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0 Introduction

The most classical operads are probably the three operads describing commu-
tative and associative algebras, associative algebras and Lie algebras. They fit
in the following diagram:

Comm Assocoo Lieoo (1)

These operads have very nice properties. First of all, they are binary quadratic
and Koszul in the sense of the work of Ginzburg and Kapranov on the Koszul
duality of operads [7]. More precisely Assoc is self-dual and Lie and Comm
are dual to each other. Moreover they are basic examples of cyclic operads, a
notion introduced in [5] and related to the moduli spaces of curves with marked
points. The developments of Koszul duality of operads and of the theory of
cyclic operads were both partly motivated by the work of Kontsevich on non-
commutative symplectic geometry [9], where three parallel constructions are
made for these three operads.

Our aim is to explain that most of the properties of this classical sequence
of operads also hold for two other diagrams involving some binary quadratic
operads introduced by Loday [11] and others [2, 3]. The first of these diagrams
is

Perm Diasoo Leiboo (2)

and the other one is:

Zinb Dendoo PreLieoo (3)
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54 F. Chapoton

All these operads are already known to be binary quadratic and Koszul. More
precisely, (Perm,PreLie), (Dias,Dend) and (Leib,Zinb) are Koszul dual pairs
of operads. The main objective of this article is to show that they are anticyclic
operads and that the maps in the two diagrams above are maps of anticyclic
operads.

One interesting point with cyclic and anticyclic operads is that they allow the
building of Lie algebras and graph complexes [6, 4, 12]. There has been a lot
of work on the graph complexes for the three classical cyclic operads Comm,
Assoc and Lie. It may be worth considering the analogous structures for the
six new anticyclic operads introduced here.

Let us also remark that there is a fourth classical cyclic operad, namely the
Poisson operad, which can be obtained as the graded cyclic operad associated
to a filtration of the cyclic operad Assoc. Similar objects exists in the dia-
grams above, namely filtrations of the anticyclic operads Dias and Dend and
associated graded anticyclic operads, one of which is related to the pre-Poisson
algebras studied in [1].

1 Anticyclic operads

We briefly state some general facts on operads and anticyclic operads. A con-
venient reference on this subject is [12], see also [7, 5]. Most of the operads
considered here will be in the monoidal category of vector spaces over the field
Q, but the true ambient category is the category of chain complexes of vector
spaces over Q.

Recall that an operad P is a collection of modules P(n) over the symmetric
groups Sn together with composition maps satisfying some axioms modelled
after the composition of multi-linear maps. A non-symmetric operad P is a
similar structure without the actions of the symmetric groups. If P is a non-
symmetric operad then the collection P(n) ⊗ QSn is naturally an operad.

An anticyclic non-symmetric operad is a non-symmetric operad P together
with an action of a cyclic group of order n+1 on P(n) satisfying some axioms.
In particular, the action of the cyclic group is determined by the action on the
generators of the non-symmetric operad.

Similarly, an anticyclic operad is an operad P together with an action of a
symmetric group Sn+1 on P(n) extending the action of Sn and satisfying
similar axioms. Here the group Sn is embedded in Sn+1 as the stabilizer of
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n + 1. In this case too, the action of the big symmetric group is determined by
the action on the generators of the operad.

The main difference with the notion of cyclic operad is that the unit 1 of the
operad is mapped to −1 in an anticyclic case and to 1 in the cyclic case. There
is also some change of sign in the axioms.

The Hadamard product of two operads P1 and P2 is an operad with underlying
modules P1(n) ⊗ P2(n). If P1 and P2 are cyclic or anticyclic operads, then
the Hadamard product is an anticyclic or cyclic operad for the tensor product
action of the symmetric groups Sn+1 . Whether the Hadamard product is cyclic
or anticyclic is determined by the action on the unit 1, i.e. is given by a sign
rule where “cyclic” is +1 and “anticyclic” is −1.

Let Z/(n + 1)Z be the subgroup of Sn+1 generated by the longest cycle (n +
1, n, . . . , 2, 1). If P is an anticyclic non-symmetric operad, then the collection of

induced modules Ind
Sn+1

Z/(n+1)Z P(n) has a natural structure of anticyclic operad.

There exists a differential graded anticyclic operad, called the determinant op-
erad and denoted by Det, such that Det(n) is a chain complex of dimension
1 concentrated in degree n − 1. The Hadamard product by the operad Det
corresponds to the suspension of operads. It maps anticyclic operads to cyclic
operads and vice-versa.

2 Koszul duality and Legendre transform

The theory of Koszul duality for operads has been introduced in [7] for binary
quadratic operads.

For each binary quadratic operad P , one can define its dual operad P ! by
elementary linear algebra using the quadratic presentation of P . In particular,
the space P !(2) of generators of P ! is the tensor product of the dual space of
P(2) by the sign representation of S2 .

A binary quadratic operad P is Koszul if the natural morphisms of cooperads
from the bar complex of P to the dual cooperad of the suspension of P ! is a
quasi-isomorphism.

The Koszul dual operad P ! of a Koszul operad P has a natural structure of
cyclic (resp. anticyclic) operad if P is anticyclic (resp. anticyclic). When P
is cyclic or anticyclic, the action of the cycle (321) on P !(2) is given by the
transpose of the inverse of the action on the space P(2).
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When P is cyclic (resp. anticyclic), both the bar complex and the dual cooperad
of the suspension of P ! are anticyclic (resp. cyclic) and the natural map between
them is automatically a morphism of anticyclic (resp. cyclic) cooperads.

It is known that generating series of dual Koszul operads are related by inversion
for the plethysm. More precisely, let the characteristic function of an operad P
be

ch(P) =
∑

n≥1

chn(P(n)), (4)

where chn(P(n)) is the symmetric function for the Sn -module P(n). The
suspension ΣF of a symmetric function F is defined as follows:

ΣF = −F (−p1,−p2,−p3, . . . ), (5)

where the pk are power sums symmetric functions. Then one has the following
relation for a Koszul operad P :

ch(P) ◦ Σ ch(P !) = p1, (6)

where ◦ is the plethysm of symmetric functions.

A similar relation exists at the level of cyclic or anticyclic Koszul operads, where
the generating functions are related by the Legendre transform of symmetric
functions introduced in [5]. Let us give the precise statement.

The characteristic function of a cyclic or anticyclic operad P is defined by

Ch(P) =
∑

n≥1

Chn+1(P(n)), (7)

where Chn+1(P(n)) is the symmetric function for the Sn+1 -module P(n).

Let F be a symmetric function with no term of degree 0 and 1 and such that
the term of degree 1 of ∂p1

F does not vanish. The Legendre transform G = LF
of F is defined by

F ◦ ∂G

∂p1
+ G = p1

∂G

∂p1
. (8)

The Legendre transform is an involution, with the property that the derived
symmetric functions satisfy

∂F

∂p1
◦ ∂G

∂p1
= p1. (9)

Then if P is an anticyclic (resp. cyclic) operad which is Koszul as an operad,
one has

LCh(P) = −ΣCh(P !), (10)

where the anticyclic (resp. cyclic) structure on P ! is the one induced by the
Koszul duality.
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3 The diassociative operad

In this section and the next one, we will consider two non-symmetric operads.

First let us recall some known facts about the non-symmetric operad Dias of
diassociative algebras, see [11].

First, it has a quadratic presentation. The generators are two binary operations
x a y and x ` y . These generators satisfy the following relations:

x a (y ` z) = x a (y a z) = (x a y) a z, (11)

x ` (y a z) = (x ` y) a z, (12)

x ` (y ` z) = (x ` y) ` z = (x a y) ` z. (13)

Next, it is known that the space Dias(n) has dimension n with a base
(en

m)m=1,...,n such that the composition in the operad is given by

en
m ◦i e`

k =



















en+`−1
m+k−1 if i = m,

en+`−1
m+`−1 if i < m,

en+`−1
m if i > m.

(14)

In the presentation above, x1 a x2 is e2
1 and x1 ` x2 is e2

2 . More generally, the
element en

m is mapped to

x1 ` x2 ` · · · ` xm a · · · a xn, (15)

with arbitrary parentheses. Conversely, any iterated product of the variables
x1, x2, . . . , xn in this order corresponds to some en

m by the following recursive
procedure. At each step, choose the sub-expression which is not on the bar side
of a or `, until there remains only one variable xm . For example,

((x1 a x2) ` x3) a (x4 ` x5) (16)

is mapped to e5
3 .

Let us now introduce a notion of invariant bilinear map on a diassociative
algebra. It is an antisymmetric map with value in some vector space:

〈x , y〉 = −〈y , x〉, (17)

such that

〈x a y , z〉 = −〈y ` z , x〉 and 〈x ` y , z〉 = 〈y a z , x〉 − 〈y ` z , x〉. (18)

Let us define a map τ1 as multiplication by −1 on Dias(1) and a map τ2 on
Dias(2) by the following relation

〈E(x, y) , z〉 = 〈τ2(E)(y, z) , x〉 (19)

for each element E in {e2
1, e

2
2}, using the previous conditions on 〈 , 〉.
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Theorem 3.1 There exists a unique collection τ of endomorphisms τn of
the space Dias(n) extending τ1 and τ2 and endowing the operad Dias with a
structure of non-symmetric anticyclic operad.

Proof Clearly τ1 is of order 2 and τ2 is of order 3. As Dias is generated by
Dias(2), the structure map τ is unique if it exists. To check that τn can be
defined for n ≥ 3, it is enough to check that the notion of invariant form is
compatible with the relations defining the operad Dias. Let us check one of
these compatibility conditions, for the relation (12):

〈x ` (y a z) − (x ` y) a z , t〉 (20)

= 〈(y a z) a t − (y a z) ` t , x〉 + 〈z ` t , x ` y〉 (21)

= 〈(y a z) a t − (y a z) ` t , x〉 − 〈x ` y , z ` t〉 (22)

= 〈(y a z) a t − (y a z) ` t , x〉 − 〈y a (z ` t) − y ` (z ` t) , x〉 = 0, (23)

where one has used the antisymmetry and the invariance to obtain an expression
with the x variable only in the right slot. The remaining checks are quite similar
and are left to the reader.

In fact, τn has a very simple expression in the base en .

Lemma 3.2 The action of τn is given by

τn(en
m) =

{

−en
n if m = 1,

−en
n + en

m−1 else.
(24)

Proof It is readily true for n = 1 and 2. Let us first prove that τn+1(e
n+1
1 ) =

en+1
n+1 . This follows from the equality:

〈x1 a x2 a · · · a xn+1 , xn+2〉 = −〈(x2 a · · · a xn+1) ` xn+2 , x1〉 (25)

= −〈x2 ` · · · ` xn+2 , x1〉. (26)

Let us now compute τn+1(e
n+1
m ) for m ≥ 2. Indeed, one has

〈x1 ` x2 ` · · · ` xm a · · · a xn+1 , xn+2〉 =

〈(x2 ` · · · ` xm a · · · a xn+1) a xn+2−(x2 ` · · · ` xm a · · · a xn+1) ` xn+2 , x1〉
= 〈x2 ` · · · ` xm a · · · a xn+2 − x2 ` · · · ` xn+2 , x1〉.

(27)

This concludes the proof.

One can note that the matrix of τn in the base en is a companion matrix for
the polynomial 1 + x + · · · + xn and can also be described as −(tL)−1L where
L is the lower triangular matrix with 1 everywhere below the diagonal.
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4 The dendriform operad

Let us now recall some facts about the non-symmetric operad Dend describing
dendriform algebras, see [11].

First, it also has a quadratic presentation. The generators are two binary
operations x ≺ y and x � y . These generators satisfy the following relations:

(x ≺ y) ≺ z) = x ≺ (y ≺ z) + x ≺ (y � z), (28)

x � (y ≺ z) = (x � y) ≺ z, (29)

x � (y � z) = (x � y) � z + (x ≺ y) � z. (30)

Next, it is known that the dimension of the space Dend(n) is the Catalan
number cn = 1

n+1

(2n
n

)

. There is a base Y n of Dend(n) indexed by planar
binary trees with n + 1 leaves, in which the composition of the operad has a
simple expression. The base Y 2 is made precisely of x1 ≺ x2 and x1 � x2 .

Let us introduce a notion of invariant bilinear map on a dendriform algebra. It
is an antisymmetric map:

〈x , y〉 = −〈y , x〉 (31)

such that

〈x � y , z〉 = 〈y ≺ z , x〉 and 〈x ≺ y , z〉 = −〈y ≺ z , x〉 − 〈y � z , x〉. (32)

As before, let us define a map τ1 as multiplication by −1 on Dend(1) and a
map τ2 on Dend(2) by the following relation

〈E(x, y) , z〉 = 〈τ2(E)(y, z) , x〉 (33)

for each element E in the base Y 2 of Dend(2), using the previous conditions
on 〈 , 〉.

Theorem 4.1 There exists a unique collection τ of endomorphisms τn of the
space Dend(n) extending τ1 and τ2 and endowing the operad Dend with a
structure of non-symmetric anticyclic operad.

Proof Clearly τ1 is of order 2 and τ2 is of order 3. As Dend is generated by
Dend(2), the maps τ are unique if they exist. To check that τn can be defined
for n ≥ 3, it is enough to check that the notion of invariant form is compatible
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with the three relations defining the operad Dend. Let us check that it works
for the second compatibility condition:

〈x � (y ≺ z) − (x � y) ≺ z , t〉 (34)

= 〈(y ≺ z) ≺ t , x〉 + 〈z ≺ t , x � y〉 + 〈z � t , x � y〉 (35)

= 〈(y ≺ z) ≺ t , x〉 − 〈x � y , z ≺ t〉 − 〈x � y , z � t〉 (36)

= 〈(y ≺ z) ≺ t , x〉 − 〈y ≺ (z ≺ t) + y ≺ (z � t) , x〉 = 0, (37)

where one has used the antisymmetry and the invariance to obtain an expression
with the x variable alone on the right. The two remaining computations are
just as simple and are left to the reader.

The matrix of τ in the base of trees certainly deserves more study. It seems to
be related to the so-called Tamari lattices [8].

5 Four operads

Starting from this section, we consider operads in the usual sense, which means
with actions of the symmetric groups. As explained in section 1, we can consider
the two non-symmetric anticyclic operads just defined as anticyclic operads, still
denoted Dias and Dend. We will show that some sub-operads and quotient
operads of these inherit an anticyclic structure.

5.1 The Perm operad

The Perm operad, introduced in [2], is a quotient operad of the diassociative
operad Dias. The space Perm(n) has dimension n and the action of Sn is the
usual permutation representation.

The operad Perm is the quotient of Dias by the ideal generated by the element
x1 a x2 − x2 ` x1 . The image of the product x1 a x2 will be denoted x1x2 .

The operad Perm is quadratic, generated by the binary product xy (regular
representation of S2 ) and with relations

(xy)z = x(yz) = x(zy). (38)

Theorem 5.1 The operad Perm has a unique structure of anticyclic operad
such that the quotient map from Dias is a morphism of anticyclic operads.
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Proof One has to check that the defining ideal is stable by the action of Sn+1

on Dias(n). It is enough to check this in Dias(2), which contains the generators
of the ideal, where it is immediate. Hence Perm is a quotient anticyclic operad
of Dias.

The resulting notion of invariant bilinear map is as follows. It is an antisym-
metric map

〈x , y〉 = −〈y , x〉 (39)

such that

〈xy , z〉 = −〈zy , x〉 and 〈xy , z〉 = 〈xz , y〉 − 〈zx , y〉. (40)

Theorem 5.2 The action of Sn+1 on Perm(n) is isomorphic to the represen-
tation by reflections.

Proof Let us consider the action of Sn+1 by permutations on the module
with base (εi)i=1,...,n+1 . The reflection module is the submodule with base
bn
m = εm − εn+1 for m = 1, . . . , n. The action of the subgroup Sn is by

permutations of the vectors bn
m and the action of the cycle τn : (n+1, n, . . . , 2, 1)

is given by

τn(bn
m) =

{

−bn
n if m = 1,

−bn
n + en

m−1 else.
(41)

On the other hand, the action of Sn on the module Perm(n) with base
(en

m)m=1,...,n is by permutation of the vectors en
m . This base of Perm(n) is

the image of the base en
m⊗1 of the operad Dend. Hence the action of the cycle

τn is induced by the action of the cycle τn in the base en
m of the non-symmetric

operad Dias which is given by Formula (24). This concludes the proof.

Corollary 5.3 The characteristic function of the anticyclic operad Perm is

Ch(Perm) = (p1 − 1) exp(
∑

k≥1

pk

k
) + 1. (42)

Proof This follows readily from the previous Theorem and the well-known
fact that

ch(Comm) = exp(
∑

k≥1

pk

k
) − 1. (43)
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5.2 The Leibniz operad

The Leibniz operad is a sub-operad of Dias, also introduced in [11]. It will be
denoted by Leib.

It is the sub-operad of Dias generated by the element [x1, x2] = x1 a x2 − x2 `
x1 . Beware that this bracket is not antisymmetric. Leibniz algebras are “non-
commutative Lie algebras” in some sense.

The quadratic presentation of Leib is the following. It is generated by the
binary product [x, y] (regular module of S2 ) modulo the relation

[x, [y, z]] = [[x, y], z] − [[x, z], y]. (44)

It is known that the space Leib(n) is the regular representation of Sn , with
base given by left-bracketed words in the variables x1, . . . , xn .

Theorem 5.4 The operad Leib has a unique structure of anticyclic operad
such that the inclusion map into Dias is a morphism of anticyclic operads.

Proof It is enough to check that Leib(2) is indeed a submodule of Dias(2) for
the action of S3 . This is immediate and implies that Leib(n) is stable by the
action of the symmetric group Sn+1 on Dias(n).

The resulting notion of invariant bilinear map is as follows. It is an antisym-
metric map

〈x , y〉 = −〈y , x〉 (45)

such that

〈[x, y] , z〉 = 〈[z, y] , x〉 and 〈[x, y] , z〉 = −〈[z, x] , y〉 − 〈[x, z] , y〉. (46)

Theorem 5.5 The action of Sn+1 on Leib(n) is isomorphic to the Lie module
Lie(n + 1).

Proof It was proved in [2] that the operad Leib is the Hadamard product of
the operads Perm and Lie. As explained in Section 1, the Hadamard product
of a cyclic operad and an anticyclic operad is an anticyclic operad. One can
check that the anticyclic structure obtained in this way on Leib coincides with
the one introduced above. Hence the action of Sn+1 on Leib(n) is given by
the tensor product of the Sn+1 -modules Lie(n) and Perm(n). Then using
Theorem 5.2 and [5, Corollary 6.8], this is known to be isomorphic to the
module Lie(n + 1).
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5.3 The Pre-Lie operad

The PreLie operad has been introduced in [3]. It is the sub-operad of the
dendriform operad generated by the operation x1 x x2 = x2 � x1 − x1 ≺ x2 .
The space PreLie(n) has dimension nn−1 .

Let us recall the presentation of the operad PreLie. The product x x y is the
regular module for S2 and must satisfy the following relation:

(x x y) x z − x x (y x z) = (x x z) x y − x x (z x y). (47)

Theorem 5.6 The operad PreLie has a unique structure of anticyclic operad
such that the inclusion map into Dend is a morphism of anticyclic operads.

Proof It is enough to check that PreLie(2) is indeed a submodule of Dend(2)
for the S3 action. This is immediate and implies that PreLie(n) is stable by
the action of the symmetric group Sn+1 on Dend(n).

The resulting notion of invariant bilinear map is as follows. It is an antisym-
metric map

〈x , y〉 = −〈y , x〉 (48)

such that

〈x x y , z〉 = −〈x x z , y〉 and 〈x x y , z〉 = −〈y x z , x〉+ 〈z x y , x〉. (49)

Remark As the space PreLie(n) is isomorphic as a Sn -module to the space
with a base indexed by labelled rooted trees on n vertices, this implies the
existence of a remarkable linear action of Sn+1 on this space.

Theorem 5.7 One has the following equality of symmetric functions:

ch(PreLie)(1 + Ch(PreLie)) = p1(1 + ch(PreLie) + ch(PreLie)2). (50)

Proof One can check that PreLie is the Koszul dual anticyclic operad of Perm.
Hence its characteristic function is obtained by a Legendre transform of the
characteristic function of Perm.

But since Perm and PreLie are Koszul dual operads, it is known that

ch(Perm) ◦ Σ ch(PreLie) = p1. (51)

This can be used to replace the equation defining the Legendre transform of
Ch(Perm) by a relation no longer involving the plethysm. Applying the sus-
pension Σ to this relation leads to Formula (50).
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We propose here an explicit conjecture for the character of Sn+1 on PreLie(n)
as a symmetric function.

Conjecture 5.8 The characteristic function Ch(PreLie) of the anticyclic op-
erad PreLie is

∑

λ,|λ|≥1,λ1 6=1

(λ1 − 1)λ1−2
∏

k≥2

(

(fk(λ) − 1)λk − kλk(fk(λ) − 1)λk−1
) pλ

zλ
, (52)

where the sums runs over non-empty partitions λ not having exactly one part
of size 1, λk denotes the number of parts of size k in the partition λ and
fk(λ) denotes the number of fixed points of the kth power of a permutation of
cycle type λ. The notations pλ and zλ are classical for power sum symmetric
functions and related constants.

It is easy to check that the restriction to Sn gives back the known formula for
the action on rooted trees which can be found in [10]. It has been checked by
computer up to n = 14 that the expected characteristic function is indeed a
positive linear combination of Schur functions and that Formula (50) holds.

5.4 The Zinbiel operad

The Zinbiel operad, denoted by Zinb, was introduced in [11]. Maybe it would
be more appealing to call it the shuffle operad. It is the quotient operad of
Dend by the ideal generated by the following element

x1 ≺ x2 − x2 � x1. (53)

The image in Zinb of the product x1 ≺ x2 will be denoted x1x2 .

The operad Zinb has a quadratic presentation. It is generated by the binary
product xy (regular representation of S2 ) subject to the relation:

(xy)z = x(yz) + x(zy). (54)

The space Zinb(n) is isomorphic to the regular representation of Sn and the
composition of the operad can be described using shuffles of permutations.

Theorem 5.9 The operad Zinb has a unique structure of anticyclic operad
such that the quotient map from Dend is a morphism of anticyclic operads.

Proof Once again, it follows already from the check done for the PreLie operad
that the ideal defining Zinb is indeed stable by the action of the symmetric
group Sn+1 on Dend(n). Hence Zinb is a quotient anticyclic operad of Dend.
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The resulting notion of invariant bilinear map is as follows. It is an antisym-
metric map

〈x , y〉 = −〈y , x〉 (55)

such that

〈xy , z〉 = 〈xz , y〉 and 〈xy , z〉 = −〈yz , x〉 − 〈zy , x〉. (56)

Theorem 5.10 The action of Sn+1 on Zinb(n) is isomorphic to the Lie mod-
ule Lie(n + 1).

Proof It is known that the operad Zinb is the Koszul dual of the operad
Leib. One can check that the anticyclic structure of Leib is obtained from
the anticyclic structure of Zinb by Koszul duality. Hence it follows that the
characteristic of the anticyclic operad Zinb is related to the characteristic of the
anticyclic operad Leib by a Legendre transform of symmetric functions. The
characteristic of Leib is known by Theorem 5.5 to be

F =
∑

n≥2

1

n

∑

d|n
µ(d)p

n/d
d . (57)

One has to check that the Legendre transform of F is

G =
∑

n≥2

1

n

∑

d|n
µ(d)(−1)n/dp

n/d
d . (58)

The derivative of G is

∂p1
G =

p1

1 + p1
, (59)

and one has

p1∂p1
G =

p2
1

1 + p1
. (60)

Let us compute F ◦ ∂p1
G + G. One finds

∑

n≥2

1

n

∑

d|n
µ(d)

(

1

(1 + pd)n/d
+ (−1)n/d

)

p
n/d
d . (61)

Now fix d ≥ 2 and look only at the extracted series in pd :

µ(d)

d

∑

k≥1

1

k

(

1

(1 + pd)k
+ (−1)k

)

pk
d. (62)
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This is easily expressed using logarithms and seen to vanish. Hence the expres-
sion F ◦ ∂p1

G + G is given by

∑

n≥2

1

n

(

1

(1 + p1)n
+ (−1)n

)

pn
1 =

p2
1

1 + p1
(63)

as expected.

Let us remark that exactly the same computation with the Möbius function
µ replaced by the Euler totient function ϕ corresponds to self-duality of the
characteristic function for the cyclic Koszul operad Assoc.

6 Characters of Dend and Dias

Theorem 6.1 The characteristic function of the anticyclic operad Dias is

Ch(Dias) =
∑

n≥2



pn
1 − 1

n

∑

d|n
ϕ(d)p

n/d
d



 . (64)

Proof It is easy to check that the anticyclic operad Dias is obtained as the
Hadamard product of the anticyclic operad Perm by the cyclic operad Assoc.

It is known that the characteristic function of the cyclic operad Assoc is
∑

n≥2

1

n

∑

d|n
ϕ(d)p

n/d
d , (65)

where ϕ is the Euler totient function.

Using Theorem 5.2, one knows that the tensor product by the Sn+1 module
Perm(n) is given by the operator − Id+∂p1

. Then a simple computation proves
the Theorem.

One can check that the anticyclic structure of Dend is the one obtained from the
anticyclic structure of Dias by Koszul duality. Hence, by Legendre inversion,
one gets that the characteristic function of Dend is related to the Legendre
transform of the characteristic function of Dias.

Theorem 6.2 The characteristic function of the anticyclic operad Dend is

Ch(Dend) = 1 − p1 −
√

1 − 4p1 −
∑

n≥1





1

2n

∑

d|n
ϕ(d)

(

2n/d

n/d

)

p
n/d
d



 . (66)
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Proof Let us check that the Legendre transform gives this result. Let F be
the characteristic function (64) of Dias and let G be

1 + p1 −
√

1 + 4p1 −
∑

n≥1

1

2n

∑

d|n
ϕ(d)

(

2n/d

n/d

)

(−pd)
n/d. (67)

One has to check that F ◦ ∂p1
G + G = p1∂p1

G.

Then one has

∂p1
G =

1 + 2p1 −
√

1 + 4p1

2p1
(68)

and

p1∂p1
G =

1 + 2p1 −
√

1 + 4p1

2
. (69)

Let us compute p1∂p1
G − F ◦ ∂p1

G. One finds

1 + 2p1 −
√

1 + 4p1

2
−

(

1 + 2p1 −
√

1 + 4p1

2p1

)2
1

1 −
(

1+2p1−
√

1+4p1

2p1

)

+
∑

n≥2

1

n

∑

d|n
ϕ(d)

(

1 + 2pd −
√

1 + 4pd

2pd

)n/d

. (70)

Let us split this sum into

1 + 2p1 −
√

1 + 4p1

2
−

(

1 + 2p1 −
√

1 + 4p1

)2

2p1

(√
1 + 4p1 − 1

) − 1 + 2p1 −
√

1 + 4p1

2p1
(71)

and
∑

n≥1

1

n

∑

d|n
ϕ(d)

(

1 + 2pd −
√

1 + 4pd

2pd

)n/d

. (72)

Let us compute these separately. The first part is easily seen to be

1 + p1 −
√

1 + 4p1. (73)

The second part becomes

∑

d≥1

ϕ(d)

d

∑

k≥1

1

k

(

1 + 2pd −
√

1 + 4pd

2pd

)k

, (74)

which is
∑

d≥1

ϕ(d)

d
log

(

1 +
√

1 − 4pd

2

)

. (75)
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Using then the Taylor expansion

− log

(

1 +
√

1 − 4u

2

)

=
∑

n≥1

1

2n

(

2n

n

)

un, (76)

one gets

−
∑

d≥1

ϕ(d)

d

∑

k≥1

1

2k

(

2k

k

)

(−pd)
k, (77)

which becomes

−
∑

n≥1

1

2n

∑

d|n
ϕ(d)

(

2n/d

n/d

)

(−pd)
n/d. (78)

Summing both parts gives, as expected, that p1∂p1
G − F ◦ ∂p1

G = G.
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