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Links associated with generic immersions of graphs
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Abstract As an extension of the class of algebraic links, A’Campo, Gib-
son, and Ishikawa constructed links associated to immersed arcs and trees
in a two-dimensional disk. By extending their arguments, we construct
links associated to immersed graphs in a disk, and show that such links are
quasipositive.
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1 Introduction

In [1], A’Campo constructed links of divides as an extension of the class of
algebraic links. A divide is a generic relative immersion of a disjoint union of arcs
(and loops) in a 2–dimensional disk. In [7], Gibson and Ishikawa constructed
links of free divides, non-relative immersions of intervals in a 2–dimensional
disk. We review links of divides in Section 2, and remark on links of free
divides in Section 3.

In [2], A’Campo showed that any divide link is ambient isotopic to a transverse
C–link. A transverse C–link is the link represented as the transversal intersec-
tion of an algebraic curve and the unit sphere in the 2–dimensional complex
space C2 [15]. An algebraic link is the link of a singularity of an algebraic curve.
An algebraic link is a transverse C–link; there exist transverse C–links which
are not algebraic [14].

In [12], the author showed that links of divides and free divides are quasipositive,
by using the visualization algorithm due to Hirasawa [8]. A quasipositive braid is
a product of braids which are conjugates of positive braids, and a quasipositive
link is an oriented link which has a closed quasipositive braid diagram. A
positive braid is a product of canonical generators of the braid group, that is,
a braid which has a diagram without negative crossings. It is well known that
any algebraic link admits a representation as a closed positive braid. In [14],
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Rudolph showed that quasipositive links are transverse C–links. In [4], Boileau
and Orevkov proved that transverse C–links are quasipositive, by using the
theory of pseudoholomorphic curves.

There exist quasipositive links which are not the links of any divides or free
divides [12]. For classification of such links, we are interested in extending the
class of links of divides and free divides. In [5], Gibson associated links with
generic immersions of trees in a 2–dimensional disk. A tree divide is such an
immersion of trees. He suggested to the author the quasipositivity problem for
such links. In this paper, we construct graph divide links as an extension of the
class of links of divides or free divides in Section 3, show that tree divide links
constructed by Gibson can be represented as graph divide links in Section 4, and
prove that such links are quasipositive in Section 5. Furthermore we determine
some geometric invariants for graph divide links, and show that there exists a
quasipositive link which is not a graph divide link.
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2 Divide links and oriented divide links

In this section, we review links of divides defined by A’Campo [1] and links of
oriented divides defined by Gibson and Ishikawa [6].

By the argument due to A’Campo [1], a link is associated to any immersed arcs
(and loops) in a disk as follows.

Let D be a unit disk in the real plane R2 , that is D = {x = (x1, x2) ∈ R2 |
|x|2 = x2

1 +x2
2 ≤ 1}. A divide P is a generic relative immersion in the unit disk

(D,∂D) of a finite number of 1–manifolds, i.e., copies of the unit interval (I, ∂I)
and the unit circle [1, 2, 8, 10]. We also call the image of such an immersion
a divide. A branch of P is each image of the copies. We shall call each image
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of the copies of the interval an interval branch, and each image of the copies of
the circle a circle branch.

Let TxX be the tangent space at a point x of a manifold X , and TX be the
tangent bundle over a manifold X . We identify the 3–sphere S3 with the set

STR2 = {(x, u) ∈ TR2 | x ∈ R2, u ∈ TxR2, |x|2 + |u|2 = 1}.
The link of a divide P is the set given by

L(P ) = {(x, u) ∈ STR2 | x ∈ P, u ∈ TxP}.
We orient the 3–sphere and the link L(P ) as follows. We identify the tangent
bundle TR2 = R4 with the 2–dimensional complex space C2 by the map

((x1, x2), (u1, u2)) 7→ (x1 +
√
−1u1, x2 +

√
−1u2).

The tangent bundle TR2 is oriented by the complex orientation of C2 , and the
3–sphere is naturally oriented by the complex orientation of the 4–ball

{(x, u) ∈ TR2 | x ∈ R2, u ∈ TxR2, |x|2 + |u|2 ≤ 1}.
Let [a, b] be a small interval with a < b. Let φ: [a, b] → D be an embedding
whose image lies on P . We orient a part of the link L(P ) as the image of the

map t 7→ (φ(t),

√
1− |φ(t)|2
|φ̇(t)|

φ̇(t)), where φ̇(t) is the differential of φ(t). We

can extend this orientation to L(P ). A divide link is an oriented link ambient
isotopic to the link of some divide.

In [6], Gibson and Ishikawa constructed links associated with oriented divides.
An oriented divide is the image of a generic immersion of finite number of copies
of the unit circle in the unit disk, with a specific orientation assigned to each
immersed circle. The link Lori(Q) of an oriented divide Q is defined by

Lori(Q) = {(x, u) ∈ STR2 | x ∈ Q,u ∈ ~TxQ},

where ~TxQ is the set of tangent vectors in the same direction as the assigned
orientation of Q. The link Lori(Q) naturally inherits its orientation from Q.
The ambient isotopy type of the link of an oriented divide does not change
under the inverse self-tangency moves illustrated in Figure 1 (a) and (b), and
the triangle moves illustrated in Figure 1 (c) [7]. An oriented divide link is an
oriented link ambient isotopic to the link of some oriented divide.

The link of a divide is isotopic to the link of the oriented divide obtained from
the divide by the doubling method, which is the first step of the visualization
algorithm due to Hirasawa [8]. Let P be a divide. For each branch B of
P , we draw the boundary of a ‘very small’ neighborhood of B in the disk
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Figure 1: Inverse self-tangency moves and a triangle move

D , assigned with the clockwise orientation, as illustrated in Figure 2, where
interrupted curves represent ∂D . In particular, we draw a ‘sharp’ around each
double point of P , and draw a ‘hairpin curve’ around each point of ∂P . We
suppose that such hairpin curves lie in the interior of D . We denote by d(P )
the oriented divide obtained by the above algorithm.

Figure 2: Doubling method

We review the second step of the visualization algorithm due to Hirasawa [8].
We can apply his algorithm not only to divides but also to oriented divides.
Let Q be an oriented divide. A regular isotopy of Q in the space of generic
immersions does not change the ambient isotopy type of the link Lori(Q). Hence
we may assume that oriented divides are linear with slope ±1 except near the
‘corners’, where a branch quickly changes its slope from ±1 to ∓1. We draw a
link diagram for Q as below:

(1) We replace each double point of Q with the crossing as illustrated at the
top of Figure 3.

(2) For each x2–maximal (resp. x2–minimal) point whose tangent vector has
same orientation as the x1–axis, we change the diagram as illustrated
at the bottom of Figure 3, where interrupted curves represent ∂D , and
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horizontal arcs represent all arcs over (resp. under) the x2–maximal (resp.
x2–minimal) point.

Figure 3: Local link diagrams obtained from oriented divides

In [8], Hirasawa showed that for any divide P , the diagram obtained by the
above algorithm represents L(P ), the link of divide P . His argument implies
that for any oriented divide Q, the diagram obtained by the second step of the
above algorithm represents Lori(Q), the link of oriented divide Q. Therefore
we obtain L(P ) = Lori(d(P )).

Remark 2.1 In [8], Hirasawa oriented the tangent bundle TD by the coordi-
nate (x, u) = (x1, x2, u1, u2). Therefore the diagrams of links of divides in this
paper are the mirror images of those in his paper, since the orientations of the
3–sphere are opposite.
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3 Links of graph divides

In this section, we construct graph divide links, that is, links associated with
generic immersions of finite graphs in a 2–dimensional disk D , as an extension
of the class of divide links.

A graph divide P = (G,ϕ) is a generic immersion ϕ: G → D as follows or
its image, where G is a disjoint union of finite graphs and copies of the unit
circle. Each graph may have loops and multiple edges. The singularities are
only transversal double points of two arcs in edges and circles. We suppose that
each point of P ∩ ∂D is the image of a vertex of degree 1. We regard the unit
interval as a finite graph. A branch of P is the image of each component of G.
We shall call the image of an interval component an interval branch, the image
of a circle component a circle branch, and the image of a tree component a tree
branch. The image of vertices of degree 1 might not lie in the boundary of the
unit disk. We call such an image a free endpoint of P and denote by EP the
set of all free endpoints of P . We denote by TP the set of all vertices except
free endpoints and points in ∂D . We denote VP = EP ∪ TP . If TP is empty
and ϕ is a non-relative immersion, P is a free divide [7]. In [7], Gibson and
Ishikawa considered free divides with only interval branches, but we consider
both of interval and circle branches in this paper. We note that a divide is also
a free divide [7], and that it is also a graph divide.

We extend the definition of links of divides as follows. In the case of free divides,
the argument is almost same as the visualized definition for links of free divide
due to Gibson and Ishikawa [7]. We give ‘signs’ to vertices of a graph divide,
because the link is not associated to a graph alone. Let x be a vertex of G.
We also denote the image ϕ(x) by x. If x lies in ∂D , x does not need a sign.
If x is a point of VP , we give x a sign εx = + or εx = −.

For a given graph divide P = (G,ϕ) and given signs of vertices, we construct
an oriented divide d(P ; {εx}x∈VP ) by extending a doubling method as follows.
For each branch B of P , we draw the boundary of ‘very small’ neighborhood
of B in the disk D , assigned with the clockwise orientation, in the same way
as that for divides, except near x ∈ VP . Around x ∈ EP with εx = −, we draw
a ‘hairpin curve’, as illustrated in Figure 4 (b). Around x ∈ EP with εx = +,
we draw a ‘loop’, as illustrated in Figure 4 (a). Around x ∈ TP with εx = −,
we draw oriented curves such that each curve approaches x along an edge and
turns to its neighbor edge on the left, as illustrated in Figure 4 (d). Around
x ∈ TP with εx = +, we draw oriented curves such that each curve approaches
x along an edge and turns to its neighbor edge on the right, as illustrated in
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Figure 4 (c). We denoted the obtained curves by d(P ; {εx}x∈VP ) and call it the
doubling of graph divide P with signs {εx}x∈VP .

Figure 4: The doubling of graph divide around vertices

Definition 3.1 The link of a graph divide P is the set given by

L(P ; {εx}x∈VP ) = Lori(d(P ; {εx}x∈VP )).

We note that the link of a given graph divide depends on signs of vertices.
For fixed signs of vertices ({εx}x∈VP ), a regular isotopy of P in the space of
generic immersions does not change the isotopy type of the oriented divide
d(P ; {εx}x∈VP ), therefore it does not change the ambient isotopy type of the
link L(P ; {εx}x∈VP ). A graph divide link is the oriented link ambient isotopic
to the link of some graph divide with some signs of vertices.

Furthermore some transformations on a graph divide do not change the isotopy
type of the link.

Lemma 3.2 The transformations on a graph divide illustrated in Figure 5 do
not change the ambient isotopy type of the link.

Proof For each transformation illustrated in Figure 5, we consider the dou-
bling of the graph divides illustrated in Figure 4. They are changed to each other
by diffeomorphisms of D , triangle moves and inverse self-tangency moves.
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Figure 5: Transformations on a graph divide not changing the link type

By means of Lemma 3.2, for any graph divide P = (G,ϕ), there exists a graph
divide P ′ = (G′, ϕ′), where G′ is an union of uni-trivalent graphs and copies of
circles, such that L(P ′; {εx}x∈VP ′ ) is ambient isotopic to L(P ; {εx}x∈VP ).

The above definition of a graph divide is a natural extension of a (free) divide
link. If EP = VP holds, the link L(P ; {εx}x∈VP ) is ambient isotopic to the link
of a free divide defined by Gibson and Ishikawa [7].

Example 3.3 (Cf. Gibson [5]) For a graph divide P with signed vertices
illustrated in Figure 6, the doubling of P is illustrated as the right of P . Then
the link of P is the knot illustrated at the bottom of Figure 6. It is known that
this knot is not fibered if n is a positive integer. Then it is not a divide link
since divide links are all fibered.

Example 3.4 For a graph divide P with signed vertices illustrated in Figure
7, the doubling of P is illustrated as the right of P . Then the link of P is the
knot illustrated at the bottom of Figure 7. This knot is the mirror image of 821

in the table of Rolfsen [13]. It is well known that the knot 821 is fibered.

In the next section, we compare the above definition of the link of a graph
divide with the construction of the link of a tree divide defined by Gibson in
[5]. We use the following lemma, where we denote by Q the oriented divide
obtained from a given oriented divide Q by reversing the orientations of all
branches. Gibson and Ishikawa showed as Proposition 3.1 in [6] that Lori(Q) is
the same link as Lori(Q) but with the opposite orientations on all components
of Lori(Q).

Lemma 3.5 Let P = (G1tG2, ϕ) be a graph divide and we denote (Gj , ϕ|Gj )
by Pj = (Gj , ϕj) for j = 1, 2. We give each vertex x ∈ VP = VP1 ∪ VP2 a sign
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Figure 6: An example of a (non-fibered) graph divide knot

Figure 7: An example of a graph divide knot

εx . Then the link L(P ; {εx}x∈VP1
∪ {−εx}x∈VP2

) is ambient isotopic to the link

Lori(d(P1; {εx}x∈VP1
) ∪ d(P2; {εx}x∈VP2

)), where {−εx}x∈VP2
is the set of the

signs of x ∈ VP2 defined by −εx .
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Proof By Lemma 3.2, we may suppose that P ∩ ∂D = ∅ and the degree
of each vertex of G is 1 or 3. We transform each part of d(P2; {εx}x∈VP2

)
as illustrated in Figure 8 (a), (b), (c), (d), and (f) by inverse self-tangency
moves and triangle moves, and as illustrated in Figure 8 (e) and (g) by dif-
feomorphisms of D . We denote by Q2 this new oriented divide obtained from
d(P2; {εx}x∈VP2

). Each of the parts in the small disks with dotted boundary
in Figure 8 is same as the assigned part of the doubling of d(P2; {−εx}x∈VP2

).
We remove the double points of Q2 in the exterior of such disks by inverse self-
tangency moves as illustrated in Figure 8 (h). The finally obtained oriented di-
vide is same as d(P2; {−εx}x∈VP2

). Then the oriented divide d(P1; {εx}x∈VP1
)∪

d(P2; {εx}x∈VP2
) is changed to d(P ; {εx}x∈VP1

∪{−εx}x∈VP2
) by diffeomorphisms

of D , inverse self-tangency moves, and triangle moves. Therefore the link
Lori(d(P1; {εx}x∈VP1

)∪d(P2; {εx}x∈VP2
)) is ambient isotopic to L(P ; {εx}x∈VP1

∪
{−εx}x∈VP2

).

Figure 8: Transformations on d(P2; {εx}x∈VP2
)

Remark 3.6 Let P = (I, ϕ) be a free divide with a single interval branch
and VP = {x1, x2}. In [7] Gibson and Ishikawa said that the sign of P is even
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if εx1 = εx2 holds, and otherwise odd. They showed that the isotopy class of
the knot of such a free divide P depends only on the sign of P . Actually,
the orientation of L(P ; {−εx1 ,−εx2)}) is the reverse of L(P ; {εx1 , εx2)}). These
facts are included in Lemma 3.5.

4 A relation with the construction due to Gibson

We call a graph divide P = (G,ϕ) a tree divide if G is an union of trees [5].
In [5] Gibson defined the link of a tree divide by the different argument from
that of the link of a graph divide in this paper. In this section, we review his
definition and show that tree divide links defined by him are represented as
graph divide links defined in Section 3.

For a given tree divide P = (G,ϕ), Gibson defined a doubling of P by the
following argument. We assume that an union of trees G may have isolated
vertices. We construct a new non-oriented divide ∆(P ) as follows. For each
branch B of P , we draw the boundary of ‘very small’ neighborhood of B in
the disk D except near x ∈ VP as illustrated in Figure 9 (a), (b), and (c), in
the almost same way as that for the doubling in Section 2. In this step we
do not give any orientation. Around each vertex we connect these curves as
illustrated in Figure 9 as follows. Around each isolated vertex, we draw a small
circle as illustrated in Figure 9 (d). Around x ∈ EP , we draw a ‘hairpin curve’
as illustrated in Figure 9 (e). Around each vertex of degree 2, we draw two
curves which cross each other once transversely as illustrated in Figure 9 (f).
Around each of the remaining vertices, as illustrated in Figure 9 (g), we draw
non-oriented curves the same way as the doubling around the vertex signed ‘−’
in the definition of a doubling of graph divide in Section 3.

We give ∆(P ) an arbitrary orientation o. Then we obtain an oriented divide
(∆(P ), o). Gibson defined the link of a tree divide P as the link Lori(∆(P ), o).

Applying the above argument to an immersion of the graphs which are not
trees is not a natural extension of the original definition of the link of a divide,
because if we do that, the doubling of some regular arc of P might induce
two parallel arcs with same orientation after we orient ∆(P ). By the following
result, we see that our definition of links of graph divides is a natural extension
of links of divides and tree divides.

Proposition 4.1 For any tree divide P , the link Lori(∆(P ), o) can be repre-
sented as a graph divide link defined in Section 3.
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Figure 9: The doubling ∆(P ) of a tree divide P

Proof Let P = (G,ϕ) be a tree divide. By definition of the link of a tree
divide, each isolated vertex may be replaced with a small embedded interval,
and we may suppose that P does not intersect ∂D and the degree of each
vertex of G is 1, 2, or 3. We construct a new tree divide P0 and give the sign
ε = +,− or the symbol h to each vertex by replacing neighborhood of vertices
as follows:

(1) We give the sign ‘+’ to each vertex of degree 3 adjacent to three vertices
of degree 2, and remove these vertices of degree 2, as illustrated in Figure
10 (a). We give the sign ‘−’ to each of the other vertices of degree 3, as
illustrated in Figure 10 (b).

(2) We give the sign + to each endpoint adjacent to a vertex of degree 2,
and remove this vertex of degree 2, as illustrated in Figure 10 (c). We
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Figure 10: Transformations from P to P0

give the sign ‘−’ to each of the other endpoints, as illustrated in Figure
10 (d).

(3) After applying the above two steps, we give the symbol ‘h’ to each of the
other vertices of degree 2, in order to distinguish the doubling around a
vertex of degree 2 in this section from that defined in Section 3.

We define the doubling of P0 , ∆(P0; {ηx}x∈VP0
) as ∆(P ), where ηx is h or +

or − defined for each x ∈ VP0 as above. The moves (c) and (d) in Figure 11
reduce the number of the vertices of degree 2, changing the sign of the endpoint.
The moves (a) and (b) in Figure 11 can bring the vertices of degree 2 close to
the endpoints, changing the sign of the vertex of degree 3. By repeating these
moves finitely many times, We obtain a tree divide P1 = (G1, ϕ) which has no
vertex of degree 2, and obtain signs of vertices {εx}x∈VP1

.

Each of the transformations illustrated in Figure 11 does not change the dou-
bling of tree divides up to inverse self-tangency moves and triangle moves. Then,
for any orientation o of ∆(P ), the oriented divide (∆(P ), o) can be transformed
to ∆(P1; {εx}x∈VP1

) with some orientation o1 by inverse self-tangency moves
and triangle moves. The oriented divide d(P1; {εx}x∈VP1

) is also obtained as
∆(P1; {εx}x∈VP1

) with some orientation o′1 . For each branch B of P1 with
o1|∆(B;{εx}x∈VB ) 6= o′1|∆(B;{εx}x∈VB ) , we change the signs of all vertices of B . We
denote new signs by {ε′x}x∈VP1

. By Lemma 3.5, the link L(P1; {ε′x}x∈VP1
) is

ambient isotopic to Lori(∆(P1; {εx}x∈VP1
), o1). Therefore it is ambient isotopic

to the link Lori(∆(P ), o).
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Figure 11: The algorithm to remove vertices of degree 2

5 Quasipositivity

By using the almost same argument as that due to Ishikawa [10], we have the
following theorem.

Theorem 5.1 Links of graph divides are quasipositive.

In the proof of this theorem, we represent a graph divide as a tangle product
constructed as follows. We restate a tangle product which Ishikawa defined for
a divide in [10]. In this paper, we suppose that a tangle consists of some or no
vertical lines and each of the following parts as illustrated in Figure 12:

(1) a pair of crossed curves illustrated in Figure 12 (a),

(2) a folding curve including an x2–maximal point illustrated in Figure 12
(b),

(3) a folding curve including an x2–minimal point illustrated in Figure 12
(c),

(4) a vertical line with a vertex of degree 1 illustrated in Figure 12 (d) and
(e),

(5) a vertical line and a curve with a vertex of degree 3 illustrated in Figure
12 (f) and (g).

A tangle product is a product of these tangle with well-defined connections. The
graph divide P in Figure 16 is a tangle product representation for the graph
divide of Example 3.4 illustrated in Figure 7.
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Figure 12: Tangles

Remark 5.2 In [10] Ishikawa constructed a tangle as horizontal lines instead
of vertical lines. In his construction, some folding curves have marks in order to
establish the Kauffman state model on divides. Here we do not mention about
a mark since we do not need it in the present article.

Proof of Theorem 5.1 Let P = (G,ϕ) be a graph divide. By Lemma 3.2,
we may suppose that for each vertex of G, the degree is equal to 1 or 3. A
regular isotopy of P in the space of generic immersions does not change the
isotopy type of the link L(P ). Hence, we may assume that P is represented
as a tangle product. The horizontal arcs illustrated in Figure 13, 14, and 15
represent all parts over or under each of vertices, and x2–maximal or minimal
points. Furthermore, we may assume that for any a ∈ [−1, 1] the number of
arc components of (p1|P )−1(a) is less than 2 except when they are connected
by the neighborhood of double points in P , where p1 is the projection map
from the disk D to the x1–axis.

For a given graph divide P and signs, we construct an immersed 2–manifold in
the 3–sphere, F (P ; {εx}x∈VP ), which consists of disks and bands as determined
by the following algorithm.

(1) For each vertical arc α in P , we construct a wide band along α in the
disk D as illustrated in Figure 13 (a). This band is a part of ‘disks’ of
F (P ; {εx}x∈VP ), that is, each of such disks is the natural connected sum
of the neighborhood of 1–dimensional components of (p1|P )−1(a) in D
for some a.
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Figure 13: Steps 1, 2, and 3 of the construction of F (P ; {εx}x∈VP )

(2) Around each double point of P , we construct two parts of disks and two
narrow bands connecting them as illustrated in Figure 13 (b).

(3) Around each of x2–maximal points and x2–minimal points of P , we
construct two parts of disks and a narrow band connecting them, as
illustrated in Figure 13 (c) and (d). We construct intersections of a disk
and the narrow bands corresponding to all small arcs in P over the x2–
maximal point or under the x2–minimal point.

(4) Around each free endpoint of P , we construct a part of a disk and inter-
sections of it and narrow bands corresponding to all small arcs in P over
or under the endpoint as illustrated in Figure 14.

(5) Around each vertex of degree 3 of P , we construct two parts of disks and
a narrow band connecting them, as illustrated in Figure 15. We construct
intersections of a disk and the narrow bands corresponding to all small
arcs in P over or under the vertex.

We note that the narrow bands constructed in Step 2, 3, and 5 may intersect
some disks as explained in Step 3, 4, and 5.
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Figure 14: Step 4 of the construction of F (P ; {εx}x∈VP )

Figure 15: Step 5 of construction of F (P ; {εx}x∈VP )

Figure 16 is an example of the pair of P and F (P ; {εx}x∈VP ). We suppose that
the boundary of the above immersed 2–manifold, that is, ∂F (P ; {εx}x∈VP ) is
oriented clockwise in the diagram obtained by the above algorithm as illustrated
in Figure 13, 14, and 15. We regard the diagram of ∂F (P ; {εx}x∈VP ) as a closed
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Figure 16: An example of F (P ; {εx}x∈VP )

braid diagram. Each narrow band corresponds to a quasipositive band, a conju-
gate braid with a canonical generator of the braid group. Then ∂F (P ; {εx}x∈VP )
is quasipositive. In the case of Figure 16, the link ∂F (P ; {εx}x∈VP ) is the closure
of the quasipositive braid

σ1σ4(σ−1
4 σ3σ2σ

−1
3 σ4)σ1σ3(σ−1

4 σ−1
3 σ2σ3σ4)

= σ1σ4(σ−1
2 σ3σ4σ

−1
3 σ2)σ1σ3(σ2σ3σ4σ

−1
3 σ−1

2 ),

where σ1 , σ2 , σ3 , and σ4 are the canonical generators of the 5–braid group.
Comparing with the definition of the link of a graph divide, ∂F (P ; {εx}x∈VP )
is ambient isotopic to L(P ; {εx}x∈VP ). Therefore the link L(P ; {εx}x∈VP ) is
quasipositive.

The braid index of a link L is the minimal number of strings required to repre-
sent L as a closed braid. The above argument implies the following result.

Proposition 5.3 Let P is a graph divide represented as a tangle product in
the proof of Theorem 5.1. Let v be the number of vertices of P and m be the
number of x2–maximal points and x2–minimal points of P . Then the braid

index of the link of P is not greater than
1
2

(v + 2m).

Remark 5.4 In private communication, Ishikawa found that any closed posi-
tive braid can be represented as a graph divide link. For a given closed positive
braid L, we draw a uni-trivalent graph which is homotopic to the canonical
Seifert surface of L, and for endpoints of each edge corresponding to a positive
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Figure 17: A closed positive braid and a graph divide representing it

crossing we give the different signs. For example, the knot 10139 in the table
of Rolfsen [13] is the closure of the positive braid σ1

2σ2σ1σ2σ1
2σ2

3 , where σ1

and σ2 are the canonical generators of the 3–braid group. By this word, we
draw a graph and give signs of vertices as illustrated in Figure 17. The link of
this graph divide is the knot 10139 . Actually, the knot 10139 is the knot of each
divide in Figure 18 [3, 7].

Figure 18: Divides which represent the knot 10139

6 Four-dimensional invariants

In this section, we determine some link invariants for graph divide links.

Let L be an oriented link, and let F ⊂ B4 be a smooth, oriented 2–manifold
with ∂F = L, where B4 is the 4–ball bounded by S3 . We suppose that
F has no closed components, but F is not assumed to be connected. We
denote by χs(L) the greatest value of the euler characteristic χ(F ) for such
2–manifolds F ⊂ B4 , and we call this invariant the slice euler characteristic.
In [16], Rudolph showed the following equality.
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Theorem 6.1 [16] Let L be the closure of a quasipositive braid with n strings
and k quasipositive bands. Then we have χs(L) = n− k .

Combining Theorem 6.1 and the proof of Theorem 5.1, we obtain the following
result.

Proposition 6.2 Let P = (G,ϕ) be a graph divide. Let δ(P ) be the number
of double points of P . Then the slice euler characteristic of the link of P is
χ(G)− 2δ(P ).

Proof Let P = (G,ϕ) be a graph divide and δ the number of double points
of P . We may assume that F (P ; {εx}x∈VP ) in the proof of Theorem 5.1 is
the projection image of a 2–manifold in B4 − {∗} to S3 . We also denote
this 2–manifold by F (P ; {εx}x∈VP ). By Theorem 6.1 and the construction of
F (P ; {εx}x∈VP ) we have

χs(L(P ; {εx}x∈VP )) = χ(F (P ; {εx}x∈VP )).

By means of constructions of an immersed 2–manifold F (P ; {εx}x∈VP ), we have

χ(F (P ; {εx}x∈VP )) = χ(G)− 2δ(P ).

Remark 6.3 The slice euler characteristic of the link of graph divide does not
depend on signs of vertices by the above proposition.

Let L be an r–component link. The four-dimensional clasp number of L is
the minimum number of the double points for transversely immersed r disks
in B4 with boundary L and with only finite double points as singularities [11].
The author showed in [11] that the inequality cs(L) ≥ (r − χs(L))/2 holds
for any link L. In particular, if G is a disjoint union of intervals and trees,
the 4–dimensional clasp number of the link of the graph divide P = (G,ϕ) is
determined as below.

Corollary 6.4 Let P = (G,ϕ) be a graph divide. Let δ(P ) be the number
of double points of P . If G is a disjoint union of intervals and trees, then the
four-dimensional clasp number of the links of P is δ(P ).
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Figure 19: Construction of immersed disks

Proof By the above, the 4–dimensional clasp number of the links of P is not
less than δ(P ). We show that the 4–dimensional clasp number of the links of
P is not greater than δ(P ).

For a given tree divide P and signs of vertices {εx}x∈VP , we construct immersed
disks in the 3–sphere by the almost same argument as that for the 2–manifold
F (P ; {εx}x∈VP ) in Section 5. For P except near double points, we construct
same parts of F (P ; {εx}x∈VP ). Around each double point of P , we construct
parts of disks with a clasp as illustrated in Figure 19. Non-vertical narrow bands
may intersect some disks as explained in Step 3, 4, and 5 of the construction of
F (P ; {εx}x∈VP ). As an example the immersed disk in Figure 20 is obtained from
the pair of P and F (P ; {εx}x∈VP ) in Figure 16 by the above algorithm. We
regard the obtained diagram of immersed disks as a diagram of disks immersed
in B4 with boundary L(P ; {εx}x∈VP ). Then we have cs(L(P ; {εx}x∈VP )) ≤
δ(P ).

Figure 20: An example of the immersed disk

Remark 6.5 In Example 3.4, we represent the knot 821 as a graph divide
knot. It is known that the genus of this knot is 2. In [17] Shibuya showed that
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for any link, the 3–dimensional clasp number is not less than the genus. Then
the 3–dimensional clasp number of 821 is not less than 2, and actually equal
to 2. By Corollary 6.4, we have cs(821) = 1. Therefore Corollary 6.4 cannot
determine the 3–dimensional clasp numbers of graph divide links generally.

Remark 6.6 A’Campo [2], Gibson and Ishikawa [7] showed that if P is a
divide or a free divide without circle branches, the unknotting number of the
link of P is also equal to the number of double points of P . In [7], Gibson
and Ishikawa introduced a good unknotting operation for P . Furthermore in
[5] Gibson showed that the unknotting number of the link of a tree divide with
some conditions is equal to the number of double points.

In [7], Gibson and Ishikawa checked that there exist free divide links with no
divide representation and that the knot of the free divide with only one double
point must be the trefoil or the mirror image of the knot 52 in the table due to
Rolfsen [13]. Then Corollary 6.4 implies that each of the knots of Example 3.3
for n ≥ 0 and Example 3.4 cannot be represented by any free divide (cf. [5]).
Therefore the class of graph divide links is a real extension of the class of free
divide links.

Then we are interested in the problem of the existence of the quasipositive
link with no graph divide representation. By Proposition 6.2, we obtain the
following result.

Theorem 6.7 If a graph divide knot K is slice, then K is trivial. Therefore,
there exists a quasipositive link which is not a graph divide link.

In the proof of the above theorem, we use the following lemma.

Lemma 6.8 If a graph G is a connected tree and the map ϕ: G → D is an
embedding, then the link of P = (G,ϕ) is a trivial knot.

Proof By moves illustrated in Figure 5, G can be transformed to an arc A
embedded in D . By Lemma 3.2, the link of P = (G,ϕ) is ambient isotopic to
the link of A.

Proof of Theorem 6.7 We suppose that K = L((G,ϕ); {εx}x∈VP ) is a slice
knot. The graph G is connected since K is a knot. Hence the euler characteris-
tic of G is not greater than 1. By Proposition 6.2, the slice euler characteristic
of K is χ(G) − 2δ where δ is the number of double points of P . We have
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χ(G) = 2δ + 1 since the knot K is slice. Then the euler characteristic of G
must be 1 and δ must be 0. Therefore G is a connected tree and ϕ is an
embedding. By Lemma 6.8, K is a trivial knot.

The mirror image of the knot 820 in the table due to Rolfsen [13] is the closure
of the quasipositive braid σ3

1σ2σ
−3
1 σ2 , where σ1 and σ2 are canonical generators

of the 3–braid group. This knot is non-trivial and slice. Then it is an example
of a quasipositive link which is not a graph divide link.

Remark 6.9 A strongly quasipositive braid is the product of positive bands.
A positive band is a braid σij = σi · · · σj−1σjσj−1

−1 · · · σi−1 , where σk ’s are
canonical generators of the braid group and i is less than j . A strongly quasi-
positive link is the closure of a strongly quasipositive braid. For any strongly
quasipositive link, the slice euler characteristic is equal to the euler characteris-
tic. Hirasawa recently showed that any divide link is strongly quasipositive [9].
The knot of Example 3.4 is fibered, but not strongly quasipositive, because the
slice euler characteristic is −1 but the euler characteristic is −3, so the slice
euler characteristic is not equal to the euler characteristic.
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