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The concordance genus of knots
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Abstract In knot concordance three genera arise naturally, g(K); g4(K),
and gc(K): these are the classical genus, the 4{ball genus, and the concor-
dance genus, de�ned to be the minimum genus among all knots concordant
to K . Clearly 0 � g4(K) � gc(K) � g(K). Casson and Nakanishi gave
examples to show that g4(K) need not equal gc(K). We begin by reviewing
and extending their results.

For knots representing elements in A, the concordance group of algebraically
slice knots, the relationships between these genera are less clear. Casson
and Gordon’s result that A is nontrivial implies that g4(K) can be nonzero
for knots in A. Gilmer proved that g4(K) can be arbitrarily large for knots
in A. We will prove that there are knots K in A with g4(K) = 1 and gc(K)
arbitrarily large.

Finally, we tabulate gc for all prime knots with 10 crossings and, with two
exceptions, all prime knots with fewer than 10 crossings. This requires the
description of previously unnoticed concordances.

AMS Classi�cation 57M25, 57N70

Keywords Concordance, knot concordance, genus, slice genus

1 Introduction and basic results

For a knot K � S3 , three genera arise naturally: g(K), the genus of K , is the
minimum genus among surfaces bounded by K in S3 ; g4(K) is the minimum
genus among surfaces bounded by K in B4 ; gc(K) is the minimum value
of g(K 0) among all knots K 0 concordant to K . This paper investigates the
relationships between these knot invariants.

The classical genus came to be fairly well understood through Schubert’s work
[33] proving that knot genus is additive under connected sum. The 4{ball genus
is far more subtle. Even the fact that g4(K) can be zero for a nontrivial knot is
not entirely obvious; this was seen �rst as a consequence of Artin’s construction
of a knotted S2 in S4 [2]. That g4(K) can be nonzero for a nontrivial knot
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2 Charles Livingston

was �rst proved by Fox and Milnor [9, 10] and by Murasugi, [28]. The 4-ball
genus remains an object of investigation; for instance, the solution of the Milnor
conjecture, proved in [22], implies that for a torus knot K , g4(K) = g(K), in
the smooth category. (This is false in the topological locally flat category, as
observed by Rudolph [31].)

The concordance genus is more elusive and less studied than these two other
invariants. Gordon [17, Problem 14] asked whether g4(K) = gc(K) for all
knots. Casson, in unpublished work, used the Alexander polynomial to show
that the knot 62 satis�es g4(62) = 1 and gc(62) = g(62) = 2. Independently,
Nakanishi [29] used a similar argument to give examples showing that the gap
between g4(K) and gc(K) can be arbitrarily large, for knots with g4 arbitrarily
large. In Section 2 we briefly review these results and give what is essentially
Nakanishi’s example showing that gc(K) can be arbitrarily large for knots with
g4(K) = 1. (Obviously, if g4(K) = 0 then gc(K) = 0.) We then show that
by using the signature in conjunction with the Alexander polynomial we can
attain �ner results: we construct knots K with g4(K) = 2 and with the same
Alexander polynomial as a slice knot, but with gc(K) arbitrarily large.

Algebraic concordance and higher dimensional knot theory

Associated to a knot K and choice of Seifert surface, F , there is a Seifert form
VK : this is an integral matrix satisfying det(VK−V tK) = �1, where V t

K denotes
the transpose. There is a Witt group of such Seifert forms, denoted G− , de�ned
by Levine [23]. Denoting the concordance group of knots by C1 , Levine proved
that the map K ! VK induces a homomorphism  : C1 ! G− .

Knot invariants that are de�ned on G− are called algebraic invariants, and it is
easily shown that the Alexander polynomial and signature based obstructions
are algebraic. A general algebraic invariant of a knot, gac (K), is de�ned to be one
half the rank of the minimal dimension representative of VK in G− . Everything
we have discussed so far generalizes to higher dimensional concordance, where
Levine proved that the map  classi�es knot concordance. Hence we have:

Theorem 1.1 In higher dimensions, gc(K) = gac (K).

(Given a knot K we can also form the hermitian matrix (1−z)VK+(1−z−1)V t
K ,

over the �eld of fractions of Q[z], Q(z). This induces a well de�ned homomor-
phism  0 : C1 ! W (Q(z)), where W (Q(z)) is the Witt group of hermitian
forms on vector spaces over the function �eld Q(z). There is an invariant
ga4(K) given by the minimal rank representative of the class of  0(K). It can
be shown that g4(K) � ga4 (K) and we conjecture that in higher dimensions this
becomes an equality.)
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The concordance genus of knots 3

Algebraically slice knots

Our deepest and most subtle results concern algebraically slice knots. We begin
with a de�nition:

De�nition 1.2 The map  : C1 ! G− has kernel denoted A, the concordance
group of algebraically slice knots.

Four{dimensional knot concordance is unique and especially challenging in that,
unlike the higher dimensional analogs, A is nontrivial. In the smooth setting a
number of techniques based on the work of Donaldson [8] and Witten [37] (see
for example [22]) have given new insights into the structure of A. However, in
the topological locally flat category the only known obstructions to a knot in
A being trivial are Casson{Gordon invariants [4, 5] and their extensions (for
example [6]). In the language of the present paper, the results of [4, 5] can be
stated as:

Theorem 1.3 There exist knots K 2 A with g4(K) � 1:

Gilmer extended this result in [15]:

Theorem 1.4 For every N there exist knots K 2 A with g4(K) � N .

In the Casson{Gordon examples of twisted doubles of the unknot one has that
g4(K) = g(K) = 1. In Gilmer’s examples g4(K) = g(K) = N .

Our main result concerning A is the following.

Theorem 1.5 For every N there exists a knot K 2 A with g4(K) = 1 and
gc(K) = g(K) = N .

To conclude this introduction we remark on the inherent challenge of proving
Theorem 1.5. Showing that a given algebraically slice knot is not slice is equiv-
alent to showing that it is not concordant to a single knot, the unknot. In the
case, say, of showing that a genus 2 algebraically slice knot is not concordant
to a knot of genus 1, we have to prove that it is not concordant to any knot in
an in�nite family of knots, each of which is algebraically slice and hence about
which one knows very little. There are of course some constraints on this family
of knots based on their being genus 1, such as the Alexander polynomial, but
with the added restriction that the knots are algebraically slice these do not
apply to the present problem. The main remaining tools are Casson{Gordon
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invariants, however known genus constraints based on these [13] already would
apply to bound the 4{ball genus as well, so these cannot be directly applicable
either. As we will see, Casson{Gordon invariants still are su�cient to provide
examples, but the proof calls on two steps. The �rst is a delicate analysis of
metabolizing subgroups for the linking forms that arise in this problem. The
second is the construction of knots with Casson{Gordon invariants satisfying
rigid constraints.

References and conventions

We will be working in the smooth category throughout this paper. All the
results carry over to the topological locally flat category by [12].

Basic references for knot theory include [3, 30]. The fundamentals of concor-
dance and Levine’s work are contained in [23, 24]. The principal references for
Casson{Gordon invariants are the original papers, [4, 5].

2 Algebraic bounds on the concordance genus

In this section we will study bounds on gc based on the Seifert form of the
knot. All of these are easily seen to depend only on the algebraic concordance
class, and hence are in fact bounds on gac (K). Because of this, none can yield
information regarding gc(K) for knots K 2 A.

2.1 Alexander polynomial based bounds on gc

Recall that the Alexander polynomial of a knot K is de�ned to be �K(t) =
det(VK − tV t

K ) where VK is an arbitrary Seifert matrix for K . It is well
de�ned up to multiplication by �tn so we will assume that �K(t) 2 Z[t] and
�K(0) 6= 0. The degree of such a representative will be called the degree of the
Alexander polynomial, deg(�K(t)).

A simple observation regarding the Alexander polynomial and concordance is
that if a Seifert form V represents 0 in G− then �V (t) = �tnf(t)f(t−1) for
some polynomial f and integer n. (This result was mentioned in [9] and �rst
proved in [10].) It follows that if V1 and V2 represent the same class in G then
�V1(t)�V2(t) = �tnf(t)f(t−1) for some polynomial f . From this we have the
following basic example of Casson.
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The concordance genus of knots 5

Example 2.1 The knot 62 , illustrated in �gure 1, satis�es gc(62) = 2 and
g4(62) = 1. Note �rst that �62(t) = t4− 3t3 + 3t2− 3t+ 1 ([30]), an irreducible
polynomial. Hence, if 62 were concordant to a knot of genus 1, we would
then have �62(t)g(t) = �tnf(t)f(t−1) for some polynomial f , integer n, and
polynomial g(t) with deg(g(t)) � 2. Degree considerations show that this is
impossible. On the other hand, Seifert’s algorithm applied to the standard
diagram of 62 yields a Seifert surface of genus 2.

To see that g4(62) = 1, observe that the unknotting number of 62 is 1 (change
the middle crossing) and so 62 bounds a surface of genus 1 in the 4{ball. It
follows that g4(K) � 1. On the other hand 62 is not slice since its Alexander
polynomial is irreducible, so it cannot bound a surface of genus 0.

Figure 1: The knot 62

Nakanishi [29], independently of Casson, used the Alexander polynomial in the
same way to develop other examples contrasting gc and g4 . These techniques
are summarized by the following theorem.

Theorem 2.2 Suppose that �K(t) has an irreducible factorization in Q[t] as

�K(t) = p1(t)�1 � � � p�mk q1(t)�1 � � � qj(t)�j

where the pi(t) are distinct irreducible polynomials with pi(t) = �tnipi(t−1)
for some ni and qi(t) 6= �tniqi(t−1) for any ni . Then gc(K) is greater than or
equal to one half the sum of the degrees of the pi having exponent �i odd.

Using this, Nakanishi proved the following. (In fact, he gives similar exam-
ples with other values of g4(K).) We include this argument because a related
construction is used in the next subsection.

Theorem 2.3 For every N > 0 there exists a knot K with g4(K) = 1 and
gc(K) > N .
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Proof According to Kondo and Sakai, [21, 32], every Alexander polynomial
occurs as the Alexander polynomial of an unknotting number one knot. Hence,
the proof is completed by �nding irreducible Alexander polynomials of arbitrar-
ily high degree. Such examples include the cyclotomic polynomials �2p(t) with
p an odd prime. It is well known that cyclotomic polynomials are irreducible.
We have that

�2p(t) =
(t2p − 1)(t− 1)
(t2 − 1)(tp − 1)

= tp−1 − tp−2 + tp−3 − : : : t+ 1:

This is an Alexander polynomial since �2p(t) is symmetric and �2p(1) = 1.
Hence, the unknotting number one knot with this polynomial has g4(K) = 1
but gc(K) � (p− 1)=2.

An examination of the construction used by Sakai in [32] shows that the knot
used above also has g(K) = (p − 1)=2. Briefly, the knot is constructed from
the unknot by performing +1 surgery in S3 on an unknotted circle T in the
complement of the unknot U . The surgery circle T meets a disk bounded by U
algebraically 0 times but geometrically (p− 1) times. Hence, a genus (p− 1)=2
surface bounded by U that misses T is easily constructed.

2.2 Further bounds on gc

Certainly this inequality of Theorem 2.2 cannot be replaced with an equality.

Example 2.4 The granny knot (the connected sum of the trefoil with itself)
has concordance genus 2 and has Alexander polynomial (t2 − t + 1)2 . The
square knot, the connected sum of the trefoil with its mirror image has the
same Alexander polynomial but has concordance genus 0. To see this, �rst
recall that both these knots have genus 2. We have that gc(K) � g4(K).
According to Murasugi [28], the classical signature of a knot bounds g4 ; more
precisely, g4(K) � 1

2�(K). The signature of the granny knot is 4, and hence
we have the desired value of g4 for the granny knot. On the other hand, the
square knot is of the form K#−K and hence is slice.

The rest of this subsection will discuss strengthening Theorem 2.2. We begin
by recalling Levine’s construction of isometric structures in [23]. Every Seifert
form V is equivalent (in G−) to a nonsingular form of no larger dimension.
Associated to such a V of dimension m we have an isometric structure (h; i ; T )
on a rational vector space X of dimension m, where h; i is the quadratic form on
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X given by V +V t and T is the linear transformation of X given by −V −1V t .
The map V ! (V +V t;−V −1V t) de�nes an isomorphism from the Witt group
of rational Seifert forms GQ to the Witt group of rational isometric structures,
GQ . The Alexander polynomial of V is the characteristic polynomial of T . (In
the Witt group GQ an isometric structure is Witt trivial, by de�nition, if the
inner product h; i vanishes on a half{dimensional T {invariant subspace of X .)

As a Q[t; t−1] module X splits as a direct sum �Xp(t) over all irreducible
polynomials p(t), where Xp(t) is annihilated by some power of p(t). According
to Levine, any isometric structure is equivalent to one with the Xp(t) trivial if
p(t) 6= �tnp(t−1) for some n. Furthermore, [24, Lemma 12], each remaining
Xp(t) can be reduced to a Witt equivalent form annihilated by p(t):

Xp(t) =
�

Q[t; t−1]
< p(t) >

�k
for some k .

Write X as �i=1:::sXpi where the Xpi are all of the given form. Now, suppose
that pi(t) has as a root ei� for some real � . The Milnor �{signature of V ,
��(V ), (see [27]) is de�ned to be the signature of the quadratic form h; i re-
stricted to the (real) summand of Xpi(t) associated to p�(t) = t2−2 cos(�)t+1.
From this analysis the next theorem follows immediately.

Theorem 2.5 Suppose �V (t) has distinct symmetric irreducible factors pi(t)
and pi(ei�i) = 0. If ��i(V ) = 2ki then gac (V ) � 1

2

P
i jkij(deg(pi)).

Notice that there can be distinct values of �i for which pi(ei�i) = 0.

In general, the computation of the Milnor �{signatures can be nontrivial. The
following examples illustrate how the signature used in conjunction with the
Alexander polynomial yields much stronger results than can be obtained using
either one alone.

Example 2.6 For a given prime p = 3 mod 4, consider an unknotting number
1 knot K with �K(t) = �2p(t). According to Murasugi [28], if j�K(−1)j = 3
mod 4 then �(K) = 2 mod 4, where �(K) is the classical knot signature, the
signature of VK + V t

K . It is easily shown that �2p(−1) = p, so for our K
we have j�(K)j = 2 mod 4. However, since g4(K) = 1, j�(K)j � 2. After
changing orientation if need be, we have that �(K) = 2. By [26] �(K) is
given as a sum of Milnor signatures, so it follows that for some � , ��(K) = 2.
Now, let J = K#K . Since Milnor signatures are additive under connected
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sum, ��(J) = 4. We also have �J(t) = (�2p(t))2 , which is of degree 2p − 2.
Hence by the previous theorem, gc(J) � deg(�2p(t)) = p − 1. No bound on
gc can be obtained using Theorem 2.2 since the polynomial is a square. Since
J is unknotting number 2, we have c4(J) � 2 but the signature implies that
g4(J) = 2.

3 Casson{Gordon invariants

3.1 Basic theorems

We will be working with a �xed prime number p throughout the following
discussion.

For a knot K let M(K) denote the 2{fold branched cover of S3 branched over
K . Let HK denote the p{primary summand of H1(M(K);Z). More formally,
we have HK = H1(M(K);Z(p)), where Z(p) represents the integers localized at
p; in other words, Z(p) = fmn 2 Qj gcd(p; n) = 1g.
There is a nonsingular symmetric linking form � : HK � HK ! Q=Z. If K
is algebraically slice there is a subgroup M � HK satisfying M = M? with
respect to the linking form. Since the linking form is nonsingular, this easily
implies that jM j2 = jHK j. Such an M is called a metabolizer for HK .

Let � : HK ! Zpk be a homomorphism. The Casson{Gordon invariant �(K;�)
is a rational invariant of the pair (K;�). (See [4], where this invariant is denoted
�1�(K;�) and � is used for a closely related invariant.) The main result in
[CG1] concerning Casson{Gordon invariants and slice knots that we will be
using is the following.

Theorem 3.1 If K is slice then there is a metabolizer M � HK such that
�(K;�) = 0 for all � : HK ! Zpk vanishing on M .

We will be using Gilmer’s additivity theorem [14], a vanishing result proved by
Litherland [25, Corollary B2], and a simple fact that follows immediately from
the de�nition of the Casson{Gordon invariant.

Theorem 3.2 If �1 and �2 are de�ned on MK1 and MK2 , respectively, then
�(K1 # K2; �1 � �2) = �(K1; �1) + �(K2; �2).

Theorem 3.3 If � is the trivial character, then �(K;�) = 0.

Theorem 3.4 For every character �, �(K;�) = �(K;−�).
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The concordance genus of knots 9

3.2 Identifying characters with metabolizing elements

We will be considering characters that vanish on a given metabolizer M . Note
that the character given by linking with an element m 2M is such a character
and that any character � : HK ! Zpk vanishing on M � HK is of the form
�(x) = �(x;m) for some m 2M . We will denote this character by �m .

3.3 Companionship results

Our construction of examples of algebraically slice knots will begin with a knot
K with a null homologous link of k components in the complement of K ,
L = fL1; : : : ; Lkg. L will be an unlink, though it will link K nontrivially.
A new knot, K� , will be formed by removing from S3 a neighborhood of L
and replacing each component with the complement of a knot, Ji . This can
be done in such a way that the resulting manifold is again S3 . (The attaching
map should identify the meridian of Li with the longitude of Ji and vice versa.)
The image of K in this new copy of S3 is the knot we will denote K� .

Let ~Li denote a lift of Li to the 2{fold branched cover, M(K). There is
a natural identi�cation of H1(M(K);Z) and H1(M(K�);Z). Suppose that
� : HK ! Zpj and that �(~Li) = ai . We have the following theorem relating the
associated Casson{Gordon invariants of K and K� . A proof is basically con-
tained in [15]. The result is implicit in [25] and [14]. In the formula, �ai=pj (Ji)
denotes the classical Tristram{Levine signature [36] of Ji . This signature is
de�ned to be the signature of the hermitian form

(1− e
ai
pj

2�i
)VJi + (1− e−

ai
pj

2�i
)V t
Ji :

Theorem 3.5 In the setting just described,

�(K�; �)− �(K;�) = 2
kX
i=1

�ai=pj(Ji):

4 Properties of metabolizers

In the next section we will construct an algebraically slice knot K with g(K) =
N and HK

�= (Z3)2N . We will show that it is not concordant to a knot J
with g(J) < N by proving that if K is concordant to J then rank(HJ) � 2N .
The following is our main result relating Casson{Gordon invariants and genus.
With the exception of one example our applications all occur in the case of
p = 3.
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Theorem 4.1 If K is an algebraically slice knot with HK
�= (Zp)2g and K is

concordant to a knot J of genus g0 < g then there is a metabolizer MK � HK

and a nontrivial subgroup M0 �MK such that for �m with m 2MK , �(K;�m)
depends only on the class of m in the quotient MK=M0 . That is, if m1 2MK

and m2 2MK with m1 −m2 2M0 , then �(K;�m1) = �(K;�m2).

4.1 Metabolizers

Theorem 4.2 If K is an algebraically slice knot of genus g , the linking form
on HK has a metabolizer generated by g elements.

Proof Because K is algebraically slice, with respect to some generating set
its Seifert matrix is of the form �

0 A
B C

�
for some g � g matrices A, B , and C . Hence, H1(M(K);Z) has homology
presented by VK + V t

K , which is of the form

P =
�

0 D
Dt E

�
for other matrices, D and E , where D has nonzero determinant. The order of
H1(M(K);Z) is det(D)2 .

This presentation matrix corresponds to a generating set fxi; yigi=1;:::;N . We
claim that the set fyig generates a metabolizer. First, to see that it is self{
annihilating with respect to the linking form, we recall that with respect to the
same generating set the linking form is given by the matrix

P−1 =
�
−(D−1)tED−1 (D−1)t

D−1 0

�
:

That this is the correct inverse can be checked by direct multiplication. The
lower right hand block of zeroes implies the vanishing of the linking form on
< fyig >.

We next want to see that fyig generate a subgroup of order det(D). Clearly
the yi satisfy the relations given by the matrix D . What is not immediately
clear is that the relations given by D generate all the relations that the fyig
satisfy. To see this, note that any relations satis�ed by the fyig are given as a
linear combination of the rows of P . But since the block D has nonzero deter-
minant, any such combination will involve the fxig unless all the coe�cients
corresponding to the last g rows of P vanish. This implies that the relation
comes entirely from the matrix D .
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Notation Suppose that the algebraically slice knot K is concordant to a
knot J . Let M# be a metabolizer for HK#−J . Let MJ be a metabolizer for
HJ . Let MK = fm 2 HK j (m;m0) 2 M# for some m0 2 MJg. For each
element m0 2 MJ , set Mm0 = fm 2 HK j (m;m0) 2 M#g. In particular,
M0 = fm 2 HK j (m; 0) 2 M#g and MK = [m02MJ

Mm0 . Finally, let MJ;0 =
fm0 2 HJ j (0;m0) 2M#g.

Theorem 4.3 With the above notation, MK is a metabolizer for HK .

Proof A proof of the corresponding theorem for bilinear forms on vector spaces
appears in [19]. A parallel proof for �nite groups and linking forms can be
constructed in a relatively straightforward manner. One such proof appears
in [20]. Since all metabolizers split over the p{primary summands, the results
follow for these summands.

The set of elements M0 is surely nonempty: it contains 0. It is also easily seen
to be a subgroup.

Lemma 4.4 If Mm0 is nonempty then it is a coset of M0 in MK .

Proof The proof is straightforward. If x; y 2 Mm0 then (x;m0) 2 M# and
(y;m0) 2 M# . Hence, (x − y; 0) 2 M# , so x − y 2 M0 . Similarly, if x 2 Mm0

and y 2 M0 , then (x;m0) 2 M# and (y; 0) 2 M# , so (x + y;m0) 2 M# and
x+ y 2Mm0 .

Lemma 4.5 The map Mm0 ! m0 induces an injective homomorphism of
MK=M0 to MJ=MJ;0 .

Proof It must be checked that this map is well-de�ned. Suppose �rst that
Mm0 = Mm00 . Then for any m 2 Mm0 = Mm00 , (m;m0) 2 M# and (m;m00) 2
M# . Taking di�erences, we have that (0;m0 − m00) 2 M# , implying that
m0 −m00 2MJ;0 as desired.

That this map is a homomorphism is trivially checked.

To check injectivity, we need to show that for all m0 2 MJ;0 , Mm0 = M0 . But
0 2Mm0 since (0;m0) 2M# by the de�nition of MJ;0 . Since 0 2Mm0 , Mm0 is
the identity coset, as needed.
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Theorem 4.6 Let K be an algebraically slice knot with HK
�= (Zp)2g and

suppose that K is concordant to a knot J with g(J) < g . Then for some
metabolizer M# for HK#−J and for any metabolizer MJ for HJ , the subgroup
M0 � HK is nontrivial.

Proof If M0 is trivial we would have, by Lemma 4.5, an injection of (Zp)g

into MJ=MJ;0 . But by Theorem 4.2 the metabolizer MJ can be chosen so that
it has rank less than g . It follows that a quotient will also have rank less than
g . Hence, it cannot contain a subgroup of rank g .

We now prove Theorem 4.1:

Theorem 4.1 If K is an algebraically slice knot with HK
�= (Zp)2g and K is

concordant to a knot J of genus g0 < g then there is a metabolizer MK � HK

and a nontrivial subgroup M0 �MK such that for �m with m 2MK , �(K;�m)
depends only on the class of m in the quotient MK=M0 . That is, if m1 2MK

and m2 2MK with m1 −m2 2M0 , then �(K;�m1) = �(K;�m2).

Proof Since K#−J is slice, we let M# be the metabolizer given by Theorem
3.1. We also have that −J is algebraically slice, so we let MJ be an arbitrary
metabolizer for HJ with rank(MJ) < g and we let MK � HK be the metab-
olizer constructed above. We also let M0 be the nontrivial subgroup of MK

described above.

Let �m1 and �m2 be characters on HK vanishing on MK . We are assuming
further that m1 and m2 are in the same coset of M0 : m1 and m2 are both in
Mm0 for some m0 2MJ . We want to show that �(K;�m1) = �(K;�m2).

Since mi 2Mm0 , we have that (m1;m
0) 2M# and (m2;m

0) 2M# . Hence, by
Theorem 3.1,

�(K#− J; �m1 � �m0) = 0 = �(K#− J; �m2 � �m0)
The result now follows immediately from the additivity of Casson{Gordon in-
variants.

5 Construction of examples

5.1 Description of the starting knot, K

We will build a knot K� with the desired properties regarding gc . The con-
struction begins with a knot K which is then modi�ed to build K� . In this
subsection we describe K and its properties.
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Figure 2 illustrates a knot K and a link L in its complement. The �gure is
drawn for the case N = 3. The correct generalization for higher N is clear.
Ignore L for now. The knot K bounds an obvious Seifert surface F of genus
N. The Seifert form of K is

N

�
0 1
2 0

�
:

The homology of F is generated by the symplectic basis fxi; yigi=1;:::;N . Here
each xi is represented by the simple closed curve formed as the union of an
embedded arc going over the left band of ith pair of bands and an embedded
arc in the complement of the set of bands. The yi have similar representations,
using the right side band of each pair.

The knot K is assured to be slice by arranging that the link formed by any
collection fzigi=1;:::;N , where each zi is either xi or yi , forms an unlink. (We
are not distinguishing here between the class xi and the embedded curve rep-
resenting the class; similarly for yi .)

Figure 2: The basic knot

The homology of the complement of F is generated by trivial linking curves to
the bands, say fai; bigi=1;:::;N . The 2{fold cover of S3 branched over K , M(K),
satis�es H1(M(K);Z) �= (Z3)2N . Picking arbitrary lifts of the fai; bigi=1;:::;N

gives a set of curves in M(K), f~ai;~bigi=1;:::;N , generating H1(M(K);Z). This
follows from standard knot theory constructions [30], but perhaps is most ev-
ident using the surgery description of M(K) given by Akbulut and Kirby [1].
It also follows easily from this description of M(K) that the linking form with
respect to f~ai;~bigi=1;:::;N is given by

N

�
0 1

3
1
3 0

�
:
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14 Charles Livingston

Here there is a slight issue of signs, but the signs as given in this linking matrix
can be achieved by choosing the appropriate lifts, or simply by orienting the
lifts properly.

5.2 Construction of the link L

The desired knot K� is constructed from K by removing the components of a
link L in the complement of F and replacing them with complements of knots
Ji . In this subsection we describe L.

The link L consists of three sublinks: L = fL0; L00; L000g. Here is how the various
components of L are chosen:

� L0 has only one component: L0 = fL01g. Here L1 is chosen to be a trivial
knot representing aN , the linking circle to the band with core xN .

� L00 = fL00i gi=1;:::;N . We choose L00i to be a trivial knot representing bi ,
the linking circle to the band with core xi .

� L000 = fL000i g consists of a set of 2{component sublinks. For each ordered
pair, (ai; bj)i=1;:::;(N−1);j=1;:::;N we have a two component link L000i : one
component is a trivial knot representing ai as a small linking circle to
xi ; the other component is the band connected sum of a curve parallel to
that one with a trivial knot representing bj as a small linking circle to bj .
Similarly, 2{component links are formed for the pairs (ai; aN ), i < N .
The set L000 has N2 − 1 elements.

In the �gure we have indicated all the components of L0 and L00 . The only
sublink of L000 that is illustrated is the one corresponding to the ordered pair
(a1; a3).

This collection is chosen so that the following theorem holds.

Theorem 5.1 A In S3−fxigi=1;:::;(N−1) the components of L0 and L00 form
an unlink, split from the link L000 [ fxigi=1;:::;(N−1) .

B The link L000 [ fxigi=1;:::;(N−1) is the union of an unlink, fxigi=1;:::;(N−1)

with parallel pairs of meridians to the xi , one pair for each sublink L000i of L000 .

5.3 Constructing K� and its properties

We will be selecting sets of knots fJ 0ig, fJ 0ig, and fJ 000i g. There is only one
knot in the set fJ 0ig; it corresponds to the knot L01 . There are N knots in
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the set fJ 00i g, with one knot J 00i for each L00i . Finally, there is one knot J 000i
for each 2{component sublink L000i of L000 . The necessary properties of all these
knots will be developed later. To construct K� we follow the companionship
construction described in Section 3.3: remove tubular neighborhoods of each L0i
and L00i and replace them with the complement of the corresponding J 0i or J 00i .
Neighborhoods of the two components of L000i are replaced with the complements
of the corresponding J 000i and its mirror image, −J 000i .

Since K� is formed by removing copies of S1�B2 from S3 and replacing them
with three manifolds with the same homology, the Seifert form of K� is the
same as that of K . Hence, as for the knot K , H1(M(K�);Z) �= (Z3)2N is
presented by

N

�
0 3
3 0

�
:

Similarly, the linking form with respect to the same basis is presented by the
inverse of this matrix,

N

�
0 1

3
1
3 0

�
:

For framed link diagrams of these spaces, see [1].

5.4 The concordance genus of K�

Before proving that the concordance genus of K� is N , we observe the following.

Theorem 5.2 The knot K just constructed has g(K) = N and g4(K) = 1.

Proof It is clear that g(K) � N . However, since the rank of H1(M(K);Z) is
2N , g(K) � N .

We must now show that g4(K) = 1. This is based on the observation that the
curves fxigi=1:::;N−1 form a strongly slice link: That is, they bound disjoint
disks in B4 . To see this, note that by replacing the components of the L000i
with copies of the complements of J 000i and −J 000i , we have arranged that the xi
have become the connected sums of pairs of the form J 000i # − J 000i , and such a
connected sum is a slice knot.

To build a genus 1 surface in the 4{ball bounded by K , simply surger the Seifert
surface using these slicing disks.
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Since H1(M(K�);Z) �= (Z3)2N , we have, in the notation of Section 4.1, MK�
�=

(Z3)N . We will be assuming that K� is concordant to a knot of lower genus, so
we also have M0 is a nontrivial subgroup of MK� , by Theorem 4.1. The proof
that gc(K�) = N will consist of showing that the knots J 0i , J

00
i and J 000i can be

chosen so that the Casson{Gordon invariants cannot be constant on the cosets
of M0 .

The following result is a consequence of Theorem 3.5. Notice that there is only
one term in the �rst sum since the link L0 has just one component, which links
aN .

Theorem 5.3 �(K�; �) = �(K;�) + 2
P

i ci�1=3(J 0i) + 2
P

i di�1=3(J 00i ) +
2
P

i(ei − e0i)�1=3(J 000i ), where:

(1) ci is 0 or 1 depending on whether �(~aN ) is 0 or not.

(2) di is 0 or 1 depending on whether �(~bi) is 0 or not.

(3) The values of the ei and e0i are determined as follows. The element
L000i 2 L000 corresponds to the class of the form ak + x 2 H1(S3 − F;Z),
where 1 � k � N − 1 and either x = bl; 1 � l � N , or x = aN . With
this, ei is 0 or 1 depending on whether �(~ak) is 0 or not; e0i is 0 or 1

depending on whether �(ãk + x) is 0 or not.

Notation If the character � is given by linking with an element m 2 HK� ,
(that is, if � = �m), then the coe�cients ci , di , and ei − e0i are functions of
m. We denote these functions by Ci , Di , and Ei = ei − e0i .

Theorem 5.4 The knots J 0i , J
00
i , and J 000i can be chosen so that �(K�; �m1) =

�(K�; �m2) if and only if the functions Ci , Di , and Ei all agree on m1 and
m2 .

Proof The di�erence �(K�; �m1)− �(K�; �m2) is given by:

�(K;�m1)− �(K;�m2) +2
X

(Ci(m1)− Ci(m2))�1=3(J 0i)

+2
X

(Di(m1)−Di(m2)))�1=3(J 00i )

+2
X

(Ei(m1)−Ei(m2))�1=3(J 000i )

The set of values of fj�(K;�x)−�(K;�y)jgx;y2HK is a �nite set, so is bounded
above by a constant B . Pick J 01 so that �1=3(J 01) > 2B . Pick J 001 so that
�1=3(J 00i ) > 2�1=3(J 01). Finally pick each following J 00i and J 000i so that at each
step the 1=3 signature has at least doubled over the previous choice.
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With this choice of knots the claim follows quickly from an elementary arith-
metic argument.

We will now assume that the knot K� has been constructed using such collec-
tions, fJ 0ig, fJ 0ig, and fJ 000i g as given in the previous theorem.

Lemma 5.5 The subgroup M0 must be contained in the subgroup generated
by f~bigi=1;:::;N−1 .

Proof Consider a �m with m 2 M0 . Write m as a linear combination of
the ~ai and ~bi . If ~bN or some ~ai has a nonzero coe�cient, then �m will link
nontrivially with ~aN or some ~bi . In this case, either C1(m) or some Di(m) will
be nontrivial. (Recall that the ~ai and ~bi are duals with respect to the linking
form.)

The proof of Theorem 1.5 concludes with the following.

Theorem 5.6 It is not possible for �(K;�m) to be constant on each coset of
M0 .

Proof To prove this, we have seen that we just need to show that one of the
coe�cients, either a Ci , Di or Ei , is nonconstant on some coset. In the previous
proof we used the Ci and Di . We now focus on the Ei .

Using the previous lemma, without loss of generality we can assume that M0

contains an element m0 = ~b1 +
P

i=2;:::;N−1 ri
~bi for some set of coe�cients ri .

The metabolizer MK is of order 3N , so it must contain an element not in the
span of f~bigi=1:::;N−1 . Adding a multiple of m0 if need be, we can hence assume
that MK contains an element m = ~b1+

P
i=2;:::;N−1 �i

~bi+
P

i=1;:::;N γi~ai+�N~bN ,
with some γi or �N nonzero. In fact, by changing sign, and adding a multiple
of m0 , we can assume that one of the nonzero coe�cients is 1.

We can now select an element from the set f~b1; : : : ;~bn; ~aNg on which �m eval-
uates to be 1. Denote that element ~b.

We consider the L000i representing the pair ~a1 and ~a1 + ~b. In this case we have
the following:

� �m(~a1) = 1

� �m(~a1 + ~b) = 2
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� �m−m0(~a1) = 0

� �m−m0(~a1 + ~b) = 1

Using Theorem 5.3 we have, for the corresponding ei and e0i that:

� ei(�m)(~a1) = 1

� e0i(�m)(~a1 + ~b) = 1

� ei(�m−m0)(~a1) = 0

� e0i(�m−m0)(~a1 + ~b) = 1

Finally, from the de�nition of Ei = ei − e0i we have that Ei(�m) = 0 and
Ei(�m−m0) = −1. Hence, the Casson{Gordon invariants cannot be constant
on the coset and the proof is complete.

6 Enumeration

We conclude by tabulating the concordance genus for all prime knots with 10
crossings. We are also able to compute the concordance genus of all prime knots
with fewer than 10 crossings with two exceptions, the knots 818 and 940 . This
is the �rst such listing.

In doing this enumeration we have used the knot tables contained in [3] and
especially the listings of various genera in [18]. Results on concordances between
low crossing number knots were �rst compiled by Conway [7], and we have
also used corrections and explications for Conway’s results taken from [35]. In
addition, Conway apparently failed to identify three such concordances|10103

and 10106 are both concordant to the trefoil, 1067 is concordant to the knot
52|and those concordances are described below. We also use the fact that for
all knots K with 10 or fewer crossings, the genus of K is given by half the
degree of the Alexander polynomial.

Summary In brief, there are 250 prime knots with crossing number less than
or equal to 10. Of these, 21 are slice, and hence gc = 0. For 210 of them the
Alexander polynomial obstruction yields a bound equal to the genus, and hence
for these gc = g . There are 17 of the remaining knots which are concordant to
lower genus knots for which gc is known. Finally, there are two knots 818 and
940 , for which g3 = 3 but for which we have not been able to show that gc = 3.
In the smooth category both of these have g4 = 2 (see for instance the table in
[34]) and in the topological category g4 seems to be unknown for both, being
either 1 or 2.
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6.1 Slice knots

Among prime knots of 10 or few crossings there are 21 slice knots. These are
61 , 88 , 89 , 820 , 927 , 941 , 946 , 103 , 1022 , 1035 , 1042 , 1048 , 1075 , 1087 , 1099 ,
10123 , 10129 , 10137 , 10140 , 10153 , and 10155 .

6.2 Examples for which the polynomial condition su�ces

For 210 of the 250 prime knots of 10 or fewer crossings, Theorem 2.2 gives a
bound for gc(K) which is equal to g(K). Hence for all these knots we have
gc(K) = deg(�K(t))=2. This leaves 19 knots. These are:

� 810; 811; 818

� 924; 937; 940

� 1021; 1040; 1059; 1062; 1065; 1067; 1074; 1077; 1098; 10103; 10106; 10143; 10147

In the next subsection we will observe that 17 of these are concordant to lower
genus knots with gc known. We have been unable to resolve the cases of 818

and 940 .

6.3 Concordances to lower genus knots

Concordant to trefoil The following 8 knots are concordant to the trefoil,
31 : 810 , 811 , 1040 , 1059 , 10103 , 10106 , 10143 , 10147 .

As noted in [35], in [7] a typographical error leads to the knot 10143 failing to
be on this list, and 1065 is placed on the list accidentally. The knots 10103 ,
10106 fail to be identi�ed in [7]. We will describe these concordances below. For
all of these knots, gc(K) = 1 = g4(K).

Concordant to the �gure eight The following 2 knots are concordant to
the �gure eight knot, 41 : 924 , 937 . Both have gc(K) = 1 = g4(K).

Concordant to 51 The following 2 knots are concordant to the knot 51 :
1021 , 1062 . Both have gc(K) = 1 = g4(K).

Concordant to 52 The following 4 knots are concordant to the knot 52 : 1065 ,
1067 , 1074 , 1077 . The knot 1067 fails to be on the list in [7]. Its concordance is
described below. All have gc(K) = 1 = g4(K).

Concordant to 31#31 The following 1 knot is concordant to the connected
sum of the trefoil with itself, 31#31 : 1098 . It satis�es gc(1098) = 2 = g4(1098).
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6.4 Building the concordances for 1067; 10103 and 10106

In this �nal subsection we will describe the concordances that were not included
in Conway’s list. In Figure 3 we have illustrated the knot 1067 along with
a band. Performing the band move 1067 along that band results in a split
link of two components: an unknot and the knot 52 . This gives the desired
concordance from 1067 and 52 .

Figure 3: 1067

In Figure 4 we have illustrated the knots 10103#−31 and 10106#31 along with
a band in each �gure. Performing the band move along each band yields a split
link of two unknotted components. Hence, both 10103#− 31 and 10106#31 are
slice, so 10103 and 10106 are each concordant to trefoil knots.

Figure 4: 10103#31 and 10106#31

References

[1] S Akbulut and R Kirby, Branched covers of surfaces in 4{manifolds, Math.
Ann. 252 (1979/80), 111{131

[2] E Artin, Zur Isotopie zweidimensionalen Flächen im R4 , Abh. Math. Sem.
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