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Abstract For X = R , C , or H , it is well known that cusp cross-sections
of finite volume X –hyperbolic (n + 1)–orbifolds are flat n–orbifolds or
almost flat orbifolds modelled on the (2n + 1)–dimensional Heisenberg
group N2n+1 or the (4n + 3)–dimensional quaternionic Heisenberg group
N4n+3(H). We give a necessary and sufficient condition for such manifolds
to be diffeomorphic to a cusp cross-section of an arithmetic X –hyperbolic
(n+ 1)–orbifold.

A principal tool in the proof of this classification theorem is a subgroup
separability result which may be of independent interest.
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1 Introduction

1.1 Main results

A classical question in topology is whether a compact manifold bounds. Ham-
rick and Royster [15] showed that every flat manifold bounds, and it was con-
jectured in [11] that any almost flat manifold bounds (for some progress on this
see [24] and [32]). In [11], Farrell and Zdravkovska made a stronger geometric
conjecture:

Conjecture 1.1

(a) If Mn is a flat Riemannian manifold, then Mn = ∂W n+1 where W \∂W
supports a complete hyperbolic structure with finite volume.

(b) If Mn supports an almost flat structure, then Mn = ∂W n+1 , where
W \ ∂W supports a complete Riemannian metric with finite volume of
whose sectional curvatures are negative.
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722 D.B. McReynolds

We say that a flat manifold Mn geometrically bounds if (a) in Conjecture 1.1
holds. Long and Reid [19] showed that (a) is false by proving that for a flat
(4n − 1)–manifold to geometrically bound the η–invariant is an integer. Fur-
thermore, flat 3–manifolds with nonintegral η–invariant are easily constructed
using [25]. Equivalently, this result of Long and Reid shows that some flat
manifolds cannot be diffeomorphic to a cusp cross-section of a 1–cusped, finite
volume real hyperbolic 4–manifold. On the other hand, Long and Reid showed
[20] that every flat n–manifold is diffeomorphic to a cusp cross-section of an
arithmetic real hyperbolic (n+ 1)–orbifold.

For X = R, C, or H, cusp cross-sections of finite volume X –hyperbolic
(n + 1)–orbifolds are flat n–manifolds or almost flat orbifolds modelled on
the (2n+1)–dimensional Heisenberg group N2n+1 or the (4n+3)–dimensional
quaternionic Heisenberg group N4n+3(H). The first main result of this arti-
cle shows that the result of Long and Reid in [20] does not generalize to the
complex or quaternionic settings. Namely, (see §2 for definitions):

Theorem 1.2

(a) For every n ≥ 2, there exist infinite families of closed almost flat (2n+1)–
manifolds modelled on N2n+1 which are not diffeomorphic to a cusp cross-
section of any arithmetic complex hyperbolic (n+ 1)–orbifold.

(b) For every n ≥ 1, there exist infinite families of closed almost flat (4n+3)–
manifolds modelled on N4n+3(H) which are not diffeomorphic to a cusp
cross-section of any finite volume quaternionic hyperbolic (n+1)–orbifold.

Since all lattices in the isometry group of quaternionic hyperbolic space are
arithmetic (see [7]), we drop the arithmeticity assumption in (b).

In order to give a complete classification of cusp cross-sections of arithmetic
hyperbolic lattices, we require certain subgroup separability results. Recall
that if G is a group, H < G and g ∈ G \ H , we say H and g are separated
if there exists a subgroup K of finite index in G which contains H but not g .
We say that H is separable in G or G is H –separable, if every g ∈ G \H and
H can be separated. We say that G is LERF (locally extendable residually
finite) if every finitely generated subgroup is separable.

We defer the statement of our second main result until §3 (see Theorem 3.1)
as it requires the language of algebraic groups. Instead we state the result
specialized to the rank–1 setting. For the statement, let Y = Hn

R , Hn
C , Hn

H or
H2

O .
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Theorem 1.3 (Stabilizer subgroup separability theorem) Let Λ be an arith-
metic lattice in Isom(Y ) and v ∈ ∂Y . Then every subgroup of Λ ∩ Stab(v) is
separable in Λ.

One well known application of subgroup separability is the lifting of an immer-
sion to an embedding in a finite cover (see [18], [14], or [21, p. 176]). In the
rank–1 setting, we have (see Theorem 3.12 for a more general result):

Theorem 1.4 Let ρ : N −→ M be a π1–injective immersion of an almost
flat manifold N modelled in N`n−1(X) into an arithmetic X –hyperbolic m–
orbifold. Then there exists a finite cover ψ : M ′ −→M such that ρ lifts to an
embedding.

A geometric corollary of Theorem 1.3 of particular interest to us is:

Theorem 1.5

(a) A flat n–manifold is diffeomorphic to a cusp cross-section of an arithmetic
real hyperbolic (n + 1)–orbifold if and only if π1(Mn) injects into an
arithmetic real hyperbolic (n + 1)–lattice.

(b) An almost flat (2n+1)–manifold M2n+1 modelled on N2n+1 is diffeomor-
phic to a cusp cross-section of an arithmetic complex hyperbolic (n+ 1)–
orbifold if and only if π1(M2n+1) injects into an arithmetic complex hy-
perbolic (n+ 1)–lattice.

(c) An almost flat (4n + 3)–manifold M4n+3 modelled on N4n+3(H) is dif-
feomorphic to a cusp cross-section of a quaternionic hyperbolic (n + 1)–
orbifold if and only if π1(M2n+1) injects into a quaternionic hyperbolic
(n + 1)–lattice.

(d) An almost flat 15–manifold M15 modelled on N15(O) is diffeomorphic
to a cusp cross-section of an octonionic hyperbolic 16–orbifold if and only
if π1(M15) injects into an octonionic hyperbolic 16–lattice.

Theorem 1.5 reduces the classification of cusp-cross sections of arithmetic X –
hyperbolic n–orbifolds to the construction of faithful representations of almost
flat manifold groups into lattices. We postpone stating the classification un-
til §5 (see Theorem 5.4) as it requires additional terminology. However, one
interesting special case which we state here is (see §7 for a proof):

Corollary 1.6 Every nil 3–manifold is diffeomorphic to a cusp cross-section
of an arithmetic complex hyperbolic 2–orbifold.
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The rest of the paper is organized as follows. We establish notation and collect
the preliminary material in §2 needed in the sequel. Our main separability
results are established in §3 and §4 along with some algebraic and geometric
corollaries. In §5 we classify cusp cross-section of arithmetic hyperbolic orbifolds
and give the families of Theorem 1.2 in §6. We conclude this article with a
detailed treatment of the nil 3–manifold case in §7.

1.2 Acknowledgments

I would like to thank my advisor Alan Reid for all his help. I am indebted
to Daniel Allcock for several helpful suggestions, most notably the use of cen-
tral products. In addition, I would like to thank Karel Dekimpe, Yoshinobu
Kamishima, Richard Kent, and Richard Schwartz for conversations on this
work. Finally, I would like to thank the referee for several valuable comments
and for informing me of Proposition 3.8.

2 Preliminary material

In this section, we rapidly develop the material needed in the sequel.

2.1 X–hyperbolic n–space

For a general reference on this material, see [5, II.10]. In all that follows, we let
X = R,C, or H and ` = dimRX .

Equip Xn+1 with a Hermitian form H of signature (n, 1). We define X–
hyperbolic n–space to be the (left) X –projectivization of the H –negative vec-
tors with the Bergmann metric associated to H . We denote X –hyperbolic
n–space together with this metric by Hn

X and say that Hn
X is modelled on H

or call H a model form.

The boundary of Hn
X in PXn+1 is the X –projectivization of the H –null vec-

tors. We denote this set by ∂Hn
X , which is topologically just S`n (see [5, p.

265]) and call the elements of the boundary light-like vectors.
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2.2 The isometry group and lattices

The isometry group of Hn
X is denoted by Isom(Hn

X). In each setting, Isom(Hn
X)

is locally isomorphic to U(H). Specifically,

Isom(Hn
X) =

{
〈PU(H)0, ι〉 , X = R,C
PU(H), X = H,

where ι is an involution induced by inversion in the real case and complex
conjugation in the complex case. The usual trichotomy for isometries holds in
Isom(Hn

X) (see [28, p. 180–185], [12, p. 203], [17]). Specifically, every (nontriv-
ial) isometry is either elliptic, parabolic, or loxodromic.

We say that Γ < Isom(Hn
X) is a lattice if Γ is a discrete subgroup and Hn

X/Γ
has finite volume. In this case, M = Hn

X/Γ is called an X–hyperbolic n–
orbifold. That finite volume manifolds exist, both compact and noncompact,
was established by Borel [3].

The spaces constructed in this way yield every locally symmetric space of rank–
1 except for those modelled on the exceptional Cayley hyperbolic plane H2

O . We
shall only make use of the fact that Isom(H2

O) has a faithful linear representa-
tion and refer the reader to [1] for more on the Cayley hyperbolic plane.

2.3 The Heisenberg group and its quaternionic analog

In the next few subsections, we introduce the X –Heisenberg group and its
automorphism group. See [12] for the complex case and [17] for the quaternionic
case. A thorough treatment of this topic can be found in [24].

Let 〈·, ·〉 denote the standard Hermitian product on Xn and let ω = Im 〈·, ·〉
be the associated hyper-symplectic form. The X–Heisenberg group N`n−1(X)
is defined to be the topological space Xn−1 × ImX together with the group
structure

(ξ1, t1) · (ξ2, t2) def= (ξ1 + ξ2, t1 + t2 + 2ω(ξ1, ξ2)).

The Lie group N`n−1(X) is simply connected and connected. Moreove, the
group N`n−1(X) is nilpotent of step size two in the case X 6= R and abelian
in the case X = R. The center (in the nonabelian cases) is the commutator
subgroup, which can be identified with {0} × ImX .
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2.4 Automorphisms of the X–Heisenberg group

The automorphism group of the X –Heisenberg group Aut(N`n−1(X)) splits as
Inn(N`n−1) o Out(N`n−1). The inner automorphism group can be identified
with the vectors in Xn−1 which are ω–nondegenerate together with the zero
vector. In the real case, this set is just {0}, while in the other two cases, this
is the whole of Xn−1 .

The outer automorphism group is comprised of three types of automorphisms.
The first type of automorphism is a symplectic rotation given by S(ξ, t) = (Sξ, t)
for S ∈ Sp(ω). The second type of automorphism is a Heisenberg dilation given
by d(ξ, t) = (dξ, d2t) for d ∈ R× . Finally, we have X–scalar conjugation given
by ζ(ξ, t) = (ζ−1ξζ, ζ−1tζ) for ζ ∈ X× . The outer automorphism group is
generated by these three automorphisms. In summary, we have

Out(N`n−1(X)) =


GL(n− 1; R), X = R
Sp(2n − 2)×R×, X = C

Sp(ω)×R× ×H×, X = H.

2.5 Maximal compact subgroups

Our primary concern is with maximal compact subgroups Aut(N`n−1). The
maximal compact subgroups are of the form

M(X) =


O(BM(X)), X = R〈
U(HM(X)), ι

〉
, X = C

U(HM(X))× S, X = H,

where BM(X) is a symmetric, positive definite bilinear form, HM(X) is a signa-
ture (n − 1, 0) Hermitian form with ImHM(X) = ω , and S is the unit sphere
in H (equipped possibly with a nonstandard quaternionic structure). Since the
maximal compact subgroups are conjugate, each M(X) is conjugate to

Ms(X) =


O(n− 1), X = R
〈U(n− 1), ι〉 , X = C

Sp(n− 1)× SO(3), X = H.

For a given maximal compact subgroup M , we call the group N`n−1(X)oM a
unitary affine group and denote this group by UM (n−1;X). We call the group
N`n−1(X) o (M(X) ×R+) an X–Heisenberg similarity group and denote this
group by SM (n−1;X). Finally, we call the group N`n−1(X)oAut(N`n−1(X))
the X–Heisenberg affine group and denote it by Aff(N`n−1(X)).
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2.6 Almost crystallographic groups modelled on the
X–Heisenberg group

In this subsection, we introduce almost crystallographic groups modelled on the
X –Heisenberg group. We refer the reader to [9] or [27, Chapter II and VIII]
for a general treatment on discrete subgroups in nilpotent Lie groups.

By an almost crystallographic group or AC-group modelled on N`n−1(X), we
mean a discrete subgroup Γ < Aff(N`n−1)(X) such that N`n−1(X)/Γ is com-
pact and Γ ∩ N`n−1(X) is a finite index subgroup of Γ. When Γ is torsion
free, we say that Γ is an almost Bieberbach group or AB-group modelled on
N`n−1(X). Every AC-group modelled on N`n−1(X) is determined by the short
exact sequence

1 −→ L −→ Γ −→ θ −→ 1,

where L = Γ ∩N`n−1(X) and |θ| < ∞. We call L the Fitting subgroup of Γ
and θ the holonomy group of Γ.

It is well known (see [9, Ch. 3]) that the above exact sequence induces an
injective homomorphism ϕ : θ −→ Out(N`n−1(X)) < Aut(N`n−1(X)) which
we call the holonomy representation of θ . Since θ is finite, this is conjugate
into a representation ϕ : θ −→ M(X) for any M(X). This yields a faithful
representation ρ : Γ −→ UM (n− 1;X) for any M(X).

2.7 Almost flat manifolds

Let (Mn, g) be a complete Riemannian manifold. We let d = d(g), c−(g)
and c+(g) denote the diameter of M and the lower and upper bounds of the
sectional curvature of M , respectively, and set c(g) to be the maximum of |c+|
and |c−|. We say that M is almost flat if there exists a family of complete
Riemannian metrics gj on M such that

lim
j−→∞

d(gj)2c(gj) = 0.

Gromov [13] proved that every compact almost flat manifold is of the form
N/Γ, where N is a connected, simply connected nilpotent Lie group and Γ is
an AB-group modelled on N .

Of importance to us is some of the generalized Bieberbach theorem (see [9]).
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Theorem 2.1 (Generalized Bieberbach theorem)

(a) Let M be an almost flat manifold with universal cover N`n−1 . Then
there exists a faithful representation ϕ : π1(M) −→ Aff(N`n−1(X)) such
that ϕ(π1(M)) is an AB-group.

(b) M = N`n−1/Γ and M ′ = N`n−1/Γ′ are diffeomorphic if and only if there
exists α ∈ Aff(N`n−1) such that

Γ′ = α−1Γα.

In the remainder of this article we refer to compact almost flat manifolds as
infranil manifolds modelled on N , where N is the connected, simply connected
nilpotent cover. In the event the fundamental group is a lattice in N , we call
such manifolds nil manifolds modelled on N .

2.8 Maximal peripheral subgroups, stabilizer groups, and cusps

For a lattice Λ < Isom(Hn
X) with cusp at v , we define the maximal peripheral

subgroup of Λ at v to be the subgroup 4v(Λ) = Stab(v) ∩ Λ. This is the
subgroup generated by the parabolic and elliptic isometries of Λ fixing v . By the
Kazhdan-Margulis theorem (this is sometimes called Margulis’ lemma; see [27,
Chapter XI]), 4v(Λ) is virtually nilpotent. Specifically, the maximal nilpotent
subgroup of 4v(Λ) is given by L = 4v(Λ) ∩ N , where N is isomorphic to
N`n−1(X). Moreover, the Kazhdan-Margulis theorem allows us to select a
horosphere H such that H/4v(Λ) is embedded in Hn

X/Λ. In this case, we call
H/4v(Λ) a cusp cross-section of the cusp at v . Often when v is unimportant,
we simply write 4(Λ).

More generally, for any v ∈ ∂Hn
X , we define 4v(Λ) = Λ∩ Stab(v) and call this

subgroup the stabilizer group of Λ at v . There are three possibilities:

(1) 4v(Λ) is finite.

(2) 4v(Λ) is virtually cyclic with cyclic subgroup generated by a loxodromic
isometry.

(3) 4v(Λ) is an AC-group modelled on N`n−1(X).

2.9 Iwasawa decompositions of the isometry group

For the isometry group of X –hyperbolic n–space, we can decompose Isom(Hn
X)

as KAN via the Iwasawa decomposition (see [5, p. 311–313]). The factor N is
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isomorphic to the X –Heisenberg group N`n−1(X) and all isomorphisms arise
in the following fashion. Let H be a model Hermitian form for X –hyperbolic
n–space and V∞ be the H –orthogonal complement of v0 and v∞ , a pair of X –
linearly independent H –null vectors in Xn+1 . For a maximal compact group
M(X) with associated Hermitian form HM(X) , let

ψ : (Xn−1,HM(X)) −→ (V∞,H|V∞)

be any isometric X –isomorphism. This induces a map η : Xn−1 −→ N defined
by η(ξ) = exp(ψ(ξ)v∗∞ − v∞ψ(ξ)∗), where xy∗(·) = H(·, y)x is the Hermitian
outer pairing of x and y with respect to the Hermitian form H . This extends
to all of N`n−1(X) as these elements generate N`n−1(X). In fact, this extends
to η : SM (n − 1;X) −→ Isom(Hn

X). Since these isometries preserve v∞ , this
yields η(SM (n− 1;X)) = Stab(v∞).

2.10 Algebraic groups

As we use the language of algebraic groups throughout this paper, in this sub-
section we review some of the basic material. See [4] or [26, Ch. 2].

In the remainder of this article, all fields are assumed to be algebraic number
fields unless stated otherwise.

By a linear algebraic group we mean a subgroup of GL(n; C) which is closed in
the Zariski topology. We say that G is k–algebraic when there is a generating
set of k–polynomials for aG , the ideal vanishing on G. For any subring R ⊂ C,
we define the R–points of G to be the subgroup G∩GL(n;R). We denote the
R–points of G by GR .

A Borel subgroup of G is a maximal, connected solvable subgroup of G. Borel
subgroups of G are conjugate in G and conjugate into the subgroup of upper
triangular matrices. If G is k–algebraic, then B will be k′–algebraic for some
finite extension k′ of k .

A maximal algebraic torus T of G is a maximal diagonalizable algebraic sub-
group. If k is the field of definition for G, then the splitting field k′ for T is a
finite extension of k . This is the smallest field for which T can be diagonalized.
In particular, T will be a k′–algebraic group. We say that U < G is unipotent
if U is conjugate to a subgroup of the upper triangular matrices with ones
along the diagonal. Maximal unipotent subgroups U are connected, nilpotent,
algebraic subgroups and if G is k–algebraic, U is k′–algebraic for some finite
extension k′ of k . We note that every maximal torus T or maximal unipotent
subgroup U in G is contained in a Borel subgroup (see [4, Cor. 11.3]).
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Finally, we require the following lemma in the sequel and refer the reader to
[27, Cor. 10.14] for a proof. In the statement, Ok denotes the ring of algebraic
integers in the number field k (see [36]).

Lemma 2.2 Let f : G −→ G′ be a k–homomorphism of k–algebraic groups.
If Γ < Gk is commensurable with GOk , then there exists Γ′ < G′k , commensu-
rable with G′Ok such that f(Γ) < Γ′ .

3 Borel subgroup separability theorem

This section is devoted to proving the following result.

Theorem 3.1 (Borel subgroup separability theorem) Let G be a connected
k–algebraic group and B a Borel subgroup of G. Then any subgroup of BOk
is separable in GOk .

Before embarking upon the proof, we record some facts that will be needed.
We begin with the following lemma (see [20]).

Lemma 3.2 Let G be a group and H < K < G. If H is separable in G and
[K : H] <∞, then K is separable in G.

Lemma 3.3 Let G be a group and assume that H,L < G are separable in
G. Then H ∩ L is separable in G.

Proof Let γ ∈ G \ (H ∩ L) and assume that γ /∈ H . Since H is separable
in G, there exists a finite index subgroup K < G with H < K and γ /∈ K .
As H ∩ L < H , K separates γ and H ∩ L, as needed. For the alternative, an
identical argument is made.

Lemma 3.4 Let G be a group, G0 a subgroup of finite index, and H a
subgroup. H is separable in G if and only if (G0 ∩H) is separable in G0 .

Proof The direct implication follows immediately from Lemma 3.3, since
H ∩ G0 is separable in the larger group G. For the reverse implication, to
show that H is separable in G, by Lemma 3.2 it suffices to show that G0 ∩H
is separable in G. For g ∈ G \ (G0 ∩ H), there are two cases to consider. If
g /∈ G0 , then G0 separates G0 ∩H and g . Otherwise, if g ∈ G0 , since G0 ∩H
is separable in G0 , there exists a finite index subgroup K < G0 such that
G0 ∩ H < K and g /∈ K . Since [G : G0] < ∞, K is the desired finite index
subgroup of G separating G0 ∩H and g .
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The separability of Borel subgroups relies on the following result of Chahal
[6] which establishes the congruence subgroup property for solvable algebraic
groups defined over number fields. Before we state the result, we recall the
definition of congruence kernels and reduction homomorphisms.

For each ideal p < Ok , we can define the homomorphism (reduction modulo p)
rp : HOk −→ GL(m;Ok/p) by rp(γ) = (γij mod p)ij . By a congruence kernel
we mean a subgroup ker rp , for some (nontrivial) ideal p < Ok and denote this
subgroup by KH,p .

Theorem 3.5 Let H be a solvable k–algebraic group. Then every finite index
subgroup of HOk contains a congruence kernel.

3.1 The proof of Theorem 3.1

For the proof of Theorem 3.1, recall that G is a connected k–algebraic group
with a Borel subgroup B defined over k′ . The strategy for the proof is as
follows. If B is defined over k (G is k–split), the proof reduces to proving
that BOk is separable in GOk . For once this has been established, to separate
a subgroup of BOk in GOk , it suffices to separate the subgroup in BOk . The
latter is achieved by appealing to a theorem of Mal’cev. In the non-split case
when k′ is not contained in k , we enlarge our field to the composite field of k
and k′ and appeal to the split case. In the remainder of this subsection, we
give the details.

The following two lemmas comprise the key steps in the proof of Theorem 3.1.

Lemma 3.6 Let G be a connected k–algebraic group and B a k–defined
Borel subgroup of G. If BOk is separable in GOk , then every subgroup of BOk
is separable in GOk .

Lemma 3.7 Let G be a connected k–algebraic group and B a k–defined
Borel subgroup of G. Then BOk is separable in GOk .

Assuming these lemmas, we prove Theorem 3.1.

Proof of Theorem 3.1 The proof breaks into two cases, depending on
whether or not k′ ⊂ k .

Case 1 k′ ⊂ k

Algebraic & Geometric Topology, Volume 4 (2004)
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Since k′ ⊂ k , B is a k–defined Borel subgroup of G. Therefore by Lemma 3.7,
BOk is separable in GOk . Thus by Lemma 3.6, every subgroup of BOk is
separable in GOk , as desired.

Case 2 k′ is not contained in k

In this case, let k̂ denote the composite of k and k′ . Then G is a k̂–algebraic
group and B is a k̂–defined Borel subgroup. Therefore by Lemma 3.7, BO

k̂
is

separable in GO
k̂
. Thus by Lemma 3.6, every subgroup of BO

k̂
is separable in

GO
k̂
. Since k ⊂ k̂ , BOk ⊂ BO

k̂
and so every subgroup of BOk is separable in

GO
k̂
. Thus every subgroup of BOk is separable in the smaller group GOk .

We are now left with the task of verifying Lemma 3.6 and Lemma 3.7.

Proof of Lemma 3.6 Let S < BOk be a subgroup. For γ ∈ GOk \ S , there
are two cases to consider. First, if γ /∈ BOk , then by the separability of BOk
we can find a finite index subgroup K < GOk such that S < BOk < K and
γ /∈ K . If γ ∈ BOk we argue as follows. Since BOk is polycyclic ([27, p. 53] or
[34, p. 196]) it is LERF by [22]. Therefore there exists a finite index subgroup
KB < BOk such that S < KB and γ /∈ KB . By Theorem 3.5, BOk has the
congruence subgroup property. Thus there exists a congruence kernel KB,p of
BOk with KB,p < KB . As KB,p is the intersection of BOk with the congruence
kernel KG,p of GOk , by Lemma 3.3, KB,p is separable in GOk . By Lemma 3.2,
KB is separable in GOk , since [KB : KB,p] < ∞. Consequently, we can find a
finite index subgroup K < GOk such that S < KB < K and γ /∈ K . Therefore
S and γ are separated in GOk .

The proof of Lemma 3.7 follows from a more general result established in [2]
(see also [23]):

Proposition 3.8 Let H be an algebraic group in a linear algebraic group G
and Γ a finitely generated subgroup of G. Then H ∩ Γ is separable in Γ.

Lemma 3.7 follows from Proposition 3.8 by setting H = B and Γ = GOk .

The proof of Theorem 3.1 works in greater generality. Specifically,

Corollary 3.9 Let G be a connected k–algebraic group and N a k′–algebraic
subgroup with k ⊂ k′ . If NOk′ has the congruence subgroup property, then a
finitely generated subgroup L of NOk is separable in GOk if and only if L is
separable in NOk .
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3.2 Corollaries to Theorem 3.1

In this subsection, we state a few corollaries to Theorem 3.1 pertaining to
general algebraic groups.

Our first corollary shows that the conclusions of Theorem 3.1 hold for any
subgroup of G commensurable with GOk . We call such subgroups k–arithmetic
subgroups.

Corollary 3.10 Let G be a connected k–algebraic group, Λ a k–arithmetic
subgroup in G, and B a Borel subgroup of G. Then every subgroup of Λ ∩B
is separable in Λ.

Proof For a subgroup S < B∩Λ, by Lemma 3.4, it suffices to separate S∩GOk
in GOk ∩Λ. Since S ∩GOk is a subgroup of BOk , by Theorem 3.1, S ∩GOk is
separable in GOk . Thus, S ∩GOk is separable in GOk ∩ Λ.

As a result of Corollary 3.10, every corollary and theorem stated below im-
plies the same result for any k–arithmetic subgroup in G. Consequently, we
only state the results for group of k–integral points. The connected assump-
tion is unnecessary since every k–algebraic group has finitely many connected
components (see [26, p. 51]).

One corollary to Theorem 3.1 is:

Corollary 3.11 Let G be a connected k–algebraic group.

(a) If U < G is a maximal unipotent subgroup, then every subgroup of UOk
is separable in GOk .

(b) If T < G is a maximal torus, then every subgroup of TOk is separable in
GOk .

(c) If S < GOk is a solvable subgroup, then S is separable in GOk .

Proof (a) and (b) follow immediately from Theorem 3.1 since U and T are
contained in a Borel subgroup. For (c), since every solvable subgroup is virtually
contained in a Borel subgroup (see [4, p. 137]), by Lemma 3.2, it suffices to
separate S ∩B in GOk . The latter is done using Theorem 3.1.

For a k–algebraic group G, by an arithmetic G–orbifold, we mean a topological
manifold of the form G/Λ, where Λ is an arithmetic lattice in G.
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Theorem 3.12 Let ρ : N −→M be a π1–injective immersion of an infrasolv
manifold N into an arithmetic G–orbifold M . Then there exists a finite cover
ψ : M ′ −→M such that ρ lifts to an embedding.

Proof The map ρ induces a homomorphism ρ∗ : π1(N) −→ π1(M). Since
N is an infrasolv manifold, ρ∗(π1(N)) is a solvable subgroup of π1(M). Since
π1(M) = Λ, for some arithmetic lattice in G, by Corollary 3.11, ρ∗(π1(M)) is
separable in π1(M). It now follows by a standard argument (see [18]) that ρ
can be promoted to an embedding in some finite covering of M .

4 The stabilizer subgroup separability theorem

In this section we prove Theorem 1.3 and corollaries specific to lattices in the
isometry group of hyperbolic space.

4.1 Stabilizer subgroup separability

As mentioned in §2.7, there is a simple trichotomy for the stabilizer groups of
light-like vectors for X –hyperbolic lattices. For a lattice Λ < Isom(Hn

X) and
v ∈ ∂Hn

X , exactly one of the following holds:

(1) 4v(Λ) is finite.

(2) 4v(Λ) is virtually cyclic with maximal cyclic subgroup generated by a
loxodromic isometry.

(3) 4v(Λ) is an AC-group modelled on the X –Heisenberg group N`n−1(X).

Proof of Theorem 1.3 To prove Theorem 1.3, we split our consideration
naturally into three cases depending on the above trichotomy.

Since X –hyperbolic lattices are residually finite it follows easily from Lemma 3.2
that subgroups in case (1) are separable. For X = R or C, case (2) follows
exactly the proof in [14] on noting GL(n; C) −→ GL(2n; R). For X = H or
O, since every lattice in Isom(Hn

H) and Isom(H2
O) is arithmetic, we can apply

Corollary 3.11 (c) to separate.

For (3), as peripheral subgroups are virtually unipotent, Corollary 3.11 handles
this case. To be complete, we first realize the arithmetic lattice Λ as a subgroup
of GL(m;Q) with a finite index subgroup in GL(m;Z) and finish by applying
Corollary 3.10 with Corollary 3.11.
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Remark In [14], Hamilton proved that in a cocompact lattice Λ < Isom(Hn
R),

every virtually abelian subgroup is separable. As her proof does not require
arithmeticity, our proof of Theorem 1.3 uses arithmeticity only in (3).

Corollary 4.1 Let Λ be an arithmetic real hyperbolic lattice and A an abelian
subgroup. Then A is separable in Λ.

The analog of abelian subgroups in the complex, quaternionic, octonionic set-
tings are nilpotent subgroups. In the complex setting, we have:

Corollary 4.2 Let Λ be an arithmetic complex hyperbolic lattice and N a
nilpotent subgroup. Then N is separable in Λ.

Since all lattices in Isom(Hn
H) and Isom(H2

O) are arithmetic, we may drop the
arithmeticity condition to obtain:

Corollary 4.3 Let Λ be a lattice in Isom(Hn
H) or Isom(H2

O) and N a nilpo-
tent subgroup. Then N is separable in Λ.

5 A necessary and sufficient condition for arithmetic

admissibility

The goal of this section is to give a classification of cusp cross-sections of arith-
metic X –hyperbolic n–orbifolds. By Theorem 1.5, we are reduced to classifying
AB-groups which admit injections into arithmetic X –hyperbolic lattices. The
main point of this section is to prove that this is equivalent to constructing
injections into arithmetically defined subgroups of unitary affine groups. The
latter groups are easier to work with in regard to this problem, as the gen-
eralized Bieberbach theorems ensure the existence of injections. The proof of
this reduction relies on being able to realize unitary affine groups as algebraic
subgroups in the isometry group of X –hyperbolic space. In total, this section
is straightforward with the bulk of the material consisting of terminology, no-
tation, and formal manipulation. We hope the main point of this section is not
lost in this.
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5.1 Characterization of noncocompact arithmetic lattices

In this subsection, we give the classification of noncocompact arithmetic X –
hyperbolic n–lattices. This is originally due to Weil [35]. We refer the reader
to [24] for a proof.

Theorem 5.1 Let Λ be a noncocompact arithmetic lattice in Isom(Hn
X).

(a) If X = R, then Λ is conjugate to an arithmetic lattice in O(B), where
B is a signature (n, 1) bilinear form defined over Q.

(b) If X = C, then Λ is conjugate to an arithmetic lattice in U(H), where
H is a Hermitian form of signature (n, 1) defined over an imaginary
quadratic number field.

(c) If X = H, then Λ is conjugate to an arithmetic lattice in U(H), where H
is a Hermitian form of signature (n, 1) defined over a definite quaternion

algebra with Hilbert symbol
(
−a,−b
Q

)
for a, b ∈ N.

5.2 Algebraic structure of unitary affine groups

Recall for each maximal compact subgroup M(X) of Aut(N`n−1), we defined
the unitary affine group UM (n−1;X) to be N`n−1(X)oM(X). The algebraic
structure of these groups is completely determined by the algebraic structure
of the maximal compact subgroup. Specifically, UM (n− 1;X) is k–algebraic if
and only if M is k–algebraic. In turn, the algebraic structure of M is controlled
by the finite index subgroup U(HM ). For these groups, U(HM ) is k–algebraic
if and only if HM is defined over k .

In the real setting, these groups are of the form O(B∞), where B∞ is a sym-
metric, positive definite bilinear form and the form B∞ will be defined over a
subfield k ⊂ R. In the complex setting, these groups are of the form U(H∞),
where H∞ is a Hermitian form of signature (n− 1, 0) and H∞ will be defined
over a subfield k ⊂ C. In the quaternionic setting, these groups are of the form
U(H∞), where H∞ is a Hermitian form of signature (n − 1, 0) and H∞ will
be defined over a subalgebra A ⊂ H. Our only interest is when k is a number
field in the first two settings or A is a quaternion algebra defined over a number
field in the last setting.
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5.3 Arithmetically defined subgroups of unitary affine groups

For an AB-group Γ modelled on N`n−1(X), we saw in §2.6 that Γ can be
conjugated into a subgroup of a unitary affine group UM (n − 1;X) for any
M(X). If this unitary affine group is k–algebraic and Γ is contained in the
k–points, we say that Γ is k–defined. When Γ is commensurable with the
Ok–points (Ok is either the ring of integers of k or a maximal order in the
quaternion algebra), we say that Γ is a k–arithmetic subgroup. Note that if Γ
is k–defined, then by conjugating by a Heisenberg dilation, we can arrange for
Γ to be commensurable with a subgroup of the Ok–points of the unitary affine
group.

5.4 The quaternionic setting

In the quaternionic setting, we can realize UM (n−1; H) as k̂–algebraic subgroup
of GL(m; R), where k̂ is the field for which the quaternion algebra A is defined.
For a maximal order O in A (see [21]), if Γ has a finite index in the O–points
of some unitary affine group UM (n − 1; H), when we realize UM (n − 1; H) as
a k̂–algebraic group, Γ will have a finite index subgroup in the O

k̂
–points of

this group.

In our notation, we will refer to UM (n − 1; H) as being A–defined, subgroups
Γ which are commensurable with U(n − 1;O) for some maximal order O as
being A–arithmetic, and homomorphisms as being A–defined. Since when we
realize U(n− 1; H) as a k̂–algebraic group, these definitions correspond to the
standard algebraic definitions (over the field k̂), this is only a slight abuse of
notation.

5.5 k–monomorphisms of unitary affine groups into the isome-
try group

In this subsection, we characterize when a unitary affine group admits a k–
algebraic structure via embeddings into the isometry group of X –hyperbolic
space.

Let UM (n − 1;X) be a k–algebraic unitary affine group. Then HM(X) , the
associated Hermitian form for M(X), is defined over k . Set H = HM(X)⊕D2 ,
with H defined on Xn−1 ⊕ X2 and (X2,D2) is a k–defined X –hyperbolic
plane. Finally, let V∞ denote the H –orthogonal complement in Xn+1 of a pair
of X –linearly independent, k–defined, H –null vectors v and v0 in (X2,D2).
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Let ψ : (Xn−1,HM(X)) −→ (V∞,H|V∞) be any isometric isomorphism defined
over k . This X –linear map induces a k–isomorphism

ρ : UM (n− 1;X) −→MN,

where N and M are factors in the Iwasawa decomposition induced on Stab(v)
with respect to the above pair of H –null vectors. Since both vectors are k–
defined, it follows that MN is k–algebraic.

As a result of this discussion, we have the following proposition.

Proposition 5.2 UM (n−1;X) is a k–algebraic group if and only if there exists
a Hermitian form H of signature (n, 1) defined over k and a k–isomorphism
ρ : UM (n− 1;X) −→MN < Isom(Hn

X) where Hn
X is modelled on H .

5.6 A necessary and sufficient condition for arithmeticity

In this subsection, we classify cusp cross-sections of arithmetic hyperbolic lat-
tices. In the previous subsection, we related the algebraic structure of ab-
stractly defined unitary affine groups via embeddings into the isometry group
of X –hyperbolic space. In this subsection, we do the same for AB-groups.

We start with the following proposition which determines when an AB-group
is k–defined.

Proposition 5.3 Γ is a k–defined AB-group modelled on N`n−1(X) if and
only if there exists a k–defined Hermitian form H modelling X –hyperbolic
n–space, a subgroup Λ < U(H; k) commensurable with U(H;Ok), and an
injection ρ : Γ −→ Stab(v) ∩ Λ for some k–defined light-like vector v .

Proof For the direct implication, assume Γ < UM (n− 1;X), for a k–defined
unitary affine group. Let ρ : UM (n − 1;X) −→ MN < U(H) be a
k–isomorphism given by Proposition 5.2. This gives us a k–monomorphism
ρ : UM (n− 1;X) −→ U(H) of k–algebraic groups. By Lemma 2.2, there exists
Λ < U(H; k), commensurable with U(H;Ok) such that ρ(Γ) < Λ, as asserted.

For the reverse implication, we assume the existence of H , Λ, ρ, and v . Note
that for the Fitting subgroup L of Γ, ρ(L) < N , for some nilpotent factor
of an Iwasawa decomposition. Since L is Zariski dense in N and consists of
k–points, N is a k–algebraic subgroup. Since ρ(Γ) is virtually contained in N ,
ρ(Γ) < MN , for the compact factor M of an Iwasawa decomposition MAN
of Stab(v). Since the group M can be selected to be k–algebraic, we have
ρ(Γ) < MN , where MN is a k–algebraic unitary affine group, as desired.
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For an AB-group Γ modelled on N`n−1(X), we say that Γ is arithmetically
admissible if there exists an arithmetic X –hyperbolic n–lattice Λ such that
Γ is isomorphic to 4v(Λ). Altogether we have the following theorem which
classifies the arithmetically admissible AB-groups (part (a) is proved in [20]).

Theorem 5.4 (Cusp classification theorem) Let Γ be an AB-group modelled
on N`n−1(X).

(a) For X = R, Γ is arithmetically admissible if and only if Γ is a Q–
arithmetic subgroup in Rn−1 oO(B∞), where B∞ is a Q–defined, posi-
tive definite, symmetric bilinear form on Rn−1 .

(b) For X = C, Γ is arithmetically admissible if and only if Γ is a k–
arithmetic subgroup in a unitary affine group for some imaginary
quadratic number field k .

(c) For X = H, Γ is arithmetically admissible if and only if Γ is a A–
arithmetic subgroup in a unitary affine group, for some quaternion algebra

A with Hilbert symbol
(
−a,−b
Q

)
for a, b ∈ N.

Proof The direct implication is immediate in all three case. For the converse,
assume that Γ is a k–arithmetic subgroup in a unitary affine group, where
k is as above. By Proposition 5.3, there exists a k–defined Hermitian form
H modelling X –hyperbolic n–space, a subgroup Λ < U(H; k) commensurable
with U(H;Ok), and an injection ρ : Γ −→ Stab(v) ∩ Λ for some k–defined
light-like vector v . ρ(Γ) must be a finite index subgroup of 4v(Λ) and by
Theorem 5.1, Λ is an arithmetic subgroup. In this injection we cannot ensure
that ρ(Γ) = 4v(Λ). As Λ is an arithmetic subgroup in the k–algebraic group
U(H), by Theorem 1.3, we can find a finite index subgroup Π < Λ such that
ρ(Γ) = 4v(Π). Specifically, select a complete set of coset representatives for
4v(Λ)/ρ(Γ), say α1, . . . , αr . By Theorem 1.3, there exists a finite index sub-
group Π of Λ such that ρ(Γ) < Π and for each j = 1, . . . , r , αj /∈ Π. It then
follows that 4v(Π) = ρ(Γ), as desired.

Remark Using the Bieberbach theorems, we can easily see from (a) that every
Bieberbach group is arithmetically admissible. Altogether, this yields a slightly
simpler proof of the main result in [20].

For an AB-group Γ modelled on N2n−1 , we say that the holonomy group θ
of Γ is complex if θ ⊂ U(HM(X)) < M(X) for the holonomy representation.
Otherwise, we say that θ is anticomplex. We have the following alternative
characterization based on the structure of the holonomy representation.
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Corollary 5.5 (Holonomy theorem) Let Γ an AB-group modelled on N2n−1

with complex holonomy. Then Γ is arithmetically admissible if and only if the
holonomy representation ϕ is conjugate to a representation

ρ : θ −→ GL (n− 1; k)

for some imaginary quadratic number field.

Proof If Γ is arithmetically admissible, then from Theorem 5.4, there exists
a k–defined unitary affine group UM (n − 1; k) such that Γ is conjugate into
UM (n − 1; k) and commensurable with UM (n − 1;Ok), for some imaginary
quadratic number field k . This yields an injective homomorphism

ρ : θ −→M(k).

Since θ complex, ρ(θ) < U(HM(X); k), which is a subgroup of GL(n− 1; k), as
desired.

For the converse, assume that the holonomy representation of θ maps into
GL(n − 1; k), for some imaginary quadratic number field k . By taking the
θ–average of any k–defined Hermitian form, we see that this representation is
contained in a k–defined unitary group U(HM(X); k). Using this representa-
tion and a presentation for Γ, we get a system of linear homogenous equations
with coefficients in k . Since ρ is conjugate to the holonomy representation, by
the generalized Bieberbach theorems, this system has a solution which yields
a faithful representation into N2n−1(k) o U(HM(X); k). By conjugating by a
Heisenberg dilation to ensure that the Fitting subgroup consists of k–integral
entries, we see that Γ is k–arithmetic. Therefore, by Theorem 5.4, Γ is arith-
metically admissible.

6 Families of examples

In this section, we give examples which show that the characterization of arith-
metic admissibility is nontrivial. These examples constitute a proof of Theo-
rem 1.2.

6.1 Prime order holonomy

Let Γ be an AB-group modelled on N2n−1 with cyclic order p holonomy, Cp ,
where p is an odd prime. Note that this holonomy is necessarily complex and
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so acts trivially on the center of the Fitting subgroup. By taking the quotient
of Γ by its center, we get an (2n− 2)–dimensional Bieberbach group with Cp–
holonomy. By the Bieberbach theorems, there exists a faithful representation
of Cp into GL(2n− 2;Z). This can occur only when p− 1 ≤ 2n− 2. That such
AB-groups exist in dimension 2n− 1 can be shown by explicit construction.

The following proposition shows that there are infinitely many AB-groups mod-
elled on N2n−1 for infinitely many n which are not arithmetic admissible.

Proposition 6.1 Let Γp denote an AB-groups modelled on N2n−1 with holon-
omy Cp and 2(n − 1) = p − 1. If Γp is arithmetically admissible, then p ≡ 3
mod 4.

Proof If Γp is arithmetically admissible, by Corollary 5.5, there exists a faith-
ful representation (k is an imaginary quadratic number field)

ρ : Cp −→ GL
(
p− 1

2
; k
)
.

Let kρ denote the field generated by the traces of ρ(ξ) for a generator
ξ ∈ Cp and note that kρ ⊂ k . The representation ρ is conjugate to one
which decomposes into a direct sum of characters χj : Cp −→ C× (see [8] or
[30]). Each of these characters χj is of the form χj(ξ) = ζ

nj
p . Therefore

Tr(ρ(ξ)) =

p−1
2∑
j=1

ζ
nj
p .

Since ρ is faithful, for some j , nj 6= 0 mod p. By considering the cyclotomic
polynomial Φp(x), we deduce that Tr(ρ(ξ)) /∈ Q and so kρ is a nontrivial
extension of Q. On the other hand, from the decomposition above, kρ ⊂ Q(ζp).
Since [k : Q] = 2, it must be that k = kρ . Hence Q(ζp) contains an imaginary
quadratic extension of Q. By quadratic reciprocity, this can happen if and only
if p ≡ 3 mod 4.

It is worth noting for p ≡ 1 mod 4, Corollary 5.5 can be used to show that such
AB-groups are arithmetically admissible and the field k is the unique imaginary
quadratic number field in Q(ζp). Moreover, the holonomy generator acts by the
matrix ResQ(ζp)/k(ζp), where Res denotes the restriction of scalar operation.

Remark Note when p > 5, we get an obstruction without appealing to The-
orem 5.4. In this case, we have an injection

ρ : Cp −→ U(H; k) < GL
(
p+ 1

2
; k
)
.
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So long as (p + 1)/2 < p− 1, this implies p ≡ 3 mod 4.

In the quaternionic setting, take Γ modelled on N7(H) with C5 –holonomy
where the action of C5 on the center of N7(H) is trivial. If Γ is arithmetically
admissible, we obtain an injection of C5 into A, a definite quaternion algebra
over Q. However, this is impossible since such A do not contain elements of
order five (see [33]). Thus Γ cannot be arithmetically admissible. This yields:

Proposition 6.2 There exists infinitely many nonarithmetically admissible
AB-groups modelled on N7(H).

In the next subsection, by taking products of this example with quaternionic
nil-tori, we can construct infinitely many examples in N4n+3(H) for 4n+3 > 7.

6.2 Central products

In the complex setting, we get arithmetically inadmissible examples in every
dimension greater than two by constructing new AB-groups from a pair of AB-
groups. The details are as follows.

Let Γ1 and Γ2 denote a pair of AB-groups modelled on N2n1−1 and N2n2−1 ,
respectively. We define Γ = Γ1×cΓ2 to be the group Γ1×Γ2/NΓ1×Γ2(

〈
c1c
−1
2

〉
),

where cj is the generator of the center of the Fitting subgroup Lj of Γj and
NΓ1×Γ2(c1c−1

2 ) denotes the normal closure of
〈
c1c
−1
2

〉
in Γ1 × Γ2 . We call this

the central product of Γ1 and Γ2 .

Lemma 6.3 If θ1 and θ2 , the respective holonomy groups, are either both
complex or both anticomplex, then Γ1 ×c Γ2 is an AB-group modelled on
N2(n1+n2)−1 .

Proof As we only make use of the case when the holonomy groups are com-
plex, we leave the anticomplex case for the reader. To begin, we have natural
inclusions of N2n1−1 and N2n2−1 into N2(n1+n2)−1 induced by

ρj : Cnj −→ Cn1 ⊕Cn2.

In fact, this yields inclusions of CnjoGL(nj; C) into Cn1+n2oGL(n1 +n2; C).
As a result, we have an injective homomorphism of Γ1×c Γ2 onto an AB-group
in Aff(N2(n1+n2)−1). By carefully selecting the maps ρj , we can ensure that
the induced maps agrees on the center of the Fitting subgroups of Γ1 and Γ2 .
With this selection, the induced map becomes an isomorphism of Γ1×cΓ2 with
an AB-group in N2(n1+n2)−1 , as desired.
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Remark In the complex holonomy case, the group
〈
c1c
−1
2

〉
is normal.

Using central products we can construct many arithmetically inadmissible AB-
groups. We summarize this in the following theorem which proves Theorem 1.2
(a).

Theorem 6.4 (Central product theorem) Let Γ1 and Γ2 be AB-groups mod-
elled on N2n1−1 and N2n2−1 , defined over k1 and k2 , respectively. Assume Γ1

and Γ2 are both complex or anticomplex.

(a) Γ1 ×c Γ2 is k1k2 –defined.

(b) Γ1×c Γ2 is k–arithmetic if and only if both Γ1 and Γ2 are k–arithmetic.

(c) There exist arithmetically inadmissible AB-groups modelled on N2n−1

for all n ≥ 3.

Proof For (a), let M1(X) and M2(X) denote the maximal compact groups
defined over k1 and k2 and for which Γj injects into the kj –points of
N2nj−1(X) o Mj(X). Associated to each of these maximal compact groups
is a kj –defined Hermitian form Hj . Let H = H1 ⊕ H2 and M(X) be the
associated maximal compact subgroup. M(X) is k1k2–define and we have an
injection (into the k1k2 –points) ρ : Γ1×cΓ2 −→ N2(n1+n2)−1(X)oM(X). Thus
Γ1 ×c Γ2 is k1k2–defined.

For (b), if Γ = Γ1 ×c Γ2 is k–arithmetic, then Γ is isomorphic to a maximal
peripheral subgroup of an arithmetic lattice Λ in U(H), where H is a signature
(n1 + n2, 1) Hermitian form defined over an imaginary quadratic number field
k . It must be that Γj injects into a subgroup Λj of Λ which is maximal
with respect to stabilizing a k–defined complex subspace Cnj ,1 . As Λj is
an arithmetic lattice in a smaller isometry group (whose model form is the
restriction of H to the complex subspace Cnj ,1 ), this shows that Γj is k–
arithmetic for j = 1, 2. The reverse implication follows immediately from (a).

For (c), by Proposition 6.1, there exists an arithmetically inadmissible AB-
group modelled on N5 . To obtain examples in higher dimensions, we take
central products of this example with other AB-groups and apply (b).

The quaternionic setting can be handled similarly. We construct examples in
every dimension by taking central products with the inadmissible example Γ in
N7(H) given above.

Corollary 6.5 There exist arithmetically inadmissible AB-groups modelled
on N4n−1(H) for all n ≥ 2.
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Remark Theorem 1.2 (b) shows that a quaternionic version of Conjecture 1.1
(a) is false. Namely, there exist almost flat manifolds modelled on the quater-
nionic Heisenberg group which cannot arise as the a cusp cross-section of a
1-cusped quaternionic hyperbolic manifold. The author has been informed by
Walter Neumann and Alan Reid that nil 3–manifold groups exist which can-
not arise as a cusp cross-section of a 1–cusped complex hyperbolic 2–manifold.
In fact, Yoshinobu Kamishima [16] proves that no nil 3–manifold group with
nontrivial holonomy can arise as a cusp cross-section of a 1–cusped complex
hyperbolic 2–manifold.

7 Analysis in low complex dimensions

In this section, we work out the specific details of Theorem 5.4 for closed nil
3–manifold groups. In particular, we prove Corollary 1.6. Before we undertake
this task, it is worth noting that the validity of Corollary 1.6 follows almost
at once from Corollary 5.5. The only ingredient needed is the classification
of nil 3–manifold groups given below. However, in this section we explicitly
construction the desired k–integral representations for such groups to better
illustrate the proof of Theorem 5.4.

7.1 Some preliminary material

In this subsection, we give an alternative (more traditional) description of nil
3–manifolds and list the classification of closed nil 3–manifold groups. See [29]
for a reference on this material.

The 3–dimensional Heisenberg group also has a definition as

N3 =


1 x t

0 1 y
0 0 1

 : x, y, t ∈ R

 .

We will identify S1 with the rotations in the xy–plane. An orientable nil 3–
manifold is a manifold of the form N3/Γ, where Γ is a discrete subgroup of
N3oS1 which acts freely. As we will have need for this in the sequel, we must
also consider an orientation reversing involution given by

ι̃

1 0 0
0 1 y
0 0 1

 =

1 0 0
0 1 −y
0 0 1

 , ι̃

1 x 0
0 1 0
0 0 1

 =

1 x 0
0 1 0
0 0 1

 .
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As automorphisms of lattices of N3 uniquely determine automorphisms of N3

by Mal’cev rigidity, this determines a continuous isomorphism of N3 . A nil
3–manifold is a manifold of the form N3/Γ, where Γ is a discrete subgroup of〈
N3 o S1, ι̃

〉
which acts freely.

Remark This terminology follows [29] and [31]. However, in our terminology
which follows [9], such manifolds should be called infranil 3–manifolds. We
adhere to the first in this section and hope no confusion arises from this.

In §2, we gave a general definition of the Heisenberg group. That these two
definitions coincide follows from the fact that both groups are connected, sim-
ply connected 2–step nilpotent Lie groups of dimension three and there is a
unique such Lie group (up to Lie isomorphism) that has these properties. More
generally, any simply connected, connected, 2–step nilpotent group with 1–
dimensional center is uniquely determined (see [24]) and is Lie isomorphic to
the the Heisenberg group which we defined in §2.

In this form, we identify S1 with U(1), where U(1) acts (as above) by

U(z, t) = (Uz, t).

We also identify ι and ι̃, where ι is the isometry induced by complex conjuga-
tion. When the nil 3–manifold is closed, N3 ∩ Γ must be finite index in Γ and
N3/(N3 ∩ Γ) must be compact.

The following is a complete list of closed nil 3–manifold groups (see [9, p. 159–
166]).

(1)

〈a, b, c : [b, a] = ck, [c, a] = [c, b] = 1〉.
with k ∈ N .

(2)

〈a, b, c, α : [b, a] = ck, [c, a] = [c, b] = [α, c] = 1, αa = a−1α

αb = b−1α, α2 = c〉,

with k ∈ 2N .

(3)

〈a, b, c, α : [b, a] = c2k, [c, a] = [c, b] = [a, α] = 1, αc = c−1α,

αb = b−1αc−k, α2 = a〉

with k ∈ N .
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(4)

〈a, b, c, α, β : [b, a] = c2k, [c, a] = [c, b] = [c, α] = [a, β] = 1,

βc = c−1β, αa = a−1αck, αb = b−1αc−k,

α2 = c, β2 = a, βb = b−1βc−k, αβ = a−1b−1βαc−k−1〉,

with k ∈ 2N .

(5)

〈a, b, c, α : [b, a] = ck, [c, a] = [c, b] = [c, α] = 1, αa = bα,

αb = a−1α, α4 = cp〉,

with k ∈ 2N and p = 1 or k ∈ 4N and p = 3.

(6)

〈a, b, c, α : [b, a] = ck, [c, a] = [c, b] = [c, α] = 1, αa = bαck1 ,

αb = a−1b−1α, α3 = ck2〉

with k > 0 and

k ≡ 0 mod 3, k1 = 0, k2 = 1, or k ≡ 0 mod 3, k1 = 0, k2 = 2,

or
k ≡ 1, 2 mod 3, k1 = 1, k2 = 1.

(7)

〈a, b, c, α : [b, a] = ck, [c, a] = [c, b] = [c, α] = 1, αa = abα,

αb = a−1α, α6 = ck1〉,

with k > 0 and

k ≡ 0 mod 6, k1 = 1, or k ≡ 4 mod 6, k1 = 1,

or
k ≡ 0 mod 6, k1 = 5, or k ≡ 2 mod 6, k1 = 5.

7.2 Nil 3–manifolds

Let M be a closed nil 3–manifold with π1(M) = Γ. By Theorem 2.1, in order to
prove Corollary 1.6, it suffices to show that Γ ∼= 4(Λ), where Λ is an arithmetic
lattice in Isom(H2

C). In fact, by Theorem 1.5 it suffices to construct an injective
homomorphism ϕ : Γ −→ 4(Λ).

Let N(3) = N3 o U(1) and ι be the isometry of H2
C induced by conjugation.

For a subring R ⊂ C, we define N3(R) = R × ImR with the induced group
operation and set N(3, R) = N3(R)oU(1;R).

For the statement, let ζ3 be a primitive third root of unity, say

ζ3 = −1/2 +
√
−3/2.
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Theorem 7.1 Let M be a closed nil 3–manifold M and Γ = π1(M). Then
there exists a faithful representation ϕ : Γ −→ 〈N(3,Ok), ι〉 with k = Q(i) or
Q(ζ3).

Proof We begin by summarizing the strategy of the proof, which depends
heavily on the list of presentations for the fundamental group of a closed nil 3–
manifold in previous subsection. The idea is to show that an injective homomor-
phism on the Fitting subgroup 〈a, b, c〉 can be promoted to the full 3–manifold
group (see [9, Thm 3.1.3]). To get a representation with the coefficients in Z[i]
or Z[ζ3], we are reduced to solving some simple equations. The details are as
follows.

In the lemma below, let p1 : N3 −→ C be projection onto the first factor.

Lemma 7.2

(a) Let a and b be as above and ρ : 〈a, b, c〉 −→ N3 be a homomorphism. If
p1(ρ(a)) and p1(ρ(b)) are Z–linearly independent and c /∈ ker ρ, then ρ
is injective.

(b) Let ρ : Γ −→ 〈N(3), ι〉 be a homomorphism. If ρ−1(ρ(〈a, b, c〉)) = 〈a, b, c〉 ,
and ρ|〈a,b,c〉 is an injective homomorphism, then ρ is an injective homo-
morphism.

Proof For (a), let w ∈ ker ρ and write w = an1bn2cn3 . Also, let
ρ(a) = (v1, ta), ρ(b) = (v2, tb). Since [a, b] = ck , it must be that ρ(c) = (0, s)
as [N3,N3] = {(0, t) : t ∈ R}. With this said, we see that

ρ(w) = (n1v1 + n2v2, n1ta + n2tb + 2 Im 〈n1v1, n2v2〉+ n3s).

Since w ∈ ker ρ, n1v1 + n2v2 = 0. The Z–linear independence of v1 and v2

implies n1 = n2 = 0. Therefore n3s = 0, and so n3 = 0, as s 6= 0.

For (b), let w ∈ ker ρ and write

w = an1bn2cn3αs1βs2, n1, n2, n3, s1, s2 ∈ Z.

Since ρ(w) = 1, using the above form for w , we have

ρ(an1bn2cn3) = ρ(α−s1β−s2).

Since ρ−1(ρ(〈a, b, c〉)) = 〈a, b, c〉 , it must be that αs1βs2 ∈ 〈a, b, c〉 . Thus
w ∈ 〈a, b, c〉 . Since ρ|〈a,b,c〉 is one-to-one, w = 1, as desired.
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Remark Notice that for (b), we only require that if ρ(αs1βs2) ∈ ρ(〈a, b, c〉)
then αs1βs2 ∈ 〈a, b, c〉 . Moreover, we only need to check for s1 ∈ {1, . . . , kα}
and s2 ∈ {1, . . . , kβ} where kε is the first integer such that εkε ∈ 〈a, b, c〉 , ε = α
or β .

Let L = 〈a, b, c〉 and define two homomorphisms ϕ3, ϕ4 : L −→ N3 by
ϕj(a) = (1, 0) and ϕj(b) = (ζj, 0). This determines c, since some power of
c is a commutator of a and b. By Lemma 7.2 (a), both maps are injective
homomorphisms.

We extend this to Γ by declaring

ϕj(α) = (z1, t1, η1), ϕj(β) = (z2, t2, η2), (1)

where z1, z2 ∈ C, t1, t2 ∈ R, and η1, η2 ∈ 〈U(1), ι〉 .
To solve Equation (1), we simply use the presentations above to ensure that this
yields a homomorphism. By applying Lemma 7.2 (b), one can see that these
solutions yield injective homomorphisms. For clarity, we solve the equations
for the second family (2) and give a list of the equations and solutions for the
seventh family (7). We relegate the rest of the solutions to the appendix.

The second family has presentation〈
a, b, c, α : [b, a] = ck, [c, a] = [c, b] = [c, α] = 1, αa = a−1α, αb = b−1α, α2 = c

〉
with k ∈ 2N. For this family we take the map ϕ4 . First, consider the relation

[b, a] = ck . Then

[ϕ4(b), ϕ4(a)] = [(i, 0, 1), (1, 0, 1)]
= (i+ 1, 2 Im 〈i, 1〉 , 1)(−i − 1, 2 Im 〈−i,−1〉 , 1)
= (0, 4, 1).

Since [ϕ4(b), ϕ4(b)] = ϕ4(c)k , it follows that ϕ4(c) = (0, 4/k, 1).

Next, consider the relation α2 = c. We have

(z1, t1, η1)(z1, t1, η1) = (z1 + η1z1, 2t1 + 2 Im 〈z1, η1z1〉 , η2
1)

= (0, 4/k, 1).

In particular, η2
1 = 1. If η1 = 1, then the above injection would yield an iso-

morphism between a group in the first family with a group in the second family.
This is impossible, therefore η1 = −1. By considering the first coordinate equa-
tion with η1 = −1, we get no information. The second coordinate equation is
2t1 = 4/k , therefore t1 = 2/k . One can now check that [c, α] = 1, regardless
of z1 .
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Now, we take the relation αa = a−1α. We have

(z1, 2/k,−1)(1, 0, 1) = (z1 − 1, 2/k − 2 Im z1,−1).

On the other hand,

(−1, 0, 1)(z1, 2/k,−1) = (−1 + z1, 2/k + 2 Im z1,−1).

The first and last coordinate equations yield no information, while the second
coordinate equation yields 4 Im z1 = 0. Hence Im z1 = 0.

Lastly, we have the relation αb = b−1α. We have

(z1, 2/k,−1)(i, 0, 1) = (z1 − i, 2/k + 2 Re z1,−1).

On the other hand,

(−i, 0, 1)(z1 , 2/k,−1) = (−i+ z1, 2/k − 2 Re z1,−1).

As above, the first and second coordinates yields no information, while the
second coordinate implies that Re z1 = 0.

Hence, we deduce from the above computations, the desired homomorphism ρ
is defined by

ρ(a) = (1, 0, 1), ρ(b) = (i, 0, 1)
ρ(c) = (0, 4/k, 1) ρ(α) = (0, 2/k,−1).

Notice that these solutions are in Q(i) and not Z[i]. This is rectified by conju-
gating the above representation by a dilation of 2k . This dilation is linear on
the first factor, quadratic on the second factor, and trivial on the third factor.
The resulting faithful representation is

ρ(a) = (2k, 0, 1), ρ(b) = (2ki, 0, 1)
ρ(c) = (0, 16k, 1) ρ(α) = (0, 8k,−1).

That this is faithful follows from Lemma 7.2 (b) once the conditions of this
lemma have been verified. The injectivity of ρ|〈a,b,c〉 = ϕ4 follows from
Lemma 7.2 (a). To check that ρ(ρ−1(〈a, b, c〉)) = 〈a, b, c〉 , by the remark pro-
ceeding the proof of Lemma 7.2, it suffices to show that α /∈ ρ(ρ−1(〈a, b, c〉)).
The validity of this is obvious.
For the seventh family (7), we have the presentation

〈a, b, c, α : [b, a] = ck, [c, a] = [c, b] = [c, α] = 1, αa = abα, αb = a−1α, α6 = ck1〉

with

k ≡ 0 mod 6, k1 = 1, or k ≡ 4 mod 6, k1 = 1, or

k ≡ 0 mod 6, k1 = 5, or k ≡ 2 mod 6, k1 = 5.
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We take ϕ3 in this case. By considering all the relations, we get

(0, 4/k, 1) = (0, s, 1)
(z1 + η1, t1 + 2 Im 〈z, η1〉 , η1) = (1 + ζ3 + z1, t1+

2 Im 〈1 + ζ3, z1〉+ 2 Im 〈1, ζ3〉+ t1, η1)
(z1 + η1ζ3, t1 + 2 Im 〈z1, η1ζ3〉 , η1) = (−1 + z1, t1 + 2 Im 〈−1, z1〉 , η1).

We omit the last relation α6 = ck1 as it is quite long. Note the commutator
relations (aside from [b, a] = ck ) are all trivially satisfied. Solving these equa-
tions and conjugating by a dilation of 12k to get the coefficients in Z[ζ3], we
have

ϕ3(a) = (12k, 0, 1), ϕ3(b) = (12kζ3, 0, 1),

ϕ3(c) = (0, 288k
√

3, 1), ϕ3(α) = (−6k, 12k(4k1 + 3k)
√

3, ζ6).

That this is faithful follows from Lemma 7.2 and the remark following the proof.

The other remaining families are handled similarly.

The proof is completed by following the injection ρ from Theorem 7.1 with the
injection

ψ : N3 o 〈U(1), ι〉 −→ U(2, 1)

given by

(ξ, t, ιεU) 7−→

 1 ξ ξ

−ξ 1− 1
2 (‖ξ‖2 − it) −1

2(‖ξ‖2 − it)
ξ 1

2(‖ξ‖2 − it) 1 + 1
2(‖ξ‖2 − it)

U 0 0
0 1 0
0 0 1

 ιε.

For completeness, we give all the linear representations in the appendix.

Remark Theorem 7.1 can be strengthened somewhat. Specifically, we can
prove that there is a dense set of almost flat structures on any compact nil
3–manifold which can be realized in cusp cross-sections of arithmetic complex
hyperbolic 2–orbifolds. We refer the reader for [24] for more on this.

7.3 Nil 5–manifolds

Using the list of isomorphism types of holonomy groups for nil 5–manifolds
given in [10], we can carry out the same analysis.

Proposition 7.3 The only complex holonomy groups which yield arithmeti-
cally inadmissible groups are C5 , C10 , C12 and C24 .
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To see this, by Corollary 5.5, it suffices to check the field of definition for all the
distinct representations of the holonomy group in GL(2; C). For most of the
groups, every representation will be conjugate to one defined over an imaginary
quadratic number field. Both C12 and C24 can arise via central products of
nil 3–manifold groups for which Theorem 6.4 can be applied to show that the
resulting AB-groups are arithmetically inadmissible. For C5–holonomy, we can
apply Proposition 6.1, which in turn yields the result for C10 –holonomy, since
any arithmetic representation for an AB-group with C10–holonomy would yield
one for an AB-group with C5–holonomy.

8 Final comment

As discussed in the remark following Corollary 6.5, one cannot expect to obtain
manifolds of finite volume with just a single cusp in the above construction.
However, a natural question is whether or not one can guarantee that H2

C/Π
be constructed to be a manifold. For instance, in the second family (2), the only
congruence subgroup which contains Γ is the level two congruence subgroup.
This is seen to have torsion though, as−1 0 0

0 1 0
0 0 1


is an element of this subgroup. However by results of Borel [3], we can guarantee
that the first and third families map into torsion free groups. We can simply
conjugate by a dilation to ensure that the representation maps into a congruence
subgroup which is torsion free. [3] is needed in showing that the congruence
subgroup is torsion free.

9 Appendix: solutions to Equation (1)

Here, we include the matrices found by solving Equation (1) in §7. For all
possible faithful representations, see [24].
(1)

a =

 1 2k 2k
−2k 1− 2k2 −2k2

2k 2k2 1 + 2k2

 , b =

 1 2ki 2ki
2ki 1− 2k2 2k2

−2ki 2k2 1 + 2k2


c =

1 0 0
0 1 + 8ki 8ki
0 −8ki 1− 8ki

 .

Algebraic & Geometric Topology, Volume 4 (2004)



752 D.B. McReynolds

(2)

a =

 1 2k 2k
−2k 1− 2k2 −2k2

2k 2k2 1 + 2k2

 , b =

 1 2ki 2ki
2ki 1− 2k2 2k2

−2ki 2k2 1 + 2k2

 ,

c =

1 0 0
0 1 + 8ki 8ki
0 −8ki 1− 8ki

 , α =

−1 0 0
0 1 + ki ki
0 −ki 1− ki

 .

(3)

a =

 1 4k 4k
−4k 1− 8k2 −8k2

4k 8k2 1 + 8k2

 , b =

 1 4ki 4ki
4ki 1− 8k2 8k2

−4ki 8k2 1 + 8k2

 ,

c =

1 0 0
0 1 + 16ki 16ki
0 −16ki 1− 16ki

 , α =

 1 2k 2k
2k 1− 2k2 −2k2

−2k 2k2 1 + 2k2

 ι.

(4)

a =

 1 4k 4k
−4k 1− 8k2 −8k2

4k 8k2 1 + 8k2

 , b =

 1 4ki 4ki
4ki 1− 8k2 8k2

−4ki 8k2 1 + 8k2

 ,

c =

1 0 0
0 1 + 16ki 16ki
0 −16ki 1− 16ki

 , α =

 −1 2k + 2ki 2k + 2ki
−2k + 2ki 1− 4k2 −4k2

2k − 2ki 4k2 1 + 4k2

 ,

β =

 1 2k 2k
−2k 1− 4k2 −4k2

2k 4k2 1 + 4k2

 ι.

(5)

a =

 1 2k 2k
−2k 1− 2k2 −2k2

2k 2k2 1 + 2k2

 , b =

 1 2ki 2ki
2ki 1− 2k2 2k2

−2ki 2k2 1 + 2k2

 ,

c =

1 0 0
0 1 + 8ki 8ki
0 −8ki 1− 8ki

 , α =

i 0 0

0 1 + pk
2
i pk

2
i

0 − pk
2
i 1− pk

2
i

 .
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(6)

a =

 1 24k 24k
−24k 1− 288k2 −288k2

24k 288k2 1 + 288k2

 ,

b =

 1 −12 + 12
√

3i −12 + 12
√

3i

12 + 12
√

3i 1− 288k2 −288k2

−12− 12
√

3i 288k2 1 + 288k2

 ,

c =

1 0 0

0 1 + 144k
√

3i 144k
√

3i

0 −144k
√

3i 1− 144k
√

3i

 ,

α =

 1 µ µ

6[k + 2k1] + 6
√

3[k − 2k1]i 1− σ −σ
−6[k + 2k1]− 6

√
3[k − 2k1]i σ 1 + σ

ζ3 0 0
0 1 0
0 0 1

 ,

where

σ =
1

2

[
36(k + 2k1)2 + 108(k − 2k1)2 − 192k

√
3(k ‖z‖2 + 2k2)i

]
and

µ = −6[k + 2k1] + 6
√

3[k − 2k1]i.

(7)

a =

 1 12k 12k
−12k 1− 144k2 −144k2

12k 144k2 1 + 144k2

 ,

b =

 1 −6k + 6k
√

3i −6k + 6k
√

3i

6k + 6k
√

3i 1− 144k2 −144k2

−6k − 6k
√

3i 144k2 1 + 144k2

 ,

c =

1 0 0

0 1 + 288k
√

3i 288k
√

3i

0 −288k
√

3i 1− 288
√

3i

 ,

α =

 1 −6k −6k

3k − 3k
√

3i 1− χ −χ
−3k + 3k

√
3i χ 1 + χ

ζ6 0 0
0 1 0
0 0 1

 ,

where
χ = −36k2 + 12k(4k1 + 3k)

√
3i.
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