(n), k(n) and so on are all good.

This shows that there is a considerable overlap with the Landweber exact case.
However, there are many good formal groups that are not Landweber exact.
Conversely, there is no reason to expect that Landweber exact formal groups
will be good, although we have no counterexamples.

Our main result is as follows:
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190 N.P. Strickland

Theorem 1.6 There is a realisation functor R : GFG −! EPR, with ΓR ’
1: GFG −! GFG .

Note that good formal groups are realisable by de�nition; the content of the
theorem is that the realisation is well-de�ned and functorial.

We next explain the formal part of the construction; in Section 4 we will give
additional details and prove that we have the required properties. The functor
R actually arises as UV −1 for a pair of functors GFG V − E U−! EPR in which V
is an equivalence. To explain E , recall that we have a topological category Mod0

of MP -modules. We write DMod0 for the derived category, and EPA0 for the
category of even periodic commutative ring objects in DMod0 . The unit map
� : S −!MP gives a functor �� : EPA0 −! EPR, and the objects of the category
E are the objects E 2 EPA0 for which the associated coordinate on Γ(��E) is
multirealisable. The morphism set E(E0; E1) is a subset of EPR(��E0; �

�E1),
the functor V : E −! GFG is given by Γ, and the functor U : E −! EPR is
given by �� . We say that a map f : ��E0 −! ��E1 in EPR is good if there is
a commutative ring object A in the derived category of MP ^MP -modules
together with maps f 0 : E0 −! (1^ �)�A and f 00 : (�^ 1)�A −! E1 in EPA0 such
that f 00 is an equivalence and f is equal to the composite

��E0
��f 0−−−! (� ^ �)�A

��f 00−−−! ��E1:

The morphisms in the category E are just the good maps. To prove Theo-
rem 1.6, we need to show that

(3) The composite of two good maps is good, so E really is a category.

(2) For any map Γ(��E0) −! Γ(��E1) of good formal groups, there is a unique
good map ��E0 −! ��E1 inducing it, so that V is full and faithful.

(1) For any good formal group (G;S) there is an object E 2 EPA0 such that
Γ(��E) ’ (G;S), so V is essentially surjective.

To prove statement (k), we need to construct modules over the k -fold smash
power of MP . It will be most e�cient to do this for all k simultaneously.

2 Preliminaries

2.1 Di�erential forms

Let (G;S) be a formal group, and let I � OG be the augmentation ideal.
Recall that the cotangent space of G at zero is the module !G = I=I2 . If x
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Realising formal groups 191

is a coordinate on G that vanishes at zero, then we write dx for the image of
x in I=I2 , and note that !G is freely generated over OS by dx. We de�ne a
graded ring D(G;S)� by

D(G;S)k =

(
0 if k is odd
!
⊗(−k=2)
G if k is even.

Here the tensor products are taken over OS , and !⊗nG means the dual of !⊗jnjG

when n < 0. Where convenient, we will convert to homological gradings by the
usual rule: D(G;S)k = D(G;S)−k .

Now let E be an even periodic ring spectrum with Γ(E) = (G;S). We then
have OG = E0CP1 and I = eE0CP1 and one checks easily that the inclusion
S2 = CP 1 −! CP1 gives an isomorphism !G = I=I2 = eE0S2 = E−2 . Us-
ing the periodicity of E , we see that this extends to a canonical isomorphism
D(Γ(E))� ’ E� .

It also follows from this analysis (or from more direct arguments) that a map
f : E0 −! E1 in EPR is a weak equivalence if and only if �0f is an isomorphism.

2.2 Periodic bordism

Consider the homology theory MP�(X) = MU�(X) ⊗ Z[u; u−1], where u has
homological degree 2 (and thus cohomological degree −2). This is represented
by the spectrum MP =

W
n2Z �2nMU , with an evident ring structure. It is

well-known that MU is an E1 ring spectrum; see for example [3, Section IX].
It is also shown there that MU is an H2

1 ring spectrum, which means (as
explained in [3, Remark VII.2.9]) that MP is an H1 ring spectrum; this is
weaker than E1 in theory, but usually equivalent in practise. As one would
expect, MP is actually an E1 ring spectrum; a proof is given in the appendix.
It follows from [2, Proposition II.4.3] that one can construct a model for MP
that is a strictly commutative ring spectrum (or \commutative S -algebra").
We may also assume that it is a co�brant object in the category of all strictly
commutative ring spectra.

For typographical convenience, we write MP (r) for the (r + 1)-fold smash
power MP ^ : : :^MP , which is again a strictly commutative ring. The spectra
MP (r) �t together into a cosimplicial object in the usual way; for example, we
have three maps

� ^ 1 ^ 1; 1 ^ � ^ 1; 1 ^ 1 ^ � : MP (0) −!MP (2):
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192 N.P. Strickland

In the category of strictly commutative ring spectra, the coproduct is the smash
product. It follows formally that the smash product of co�brant objects is
co�brant, so in particular the objects MP (r) are all co�brant.

For r > 0, it is well-known that ��MU (r+1) is a polynomial algebra over
��MU on countably many generators, and it follows that there is a noncanonical
isomorphism

�0MP (r) ’ �0MP [x1; x2; : : :][x−1
1 ; : : : ; x−1

r ]:

There are r + 1 obvious inclusions MP −! MP (r). We can use these to push
forward the standard generator of MP 0CP1 , giving r+1 di�erent coordinates
on the formal group Γ(MP (r)). We denote these by ex0; : : : ; exr .

2.3 Groups and laws

We now de�ne a category FGr as follows. The objects are systems

(G;S; x0; : : : ; xr);

where (G;S) is a formal group and the xi are coordinates on G. The morphisms
from (G;S; x0; : : : ; xr) to (H;T; y0; : : : ; yr) are the maps (~p; p) : (G;S) −! (H;T )
in FG for which ~p�yi = xi for all i. Note that given p, the map ~p is determined
by the fact that ~p�y0 = x0 . Thus, the forgetful functor (G;S; x0; : : : ; xr) 7! S
(from FGr to the category of a�ne schemes) is faithful.

We also write Algr for the category of commutative algebras over the ring
�0MP (r).

Proposition 2.1 There is an equivalence FGr ’ Algop
r .

Proof Recall that we have coordinates ex0; : : : ; exr on Γ(MP (r)). Given an
object A 2 Algr we have a structure map spec(A) −! spec(�0MP (r)), and we
can pull back Γ(MP (r)) to get a formal group GA over spec(A). We can also
pull back the coordinates exi to make GA an object of FGr . It is easy to see
that this construction de�nes a functor U : Algop

r −! FGr . By forgetting down
to the category of a�ne schemes, we see that U is faithful.

We now claim that U is an equivalence. We will deduce this from a well-known
result of Quillen by a sequence of translations. First, Quillen tells us that maps
��MU (r+1) −! B� of graded rings biject naturally with systems

F0
f0 − F1

f1 − � � � fr−1 −−− Fr;
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Realising formal groups 193

where each Fi is a homogeneous formal group law over B� and each fi is a
strict isomorphism. By a standard translation to the even periodic case, we see
that maps �0MP (r) −! A of ungraded rings biject naturally with systems

F0
f0 − F1

f1 − � � � fr−1 −−− Fr;
where each Fi is a formal group law over A and each fi is a (not necessarily
strict) isomorphism.

Now suppose we have an object (G;S; x0; : : : ; xr) in FGr . For each i there is
a unique formal group law Fi over OS such that xi(a + b) = Fi(xi(a); xi(b))
for sections a; b of G. Moreover, as xi+1 is another coordinate, we can write
xi = fi(xi+1) for a unique power series fi 2 OS [[t]]. It is easy to check that
fi is an isomorphism from Fi+1 to Fi , so Quillen’s theorem gives us a map
�0MP (r) −! OS , allowing us to regard OS as an object of Algr . It is easy
to see that this construction gives a functor FGr −! Algop

r . We leave it to the
reader to check that this is inverse to U .

2.4 Module categories

We write Modr for the category of MP (r)-modules (in the strict sense, not
the homotopical one). Note that a map f : A0 −! A1 of strictly commutative
ring spectra gives a functor f� : ModA1 −! ModA0 , which is just the identity on
the underlying spectra (and thus preserves weak equivalences). It follows easily

that for any two maps A0
f−! A1

g−! A2 , the functor f�g� is actually equal (not
just naturally isomorphic or naturally homotopy equivalent) to (gf)� . Thus,
the categories Modr �t together to give a simplicial category Mod� .

Remark 2.2 For us, a simplicial category means a simplicial object in the
category of categories. Elsewhere in the literature, the same phrase is sometimes
used to refer to categories enriched over the category of simplicial sets, which
is a rather di�erent notion.

Next, we write DModr the derived category of Modr , as in [2, Chapter III]. As
usual, there are two di�erent models for a category such as DModr :

(a) One can take the objects to be the co�brant objects in Modr , and mor-
phisms to be homotopy classes of maps; or

(b) One can use all objects in Modr and take morphisms to be equivalence
classes of \formal fractions", in which one is allowed to invert weak equiv-
alences.
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We will use model (b). This preserves the strong functorality mentioned previ-
ously, and ensures that DMod� is again a simplicial category.

We also write EPAr for the category of even periodic commutative ring objects
in DModr , giving another simplicial category. (Note that periodicity is actu-
ally automatic, because MP (r) is itself periodic.) Various fragments of the
simplicial structure will be used in Section 4.

3 Basic realisation results

Let R be a strictly commutative ring spectrum that is even and periodic, such
that R0 is an integral domain (and as always, 2 is invertible). The main
examples will be R = MP (r) for r � 0. Let D be the derived category of
R-modules, and let R be the category of commutative ring objects A 2 D
such that �1A = 0. Recall that if f is a morphism in R such that �0f is an
isomorphism, then ��f is also an isomorphism and so f is an equivalence.

We also write R0 for the category of commutative algebras over �0R. We say
that an object A 2 R is strong if for all B 2 R, the map

�0 : R(A;B) −! R0(�0A;�0B)

is a bijection. A realisation of an object A0 2 R0 is a pair (A;u), where
A 2 R and u : �0A −! A0 is an isomorphism. We say that (A;u) is a strong
realisation i� the object A is strong; if so, we have a natural isomorphism
R(A;B) ’ R0(A0; �0B). We say that A0 is strongly realisable if it admits a
strong realisation. If so, it is easy to check that all realisations are strong, and
any two realisations are linked by a unique isomorphism.

The results of [4] provide a good supply of strongly realisable algebras, except
that we need a little translation between the even periodic framework and the
usual graded framework. Suppose that A0 2 R0 , and put T = spec(A0). We
have a unit map � : �0R −! A0 and thus a map spec(�) : T −! SR ; we can pull
back the formal group GR along this to get a formal group H := spec(�)�GR
over T . From this we get a map �� : R� = D(GR; SR)� −! D(H;T )� , which
agrees with � in degree zero. Indeed, if we choose a generator u of R2 over
R0 , then �� is just the map R0[u; u−1] −! A0[u; u−1] obtained in the obvious
way from � . It is easy to check that A0 is strongly realisable (as de�ned in
the previous paragraph) i� D(H;T )� is strongly realisable over R� (as de�ned
in [4]).
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De�nition 3.1 A short ordinal is an ordinal � of the form n:! + m for
some n;m 2 N. A regular sequence in a ring R0 is a system of elements
(x�)�<� for some short ordinal � such that x� is not a zero-divisor in the
ring (S−1R0)=(x� j � < �). An object A0 2 R0 is a localised regular quotient
(or LRQ) of R0 if A0 = (S−1R0)=I for some subset S � R0 and some ideal
I � S−1R0 that can be generated by a regular sequence.

Remark 3.2 We have made a small extension of the usual notion of a regular
sequence, to ensure that any LRQ of an LRQ of R0 is itself an LRQ of R0 ; see
Lemma 3.8.

Proposition 3.3 If A0 is an LRQ of R0 , then it is strongly realisable.

Proof This is essentially [4, Theorem 2.6], translated into a periodic setting
as explained above. Here we are using a slightly more general notion of a
regular sequence, but all the arguments can be adapted in a straightforward
way. The main point is that any countable limit ordinal has a co�nal sequence,
so homotopy colimits can be constructed using telescopes in the usual way.
Andrey Lazarev has pointed out a lacuna in [4]: it is necessary to assume
that the elements x� are all regular in S−1R0 itself, which is not generally
automatic. However, we are assuming that R0 is an integral domain so this
issue does not arise.

Proposition 3.4 Suppose that

� A and B are strong realisations of A0 and B0

� The natural map A0 ⊗R0 B0 −! (A ^R B)0 is an isomorphism.

Then A ^R B is a strong realisation of A0 ⊗R0 B0 .

Proof This follows from [4, Corollary 4.5].

Proposition 3.5 If A0 2 R0 is strongly realisable, and B0 is an algebra over
A0 that is free as a module over A0 , then B0 is also strongly realisable.

Proof This follows from [4, Proposition 4.13].

Proposition 3.6 Suppose that R0 is a polynomial ring in countably many
variables over Z[1

2 ], that A0 2 R0 , and that A0 = Z[1=2n] as a ring (for some
n). Then A0 is an LRQ of R0 , and thus is strongly realisable.
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Proof Choose a system of polynomial generators fxk j k � 0g for R0 over
Z[1

2 ]. Put ak = �(xk) 2 A0 = Z[1=n] and yk = xk − ak 2 R0[1=n]. It is
clear that R0[1=2n] = Z[1=2n][yk j k � 0], that the elements yk form a regular
sequence generating an ideal I say, and that A0 = R0[1=2n]=I .

Proposition 3.7 Suppose that R0 is a polynomial ring in countably many
variables over Z[1

2 ], that A0 2 R0 , and that A0 is a �eld (necessarily of char-
acteristic di�erent from 2). Then A0 is a free module over an LRQ of R0 , and
thus is strongly realisable.

Proof For notational simplicity, we assume that A0 has characteristic p > 2;
the case of characteristic 0 is essentially the same.

Choose a set X of polynomial generators for R0 over Z[1
2 ]. Let K be the

sub�eld of A0 generated by the image of � , or equivalently by �(X). We
can choose a subset Y � X such that �(Y ) is a transcendence basis for K
over Fp . This means that the sub�eld L0 of K generated by �(Y ) is iso-
morphic to the rational function �eld Fp(Y ), and that K is algebraic over
L0 . Put S = Z[1

2 ; Y ] n (pZ[1
2 ; Y ]), so L0 = (S−1Z[1

2 ; Y ])=p. Next, list the
elements of X n Y as fx1; x2; : : :g, and let Lk be the sub�eld of K gener-
ated by fxi j i � kg. (We will assume that X n Y is in�nite; if not, the
notation changes slightly.) As xk is algebraic over Lk−1 , there is a monic poly-
nomial fk(t) 2 Lk−1[t] with Lk = Lk−1[xk]=fk(xk). As Lk−1 is a quotient
of the ring Pk−1 := S−1Z[Y; x1; : : : ; xk−1], we can choose a monic polynomial
gk(t) 2 Pk−1[t] lifting fk , and put zk := gk(xk) 2 Pk � S−1R0 . It is not
hard to check that the sequence (p; z1; z2; : : :) is regular in S−1R0 , and that
(S−1R0)=(zi j i > 0) = K , so K is an LRQ of R0 . It is clear that A0 is free
over the sub�eld K .

Lemma 3.8 An LRQ of an LRQ is an LRQ.

Proof Suppose that B = (S−1A)=(x� j � < �) and C = (T−1B)=(y� j � <
�), where � and � are short ordinals, and the x and y sequences are regular in
S−1A and T−1B respectively. Let T 0 be the set of elements of A that become
invertible in T−1B ; clearly S � T 0 and T−1B = ((T 0)−1A)=(x� j � < �). As
(T 0)−1A is a localisation of S−1A and localisation is exact, we see that x is
a regular sequence in (T 0)−1A as well. After multiplying by suitable elements
of T 0 if necessary, we may assume that y� lies in the image of A (this does
not a�ect regularity, as the elements of T 0 are invertible). We then put z� =
x� for � < �, and let z�+� be any preimage of y� in A for 0 � � < �.
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This gives a regular sequence in (T 0)−1A indexed by � + �, such that C =
((T 0)−1A)=(zγ j γ < �+ �) as required.

We now specialize to the case R = MP (r), so R0 = EPAr . We write Γr for
the evident composite functor

EPAop
r

�0−! Algop
r ’ FGr :

Translating our previous de�nitions via the equivalence Algop
r ’ FGr , we obtain

the following.

De�nition 3.9 An object A 2 EPAr is strong if for all B 2 EPAr , the map

Γr : EPAr(A;B) −! FGr(Γr(B);Γr(A))

is a bijection.

De�nition 3.10 A realisation of an object (G;S; x) 2 FGr is a triple (A; ~p; p),
where A 2 EPAr and (~p; p) : ΓrA −! (G;S; x) is an isomorphism. This is a
strong realisation if the object A is strong.

We now give more precise versions of the de�nitions in the introduction.

De�nition 3.11 A formal group (G;S) is very good if for every nonempty list
x of coordinates, the object (G;S; x) 2 FGr is strongly realisable.

De�nition 3.12 A coordinate x0 on G is multirealisable if for every list
x1; : : : ; xr of coordinates, the object (G;S; x0; : : : ; xr) 2 FGr is strongly realis-
able. A formal group (G;S) is good if it admits a multirealisable coordinate.
We write GFG for the category of good formal groups.

Remark 3.13 Let x0; : : : ; xr be coordinates, and suppose that x0 is multi-
realisable. Let � be a permutation of f0; : : : ; rg. Using the evident action
of permutations on MP (r), we see that the object (G;S; x�(0); : : : ; x�(r)) is
strongly realisable.

Proposition 3.14 Suppose that x0 is such that the classifying map �0MP −!
OS makes OS an LRQ of �0MP . Then x0 is multirealisable, so (G;S) is good.
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Proof The coordinate x0 gives a map f0 : �0MP −! OS . By assumption,
there is a multiplicative set T � �0MP and a regular ideal I such that f0

induces an isomorphism (T−1�0MP )=I −! OS .

Now consider a list of additional coordinates x1; : : : ; xr say. These give a map
f : �0MP (r) −! OS extending f0 . We know from Section 2.2 that �0MP (r) is
a polynomial ring in countably many variables over �0MP , in which r of the
variables have been inverted, so we can write

�0MP (r) = �0MP [u1; u2; : : :][u−1
1 ; : : : ; u−1

r ]:

Put
A0 = OS [u1; u2; : : :][u−1

1 ; : : : ; u−1
r ];

which is evidently an LRQ of �0MP (r). It is easy to see that f induces a map
f 0 : A0 −! OS of OS -algebras. Put ak = f 0(uk) 2 OS , and vk = uk − ak 2 A0 .
Clearly A0 is a localisation of OS [vk j k > 0], the sequence of v ’s is regular
in A0 , and A0=(vk j k > 0) = OS as �0MP (r)-algebras. It follows that OS
is an LRQ of an LRQ, and thus an LRQ, over �0MP (r). It is thus strongly
realisable as required.

Corollary 3.15 If OS is a standard ring, then every coordinate is multireal-
isable, and so (G;S) is very good.

Proof This now follows from Propositions 3.6 and 3.7.

4 Proof of the main theorem

Let E denote the class of objects E 2 EPA0 for which the resulting coordi-
nate on Γ(��E) is multirealisable. Note that this means that Γ1E is strongly
realisable, so every realisation is strong, so in particular E is a strong object.

Proposition 4.1 For any good formal group (G;S), there exists E 2 E with
Γ(��E) ’ (G;S).

Proof By the de�nition of goodness we can choose a multirealisable coordi-
nate x0 on G. This means in particular that the object (G;S; x0) 2 FG0 is
isomorphic to Γ0(E) for some E 2 EPA0 . It follows that (G;S) ’ Γ(��E), as
required.
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Proposition 4.2 Suppose we have objects E0; E1 2 E , together with a map

(~p; p) : Γ(��E1) −! Γ(��E0)

in GFG . Then there is a unique good map f : ��E0 −! ��E1 such that Γ(f) =
(~p; p).

Proof We �rst put (Gi; Si; xi) = Γ0Ei for i = 0; 1.

We introduce a category B = B(E0; E1; ~p; p) as follows. The objects are triples
(A; f 0; f 00) where

(a) A is an object of EPA1 .

(b) f 0 is a morphism E0 −! (1 ^ �)�A in EPA0 .

(c) f 00 is an isomorphism (� ^ 1)�A −! E1 in EPA0 .

(d) The composite

f = �(A; f 0; f 00) := (��E0
��f 0−−−! (� ^ �)�A

��f 00−−−! ��E1)

satis�es Γ(f) = (~p; p).

The morphisms from (A; f 0; f 00) to (B; g0; g00) in B are the isomorphisms u : A −!
B in EPA1 for which ((1 ^ �)�u)f 0 = g0 and g00((� ^ 1)�u) = f 00 .

The maps of the form �(A; f 0; f 00) are precisely the good maps that induce
(~p; p), and isomorphic objects of B have the same image under � . It will thus
su�ce to show that B 6= ; and all objects of B are isomorphic.

First, as x1 is multirealisable, we can �nd an object A 2 EPA1 and an isomor-
phism (~q; q) : Γ1A −! (G1; S1; ~p�x0; x1) displaying A as a strong realisation of
(G1; S1; ~p�x0; x1). We write (H;T; y0; y1) = Γ1A, so (~q; q) : (H;T ) ’−! (G1; S1)
and (~p~q)�x0 = y0 and ~q�x1 = y1 . We can thus regard (~p~q; pq) as a morphism

Γ0((1 ^ �)�A) = (H;T; y0) −! (G0; S0; x0) = Γ0E0;

and E0 is a strong realisation of (G0; S0; x0), so this must come from a map
f 0 : E0 −! (1^�)�A in EPA0 . Similarly, we can regard (~q; q) as an isomorphism

Γ0((� ^ 1)�A) = (H;T; y1) ’−! (G1; S1; x1) = Γ�0E1:

As E1 is a strong realisation of (G1; S1; x1), this comes from a map E1 −!
(�^1)�A; this is easily seen to be an isomorphism, and we let f 00 : (�^1)�A −! E1

be the inverse map. It is then clear that the map

f = (��f 00) � (��f 0) : ��E0 −! ��E1
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is good and satis�es Γ(f) = (~p; p), so (A; f 0; f 00) 2 B . Thus B 6= ;.

Now suppose we have another object (B; g0; g00) 2 B , with Γ1B = (K;U; z0; z1)
say. We put

(~r; r) = Γ1g
00 : (G1; S1; x1) ’−! Γ1((� ^ 1)�B) = (K;U; z1)

(~s; s) = Γ1g
0 : Γ1((1 ^ �)�B) = (K;U; z0) −! (G0; S0; x0):

By hypothesis we have (~s~r; sr) = (~p; p) : (G1; s1) −! (G0; S0). We display all
these maps in the following commutative diagram:

(H;T )
(~q;q)

’
//

(~p~q;pq)

��

(G1; S1)

(~p;p)

zzt
t
t
t
t
t
t
t
t
t
t
t
t
t

’ (~r;r)

��

(G0; S0) (K;U):
(~s;s)

oo

We now claim that (~r~q; rq) can be regarded as a map

(H;T; y0; y1) −! (K;U; z0; z1):

Indeed, it is clear from the data recorded above that it is a map (H;T; y1) −!
(K;U; z1), so it will su�ce to check that (~r~q)�z0 = y0 . We are given that
z0 = ~s�x0 and ~s~r = ~p and (~p~q)�x0 = y0 ; the claim follows. As r and q are
isomorphisms, we have an isomorphism

(~r~q; rq)−1 : Γ1B = (K;U; z0; z1) −! (H;T; y0; y1) = Γ1A

in FG1 . As A is a strong realization, this comes from a unique map u : A −! B
in EPA1 , which is easily seen to be an isomorphism.

We must show that u is a morphism in our category B , or equivalently that in
EPA0 we have

((1 ^ �)�u)f 0 = g0 : E0 −! (1 ^ �)�B
g00((� ^ 1)�u) = f 00 : (� ^ 1)�B −! E1:

Note that E0 and E1 are strong, and f 00 is an isomorphism, so (� ^ 1)�B is
strong. It is thus enough to check our two equations after applying �0 (here
we have used the original de�nition rather than the equivalent one in De�ni-
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tion 3.9). By de�nition or construction, we have

spec(�0f
0) = pq

spec(�0f
00) = q−1

spec(�0g
0) = s

spec(�0g
00) = r

spec(�0u) = (rq)−1

sr = p:

It follows easily that (�0u)(�0f
0) = �0g

0 and (�0g
00)(�0u) = �0f

00 , as required.
This shows that u is an isomorphism in B , and thus that f is the unique good
map inducing the map (~p; p).

Lemma 4.3 For any E 2 E , the identity map 1: ��E −! ��E is good.

Proof Note that the multiplication map MP (1) = MP^MP −!MP is a map
of ring spectra (in the strict sense) and so induces a functor �� : EPA0 −! EPA1

with (1 ^ �)���E = (� ^ 1)���E = E on the nose. We can thus take A = ��E
and f 0 = f 00 = 1E to show that 1E is good.

Proposition 4.4 Suppose we have objects E0; E1; E2 2 E and good mor-

phisms ��E0
f−! ��E1

g−! ��E2 . Then the composite gf is also good.

Proof Write (Gi; Si; xi) = Γ0Ei and (~p; p) = Γ(f) : (G1; S1) −! (G0; S0) and
(~q; q) = Γ(g) : (G2; S2) −! (G1; S1).

Choose objects A;B 2 EPA1 and maps

f 0 : E0 −! (1 ^ �)�A

f 00 : (� ^ 1)�A ’−! E1

g0 : E1 −! (1 ^ �)�B

g00 : (� ^ 1)�B ’−! E2

exhibiting the goodness of f and g . This gives rise to isomorphisms

Γ1A = (G1; S1; ~p�x0; x1)
Γ1B = (G2; S2; ~q�x1; x2):

Next, observe that we have an object (G2; S2; (~p~q)�x0; ~q�x1; x2) 2 FG2 , which
is strongly realisable because x2 is a multirealisable coordinate. We can thus
choose an object P 2 EPA2 and an isomorphism

(~r; r) : Γ2P −! (G2; S2; (~p~q)�x0; ~q�x1; x2)
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making P a strong realisation. We can also regard (~r; r) as an isomorphism

Γ1((� ^ 1 ^ 1)�P ) −! (G2; S2; ~q�x1; x2) = Γ1B:

As B is strong, this comes from a unique isomorphism v : (� ^ 1 ^ 1)�P −! B
in EPA1 .

Similarly, we can regard (~r; r) as an isomorphism

Γ1((1 ^ 1 ^ �)�P ) −! (G2; S2; ~q�~p�x0; ~q�x1);

and we can regard (~q; q) as a morphism

(G2; S2; ~q�~p�x0; ~q�x1) −! (G1; S1; ~p�x0; x1) ’ Γ1A:

As A is strong, the composite (~q~r; qr) must come from a unique map u : A −!
(1 ^ 1 ^ �)�P in EPA1 .

We now put

C = (1 ^ � ^ 1)�P 2 EPA1

h0 = (E0
f 0−! (1 ^ �)�A

(1^�)�u−−−−−! (1 ^ � ^ �)�P = (1 ^ �)�C)

h00 = ((� ^ 1)�C = (� ^ � ^ 1)�P
(�^1)�v−−−−−! (� ^ 1)�B

g00−! E2):

As v and g00 are isomorphisms, the same is true of h00 . We claim that after
forgetting down to EPR, we have h00h0 = gf ; this will prove that gf is good as
claimed. We certainly have h00h0 = g00vuf 0 and gf = g00g0f 00f 0 so it will su�ce
to show that vu = g0f 00 : A −! B in EPR. For this, it will be enough to prove
that the following diagram in EPA0 commutes.

(� ^ 1)�A
(�^1)�u

//

f 00 ’
��

(� ^ 1 ^ �)�P

’ (1^�)�v
��

E1
g0

// (1 ^ �)�B:

As this is a diagram in EPA0 and (� ^ 1)�A ’ E1 is strong, it will be enough
to check that the diagram commutes after applying �0 . By construction we
have �0(u) = w−1 �  � �0(f 00) and  = �0(g) = �0(g00) � �0(g0) and �0(v) =
�0(g00)−1�w . It follows directly that the above diagram commutes on homotopy,
groups, so it commutes in EPA0 , so it commutes in EPR, so gf = h00h0 in EPR
as explained previously. Thus, the map gf is good, as claimed.

Proof of Theorem 1.6 We merely need to collect results together and ex-
plain the argument in the introduction in more detail. Lemma 4.3 and Propo-
sition 4.4 show that we can make E into a category by taking the good maps
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from ��E0 to ��E1 as the morphisms from E0 to E1 . Tautologically, we can
de�ne a faithful functor U : E −! EPR by U(E) = ��E and U(f) = f . We then
de�ne V = ΓU : E −! FG; by the de�nition of E , this actually lands in GFG.
Proposition 4.1 says that V is essentially surjective, and Proposition 4.2 says
that V is full and faithful. This means that V is an equivalence, so we can
invert it and de�ne R = UV −1 : GFG −! EPR. As V = ΓU we have ΓR = 1,
so R is the required realisation functor.

A Appendix : The product on MP

In this appendix we verify that MP can be constructed as an E1 ring spec-
trum.

Let U be a complex universe. For any �nite-dimensional subspace U of U , we
write UL = U � 0 < U � U and UR = 0 � U < U � U . We let Grass(U � U)
denote the Grassmannian of all subspaces of U�U (of all possible dimensions),
and we write γU for the tautological bundle over this space, and Thom(U �U)
for the associated Thom space. If U � U 0 < U then we de�ne i : Grass(U2) −!
Grass((U 0)2) by i(A) = A � (U 0 	 U)R . On passing to Thom spaces we get
a map � : �U 0	U Thom(U2) −! Thom((U 0)2). These maps can be used to as-
semble the spaces Thom(U2) into a �-inclusion prespectrum indexed by the
complex subspaces of U . We write TU for this prespectrum, and MPU for its
spectri�cation.

Now let V be another complex universe, so we have a prespectrum TV over
V , and thus an external smash product TU ^ext TV indexed on the complex
subspaces of U�V of the form U�V . The direct sum gives a map Grass(U2)�
Grass(V 2) −! Grass((U �V )2) which induces a map Thom(U2)^Thom(V 2) −!
Thom((U � V )2). These maps �t together to give a map TU ^ext TV −! TU�V ,
and thus a map MPU ^ext MPV −!MPU�V of spectra over U � V . Essentially
the same construction gives maps

MPU1 ^ext : : : ^ext MPUr −!MPU1�:::�Ur :

If U1 = : : :Ur = U , then this map is �r -equivariant.

Now suppose instead that we have a complex linear isometry f : U −! V . This
gives evident homeomorphisms Thom(U2) −! Thom((fU)2), which �t together
to induce a map MPU −! f�MPV , which is adjoint to a map f�MPU −!MPV .
We next observe that this construction is continuous in all possible variables,
including f . (This statement requires some interpretation, but there are no new
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issues beyond those that are well-understood for MU ; the cleanest technical
framework is provided by [1].) It follows that they �t together to give a map
LC(U ;V)nMPU −!MPV of spectra over V .

We now combine this with the product structure mentioned earlier to get a map

LC(Ur;U)n�r (MPU ^ext : : : ^ext MPU ) −!MPU :

This means that MPU has an action of the E1 operad of complex linear
isometries, as required.

All that is left is to check that the spectrum MP = MPC1 constructed above
has the right homotopy type. As T is a �-inclusion prespectrum, we know
that spectri�cation works in the simplest possible way and that MP is the
homotopy colimit of the spectra

�−2n Thom(Cn � Cn) =
n_

k=−n
�−2n Grassk+n(Cn � Cn)γ ;

where Grassd(V ) is the space of d-dimensional subspaces of V . It is not hard
to see that the maps of the colimit system preserve this splitting, so that MP
is the wedge over all k 2 Z of the spectra

Xk := holim
−!
n

�−2n Grassk+n(Cn � Cn)γ :

This can be rewritten as

Xk = �2k holim
−!
n;m

�−2(k+n) Grassk+n(Cm � Cn)γ :

We can reindex by putting n = i−k and m = j+k , and then pass to the limit
in j . We �nd that

Xk = �2k holim
−!
i

�−2i Grassi(C1 � Ci)γ :

It is well-known that Grassi(C1�Ci) is a model for BU(i), and it follows that
Xk = �2kMU , so MP =

W
k �2kMU as claimed. We leave it to the reader to

check that the product structure is the obvious one.

All the above was done without inverting 2. Inverting 2 is an example of
Bous�eld localisation, and this can always be performed in the category of
strictly commutative ring spectra.
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