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Abstract We analyze in homological terms the homotopy fixed point spec-
trum of a T-equivariant commutative S -algebra R . There is a homological
homotopy fixed point spectral sequence with E2

s,t = H−s
gp (T; Ht(R; Fp)),

converging conditionally to the continuous homology Hc
s+t(R

hT; Fp) of the
homotopy fixed point spectrum. We show that there are Dyer–Lashof op-
erations βǫQi acting on this algebra spectral sequence, and that its dif-
ferentials are completely determined by those originating on the vertical
axis. More surprisingly, we show that for each class x in the E2r -term of
the spectral sequence there are 2r other classes in the E2r -term (obtained
mostly by Dyer–Lashof operations on x) that are infinite cycles, i.e., survive
to the E∞ -term. We apply this to completely determine the differentials in
the homological homotopy fixed point spectral sequences for the topological
Hochschild homology spectra R = THH (B) of many S -algebras, including
B = MU , BP , ku , ko and tmf . Similar results apply for all finite sub-
groups C ⊂ T, and for the Tate- and homotopy orbit spectral sequences.
This work is part of a homological approach to calculating topological cyclic
homology and algebraic K -theory of commutative S -algebras.
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Keywords Homotopy fixed points, Tate spectrum, homotopy orbits, com-
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1 Introduction

In this paper we study a homological version of the homotopy fixed point spec-
tral sequence of an equivariant spectrum, with emphasis on the interaction be-
tween differentials in the spectral sequence and strictly commutative products
in the equivariant spectrum. We begin by describing the intended application
of this study.
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654 Robert R. Bruner and John Rognes

Consider a connective S -algebra B , such as the sphere spectrum S , the com-
plex cobordism spectrum MU or the Eilenberg–Mac Lane spectrum HZ of the
integers, in either of the current frameworks [BHM93], [EKMM97], [HSS00],
[MMSS01] for structured ring spectra. The algebraic K -theory spectrum K(B)
can, according to the main theorem of [Du97], be very well approximated by
the topological cyclic homology spectrum TC(B) of [BHM93]. The latter is
constructed from the T-equivariant topological Hochschild homology spectrum
X = THH (B), where T is the circle group, as a homotopy limit of the fixed
point spectra XC , suitably indexed over finite cyclic subgroups C ⊂ T.

These fixed point spectra are in turn often well approximated, via canonical
maps γ : XC → XhC , by homotopy fixed point spectra XhC = F (EC+,X)C .
In principle, the homotopy groups of the latter can be computed by the homo-
topical homotopy fixed point spectral sequence

E2
s,t = H−s

gp (C;πt(X)) =⇒ πs+t(X
hC) , (1.1)

which is derived by applying homotopy groups to the tower of fibrations, with
limit XhC , that arises from the equivariant skeleton filtration on the free con-
tractible C -space EC .

Such computations presume a detailed knowledge of the homotopy groups
π∗(X) of the T-equivariant spectrum in question. For example, the papers
[HM03] and [AuR02] deal with the cases when B is the valuation ring HOK

in a local number field K and the Adams summand ℓp in p-complete connec-
tive topological K -theory kup , respectively. In most other cases the spectral
sequence (1.1) cannot be calculated, because the homotopy groups π∗(X) are
not sufficiently well known.

It happens more frequently in stable homotopy theory that we are familiar with
the homology groups H∗(X; Fp). Applying mod p homology, rather than homo-
topy, to the tower of fibrations that approximates XhC leads to a homological
homotopy fixed point spectral sequence

E2
s,t = H−s

gp (C;Ht(X; Fp)) =⇒ Hc
s+t(X

hC ; Fp) . (1.2)

This spectral sequence converges conditionally [Bo99] to the (inverse) limit of
the resulting tower in homology, which is not H∗(X

hC ; Fp), but a “continuous”
version Hc

∗(X
hC ; Fp) of it, for homology does not usually commute with limits.

This continuous homology, considered as a comodule over the dual Steenrod
algebra A∗ [Mi58], is nonetheless a powerful invariant of XhC . In particular,
when X is bounded below and of finite type there is a strongly convergent
spectral sequence

Es,t
2 = Exts,tA∗

(Fp,H
c
∗(X

hC ; Fp)) =⇒ πt−s(X
hC)∧p (1.3)
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which can be obtained as an inverse limit of Adams spectral sequences [CMP87,
7.1]. Hence the continuous homology does in some sense determine the p-adic
homotopy type of XhC .

A form of the spectral sequence (1.3) was most notably applied in the proofs by
W. H. Lin [LDMA80] and J. Gunawardena [AGM85] of the Segal conjecture for
cyclic groups of prime order. The conjecture corresponds to the special case of
the discussion above when B = S is the sphere spectrum, so X = THH (S) =
S is the T-equivariant sphere spectrum, which is split [LMS86, II.8] so that
XhC ≃ F (BC+, S) = D(BC+). The proven Segal conjecture [Ca84] then tells
us that for each p-group C the comparison map γ : XC → XhC is a p-adic
equivalence. The proof of the general (cyclic) case is by reduction to the initial
case when C = Cp is of prime order, and therefore relies on the theorems of
Lin and Gunawardena cited above. In this case, of course, we do not know
π∗(X) = π∗(S) sufficiently well, but H∗(X; Fp) = Fp is particularly simple.
The proof of the theorems of Lin and Gunawardena now amounts to showing
that although the natural homomorphism γ∗ : H∗(X

C ; Fp) → Hc
∗(X

hC ; Fp) of
A∗ -comodules is not in itself an isomorphism, it does induce an isomorphism
of E2 -terms upon applying the functor Ext∗∗A∗

(Fp,−).

Returning to the general situation, we are therefore interested in studying (i) the
differentials in the homological homotopy fixed point spectral sequence (1.2)
above, and (ii) the A∗ -comodule extension questions relating its E∞ -term to
the abutment Hc

∗(X
hC ; Fp). There will in general be non-trivial differentials

in (1.2), but our main Theorem 1.2 below provides a very general and useful
vanishing result, as is illustrated by the examples in Section 6. The identifica-
tion of the A∗ -comodule structure on the abutment plays a crucial role already
in the case X = S , but requires further study beyond that given here, and will
be presented in the forthcoming Ph.D. thesis of Sverre Lunøe–Nielsen [L-N].

Now suppose that B is a commutative S -algebra, in either one of the structured
categories listed at the outset. Then X = THH (B) can be constructed as a
T-equivariant commutative S -algebra, which we hereafter denote R = X , in
the naive sense of a commutative S -algebra with a continuous T-action through
commutative S -algebra maps. Starting at this point we need to be in a technical
framework where naively T-equivariant commutative S -algebras R make sense,
and either of the S -modules of [EKMM97], the orthogonal spectra of [MMSS01],
the equivariant orthogonal spectra of [MM02] or the topological version of the
symmetric spectra of [HSS00] will do. To be concrete, we can follow [EKMM97,
Ch. IX].

Then the tower of fibrations with limit RhC = XhC is one of commutative S -
algebras. It follows that there are Dyer–Lashof operations acting on the spectral
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sequence (1.2) in this case, somewhat analogously to the action by Steenrod op-
erations in the Adams spectral sequence of a commutative S -algebra [BMMS86,
Ch. IV]. In the latter case there are very interesting relations between the Adams
differentials and the Steenrod operations, which propagate early differentials to
higher degrees. The initial motivation for the present article was to deter-
mine the analogous interaction between the differentials and the Dyer–Lashof
operations in the homological homotopy fixed point spectral sequence of a com-
mutative S -algebra. However, the analogy with the behavior of differentials in
the Adams spectral sequence is more apparent than real, suggesting neither
the survival to E∞ of some classes, nor the method of proof. In particular,
there is no analog in the Adams spectral sequence of our main vanishing result,
Theorem 1.2.

For each finite subgroup C ⊂ T the homological spectral sequence for RhC is
an algebra over the corresponding homological spectral sequence for RhT , as
outlined in Section 7, so it will suffice for us to consider the circle homotopy
fixed points RhT and the case C = T of the spectral sequence (1.2). Our first
results in Sections 2–4 can then be summarized as follows.

Theorem 1.1 (a) Let R be a T-equivariant commutative S -algebra. Then
there is a natural A∗ -comodule algebra spectral sequence

E2
∗∗(R) = H−∗

gp (T;H∗(R; Fp)) = P (y)⊗H∗(R; Fp)

with y in bidegree (−2, 0), converging conditionally to the continuous homology

Hc
∗(R

hT; Fp) = lim
n

H∗(F (S(Cn)+, R)T; Fp)

of the homotopy fixed point spectrum RhT = F (ET+, R)T .

(b) There are natural Dyer–Lashof operations βǫQi acting vertically on this
homological homotopy fixed point spectral sequence. For each element x ∈
E2r

0,t ⊂ Ht(R; Fp) we have the relation

d2r(βǫQi(x)) = βǫQi(d2r(x))

for every integer i and ǫ ∈ {0, 1}. If d2r(x) = yr ·δx with δx ∈ Ht+2r−1(R; Fp),
then the right hand side βǫQi(d2r(x)) is defined to be yr · βǫQi(δx).

(c) The classes yn are infinite cycles, so the differentials from the vertical axis
E2r

0,∗ propagate to each column by the relation

d2r(yn · x) = yn · d2r(x)

for every x ∈ E2r
0,∗ , 2r ≥ 2, n ≥ 0. Hence there are isomorphisms E2r

∗∗ ≡ P (y)⊗

E2r
0,∗ for all 2r ≥ 2, modulo possible y -torsion in filtrations −2r + 4 ≤ s ≤ 0.
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For proofs, see Propositions 2.1, 4.1 and 4.2, and Lemma 4.3. The key idea is
to identify the differentials in the homological homotopy fixed point spectral
sequence as obstructions to extending equivariant maps, as explained in Sec-
tion 3. Note that the spectral sequence is concentrated in even columns, so all
differentials of odd length (dr with r odd) must vanish.

Our main theorem is the following vanishing result for differentials.

Theorem 1.2 Let R be a T-equivariant commutative S -algebra, suppose that
x ∈ Ht(R; Fp) survives to the E2r -term E2r

0,t ⊂ Ht(R; Fp) of the homological

homotopy fixed point spectral sequence for R, and write d2r(x) = yr · δx.

(a) For p = 2, the 2r classes

x2 = Qt(x), Qt+1(x), . . . , Qt+2r−2(x) and Qt+2r−1(x) + xδx

all survive to the E∞ -term, i.e., are infinite cycles.

(b) For p odd and t = 2m even, the 2r classes

xp = Qm(x), βQm+1(x), . . . , Qm+r−1(x) and xp−1δx

all survive to the E∞ -term, i.e., are infinite cycles.

(c) For p odd and t = 2m− 1 odd, the 2r classes

βQm(x), Qm(x), . . . , βQm+r−1(x) and Qm+r−1(x)− x(δx)p−1

all survive to the E∞ -term, i.e., are infinite cycles.

This will be proved in Section 5 as Theorem 5.1. There are similar extensions of
our results to the Tate constructions RtC = [ẼC∧F (EC+, R)]C and homotopy
orbit spectra RhC = EC+ ∧C R, but to keep the exposition simple these are
also only discussed in Section 7.

Remark 1.3 In more detail, in the three cases of the theorem the infinite
cycles can be listed as follows:

(a) x2 = Qt(x), Qi(x) for t + 1 ≤ i ≤ t + 2r − 2 and Qt+2r−1(x) + xδx;

(b) xp = Qm(x), βǫQi(x) for m + 1 ≤ i ≤ m + r− 1, ǫ ∈ {0, 1} and xp−1δx;

(c) βǫQi(x) for m ≤ i ≤ m+r−2, ǫ ∈ {0, 1}, βQm+r−1(x) and Qm+r−1(x)−
x(δx)p−1 .

In particular, for any element x ∈ Ht(R; Fp), with d2(x) = y · δx, there are two
infinite cycles
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(a) x2 = Qt(x) and Qt+1(x) + xδx when p = 2,

(b) xp = Qm(x) and xp−1δx when p is odd and t = 2m, and

(c) βQm(x) and Qm(x)− x(δx)p−1 when p is odd and t = 2m− 1.

As applications of our main results, we turn in Section 6 to the study of the
algebraic K -theory spectrum K(MU), interpolating between K(S) (which is
Waldhausen’s A(∗), related to high dimensional geometric topology) and K(Z)
(which relates to the Vandiver and Leopoldt conjectures, and other number
theory), by the methods of topological cyclic homology. Hence we must study
the fixed- and homotopy fixed point spectra of the commutative S -algebra
R = THH (MU), for various subgroups C of the circle group T. It is known
that H∗(MU ; Fp) = P (bk | k ≥ 1), where P (−) denotes the polynomial alge-
bra over Fp and |bk| = 2k , from which it follows ([MS93, 4.3] or [CS]) that
H∗(THH (MU); Fp) = H∗(MU ; Fp)⊗ E(σbk | k ≥ 1), where E(−) denotes the
exterior algebra over Fp and σ : H∗(R; Fp) → H∗+1(R; Fp) is the degree +1
operator induced by the circle action. Hence the homological homotopy fixed
point spectral sequence for THH (MU)hT begins

E2
∗∗ = P (y)⊗ P (bk | k ≥ 1)⊗ E(σbk | k ≥ 1) .

There are differentials d2(bk) = y · σbk for all k ≥ 1, so by our Theorem 1.1

E4
∗∗ = P (y)⊗ P (bp

k | k ≥ 1)⊗ E(bp−1
k σbk | k ≥ 1)

plus some classes (the image of σ) in filtration s = 0. By our Theorem 1.2 the
spectral sequence collapses completely at the E4 -term, so that

Hc
∗(THH (MU)hT; Fp) = P (y)⊗ P (bp

k | k ≥ 1)⊗ E(bp−1
k σbk | k ≥ 1)

plus some classes in filtration zero, as an algebra. The identification of the A∗ -
comodule extensions remains, for which we refer to the cited Ph.D. thesis [L-N].
This provides the input for the inverse limit of Adams spectral sequences (1.3)
converging to π∗(THH (MU)hT)∧p , which approximates the topological version
TF (MU) of negative cyclic homology, and which determines the topological
cyclic homology of MU by a fiber sequence

TC(MU)
π // TF (MU)

R−1
// TF (MU) .

The fiber of the cyclotomic trace map K(MU) → TC(MU) is equivalent to
that of K(Z) → TC(Z), by [Du97], which now is quite well known [Ro02],
[Ro03]. Our theorem therefore provides a key input to the computation of
K(MU). See Theorem 6.4(a).
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Similar applications are given for the connective Johnson–Wilson spectra B =
BP 〈n〉, for p and n such that these are commutative S -algebras, and the
(higher real) commutative S -algebras B = ko and tmf for p = 2. See Sec-
tion 6. Lastly, we can also show the collapse at the E4 -term of the homological
homotopy fixed point spectral sequence for R = THH (BP ), where BP is
the p-local Brown–Peterson S -algebra [BJ02], without making the (presently
uncertain) assumption that BP can be realized as a commutative S -algebra.
See Theorem 6.4(b). This is possible by the homological approach, since the
split surjection H∗(MU ; Fp)→ H∗(BP ; Fp) prevails throughout the homologi-
cal spectral sequences.

2 A homological spectral sequence

In this section we construct the homological homotopy fixed point spectral
sequence for a spectrum with a circle action.

Let T ⊂ C
∗ be the circle group. As our concrete model for a free contractible

T-CW complex ET we take the unit sphere S(C∞) ⊂ C
∞ with the usual

coordinatewise action by T. It has one T-equivariant cell in each even non-
negative dimension 2n ≥ 0. The equivariant 2n-skeleton is the odd (2n + 1)-
sphere ET

(2n) = S(Cn+1), which is obtained from the equivariant (2n − 2)-
skeleton ET

(2n−2) = S(Cn) by attaching a free T-equivariant 2n-cell T×D2n

along the group action map

α : T× ∂D2n → S(Cn) . (2.1)

This map is T-equivariant when we give ∂D2n the trivial T-action and S(Cn)
the free T-action. Hence there is a T-equivariant filtration

∅ ⊂ S(C) ⊂ · · · ⊂ S(Cn) ⊂ S(Cn+1) ⊂ . . .

with colimit ET, and T-equivariant cofiber sequences

S(Cn)→ S(Cn+1)→ T+ ∧ S2n

for n ≥ 0. Here T acts trivially on S2n = D2n/∂D2n .

Let X be any spectrum with T-action, i.e., a naively T-equivariant spectrum.
The homotopy fixed point spectrum of X is defined as the mapping spectrum

XhT = F (ET+,X)T
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of T-equivariant based maps from ET+ to X . Here ET+ should be interpreted
as the unreduced suspension spectrum of ET. The T-equivariant filtration of
ET = S(C∞) induces a tower of fibrations

· · · → F (S(Cn+1)+,X)T → F (S(Cn)+,X)T → · · · → F (S(C)+,X)T → ∗
(2.2)

with the homotopy fixed point spectrum as its limit

XhT = lim
n

F (S(Cn)+,X)T ,

weakly equivalent to the homotopy limit. The cofiber sequences above induce
cofiber sequences of spectra

Σ−2nX = F (T+ ∧ S2n,X)T k
−→ F (S(Cn+1)+,X)T i

−→ F (S(Cn)+,X)T

for each n ≥ 0. We place F (ET
(−s−1)
+ ,X)T in filtration s, for each s ∈ Z, and

obtain a chain of cofiber sequences of spectra:

XhT // F (S(Cn+1)+,X)T i // F (S(Cn)+,X)T

j

��

i // F (S(Cn)+,X)T

j

��
. . . Σ−2nX

k

iiSSSSSSSSSSSSSS

∗

k

iiSSSSSSSSSSSSSSSSS

Here the filtrations s = −2n − 1, −2n and −2n + 1 are displayed, and the
vertical maps labeled j are of degree −1.

Now apply mod p homology H∗(−; Fp) to this chain of cofiber sequences, to
obtain a homologically indexed unrolled exact couple [Bo99, 0.1] of graded A∗ -
comodules

A−∞
// A−2n−1

i // A−2n
i //

j

��

A−2n+1
//

j

��

A∞

. . . E−2n

k

ddJJJJJJJJJ

E−2n+1

k

ddJJJJJJJJJ

with

As,t = Hs+t(F (ET
(−s−1)
+ ,X)T; Fp)

equal to Hs+t(F (S(Cn)+,X)T; Fp) for s = −2n and s = −2n + 1, and

Es,t = Hs+t(F (ET
(−s)/ET

(−s−1),X)T; Fp)

equal to Hs+t(Σ
−2nX; Fp) ∼= Ht(X; Fp) for s = −2n ≤ 0, and zero otherwise.

We write yn · x ∈ E−2n,t for the class that corresponds to x ∈ Ht(X; Fp) under
this canonical suspension isomorphism.
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The associated spectral sequence Er = Er(X) with

E1
s,t = Es,t

∼=

{
Ht(X; Fp) for s = −2n ≤ 0

0 otherwise,

is by definition the homological homotopy fixed point spectral sequence for the
T-equivariant spectrum X . The E1 -term is concentrated in the non-positive
even columns, so d1 = 0 and E1 = E2 .

Alternatively, there is (the finite part of) a Cartan–Eilenberg system [CE56,
XV.7], with graded groups

H(a, b) = H∗(F (ET
(b−1)/ET

(a−1),X)T; Fp)

for all integers a ≤ b, which via E1
s = H(−s,−s + 1) gives rise to the same

spectral sequence as the unrolled exact couple above. Also define H(a,∞) =
limb H(a, b), so that H(0,∞) = Hc

∗(X
hT; Fp). We shall refer to this formalism

when discussing products in Section 4.

Since As = 0 for s ≥ 0 we trivially have A∞ = colims As = 0. Therefore the
associated spectral sequence is conditionally convergent, by [Bo99, 5.10], in this
case to the limit A−∞ = lims As . Indexing the limit system by n in place of s,
the abutment can be written as

Hc
∗(X

hT; Fp) = lim
n

H∗(F (S(Cn)+,X)T; Fp) , (2.3)

which we call the continuous homology of XhT . Since homology rarely com-
mutes with the formation of limits, the canonical map

H∗(X
hT; Fp)→ Hc

∗(X
hT; Fp)

is usually not an isomorphism. The Segal conjecture provides striking examples
of this phenomenon.

The spectral sequence will be strongly convergent to Hc
∗(X

hT; Fp) if the cri-
terion RE∞

∗∗ = 0 of [Bo99, 7.4] is satisfied, for which it certainly suffices that
in each bidegree (s, t) we have Er

s,t = E∞
s,t for some finite r = r(s, t). We

recall that in this setting, with convergence to the limit, strong convergence
means that the kernels Fs = ker(A−∞ → As) form an exhaustive complete
Hausdorff filtration of A−∞ = Hc

∗(X
hT; Fp), and that there are isomorphisms

Fs/Fs−1
∼= E∞

s for all s. When RE∞
∗∗ = 0, these isomorphisms arise from the

upper quadrangle (derived from [Bo99, 5.6 and 5.9]) in the following commuta-
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tive diagram:

A−∞
// As−1

Fs

OO

OO

// // Fs/Fs−1
∼= // E∞

s

<<

<<yyyyyyyy

H(−s,∞)

OOOO

// Z∞
s

OOOO

// // E1
s

k

OO
(2.4)

The right hand quadrangle is a pull-back, and the outer rectangle is obtained
by applying F (−,X)T and continuous homology to the commutative square
below.

ET+

��

ET
(−s)
+

oo

k

��

ET/ET
(−s−1) ET

(−s)/ET
(−s−1)oo

When discussing products, we shall find it more convenient to view the isomor-
phisms Fs/Fs−1

∼= E∞
s as being determined by the lower and right hand part

of (2.4).

We now turn to giving a convenient description of the E2 -term of the homolog-
ical homotopy fixed point spectral sequence. By the group cohomology of the
circle group T, with coefficients in some discrete group M , we mean the singu-
lar cohomology of its classifying space BT, or equivalently, the T-equivariant
cohomology of the universal space ET:

H−∗
gp (T;M) = H−∗(BT;M) = H−∗

T
(ET;M) .

The latter can be computed from the cellular chain complex given by the T-
equivariant skeletal filtration of ET, cf. [GM95, Ch. 10]. For M = Ht(X; Fp) =
πt(HFp∧X) we can recognize that cellular chain complex as the row (E1

∗,t, d
1).

This uses the canonical weak equivalence (of e.g. [LMS86, III.1])

ν : HFp ∧ F (Z,X)T → F (Z,HFp ∧X)T (2.5)

for each finite T-CW spectrum Z , applied in the cases Z = ET
(−s)/ET

(−s−1)

and Z = ET
(−s+1)/ET

(−s−1) to identify the groups and the differentials, re-
spectively. Therefore the E2 -term of the homological spectral can be expressed
as

E2
s,t = H−s

gp (T;Ht(X; Fp)) ∼= H−s
gp (T; Fp)⊗Ht(X; Fp) .
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Furthermore, H∗
gp(T; Fp) = P (y) is the polynomial algebra on the Euler class

y ∈ H2
gp(T; Fp) of the canonical line bundle over BT. Thus

E2
∗∗ = P (y)⊗H∗(X; Fp)

with y in bidegree (−2, 0) and Ht(X; Fp) in bidegree (0, t). See [GM95, Ch. 14]
for a discussion of related spectral sequences.

Proposition 2.1 There is a natural homological spectral sequence of A∗ -
comodules

E2
∗∗(X) = H−∗

gp (T;H∗(X; Fp)) = P (y)⊗H∗(X; Fp)

with y in bidegree (−2, 0), converging conditionally to the continuous homology
Hc

∗(X
hT; Fp). We call this the homological homotopy fixed point spectral se-

quence. If H∗(X; Fp) is finite in each degree, or the spectral sequence collapses
at a finite stage, then the spectral sequence is strongly convergent.

Remark 2.2 (a) So far, Er(X) was just defined as an additive spectral se-
quence, but we shall later (in Proposition 4.1) justify the reference to the algebra
structure in P (y) by showing that when X is a T-equivariant commutative S -
algebra, then Er(X) is an algebra spectral sequence. In the special case when
X = S the E2 -term is P (y) and the algebra structure is precisely that of the
polynomial algebra P (y). A general (naively) T-equivariant spectrum X can
be considered as a (naively) T-equivariant S -module [MM02, IV.2.8(iv)], and
its homological homotopy fixed point spectral sequence Er(X) becomes a mod-
ule spectral sequence over the collapsing algebra spectral sequence Er(S) with
E2(S) = E∞(S) = P (y). In this sense the expression for E2(X) describes a
natural P (y)-module structure on Er(X).

(b) As noted in the introduction, it is rather more traditional to apply the
homotopy group functor π∗(−) to the tower of fibrations (2.2), to obtain an
unrolled exact couple and a conditionally convergent (homotopical) homotopy
fixed point spectral sequence

E2
s,t = H−s

gp (T;πt(X)) =⇒ πs+t(X
hT) .

However, this is not the spectral sequence that we are considering. Earlier work
by Ch. Ausoni and the second author [AuR02, Ch. 4], as well as recent work
by S. Lunøe-Nielsen (and the second author) [L-N], supports the assertion that
the homological spectral sequence is an interesting object.

(c) In view of the natural weak equivalence (2.5), applied to the various skeletal
filtration quotients Z = ET

(m)/ET
(n) , the homological homotopy fixed point
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spectral sequence for the T-equivariant spectrum X is in fact isomorphic to
the homotopical homotopy fixed point spectral sequence for HFp∧X , where T

acts trivially on the Eilenberg–Mac Lane spectrum. More precisely, they have
isomorphic defining Cartan–Eilenberg systems, in the sense of [CE56, XV.7].

(d) In general there can be arbitrarily long differentials in the homological
homotopy fixed point spectral sequence. For example, when X = S(Cr)+ with
the free T-action, the differentials d2r

s,0 are nonzero for all even s = −2n ≤ 0.
The point of Theorem 1.2 is that this rarely happens when X = R is a T-
equivariant commutative S -algebra.

3 Differentials

We now make the differentials in the homological homotopy fixed point spectral
sequence more explicit, as obstructions to extending equivariant maps.

Consider a class x ∈ Ht(X; Fp), represented at the E2 -term of the homological
spectral sequence in bidegree (0, t). We briefly write H = HFp for the mod p
Eilenberg–Mac Lane spectrum. Then x can be represented as a non-equivariant
map St → H ∧X , or equivalently as a T-equivariant map

x : S(C)+ ∧ St → H ∧X .

Here T acts on S(C)+ (freely off the base point) and X , but not on St or H .

The condition that x ∈ E2
0,t = Ht(X; Fp) survives to the E2r -term, i.e., that

all differentials d2(x), . . . , d2r−2(x) vanish, is equivalent to x being in the im-
age from Ht(F (S(Cr)+,X)T; Fp) under the map induced by restriction along
S(C)+ ⊂ S(Cr)+ . This is in turn equivalent to the existence of a T-equivariant
extension

x′ : S(Cr)+ ∧ St → H ∧X

of x along S(C)+ ⊂ S(Cr)+ , in view of the natural naively equivariant weak
equivalence

ν : H ∧ F (S(Cr)+,X)→ F (S(Cr)+,H ∧X) .

(To establish this equivalence, use that S(Cr)+ is a finite T-CW complex. We
are considering maps from free T-CW complexes into these spectra, so only the
naive notion of a T-equivariant equivalence is required.)

Suppose that x ∈ E2r
0,t has survived to the E2r -term, so that such a T-

equivariant extension x′ exists. Then by the construction of the homological
spectral sequence, the differential

d2r(x) ∈ E2r
−2r,t+2r−1
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is the obstruction to extending x′ further along S(Cr)+ ⊂ S(Cr+1)+ to an
equivariant map

x′′ : S(Cr+1)+ ∧ St → H ∧X .

We put the obvious right adjoints of these maps together in a diagram.

S(C)+
x

''PPPPPPPPPPPP

��

(T× ∂D2r)+
α+

//

��

S(Cr)+
x′

//

��

F (St,H ∧X)

(T×D2r)+ // S(Cr+1)+

x′′

77o
o

o
o

o
o

Recalling from (2.1) that S(Cr+1)+ is obtained from S(Cr)+ by adjoining a free
T-cell along the action map α : T× ∂D2r → S(Cr), the obstruction to such an
extension is precisely the obstruction to extending the equivariant map x′ ◦α+

from (T×∂D2r)+ over (T×D2r)+ . By adjunction, this equals the obstruction to
extending the underlying non-equivariant map x′ : ∂D2r

+ = S(Cr)+ → F (St,H∧
X) over D2r

+ . In terms of the preferred stable splitting

∂D2r
+ ≃ S2r−1 ∨D2r

+

(induced by the pinch map from ∂D2r
+ to S2r−1 and the inclusion to D2r

+ ) this
equals the restriction of the non-equivariant map x′ to the stable summand
S2r−1 . Its left adjoint again is a map

δx : S2r−1 ∧ St → H ∧X ,

which represents d2r(x). We summarize:

Lemma 3.1 Let x ∈ E2r
0,t ⊂ Ht(X; Fp) be represented by a T-equivariant map

x : S(C)+∧St → H∧X that extends to a T-equivariant map x′ : S(Cr)+∧St →
H ∧ X . Then d2r(x) = yr · δx, where δx ∈ Ht+2r−1(X; Fp) is represented
by x′ considered as a non-equivariant map, restricted to the stable summand
S2r−1 ∧ St of S(Cr)+ ∧ St .

The extended map x′ represents a class in the homology of F (S(Cr)+,X)T ,
and considering x′ as a non-equivariant map amounts to following the map

ϕ : F (S(Cr)+,X)T → F (S2r−1
+ ,X)

that forgets the T-equivariance. There is a canonical map

ν : X ∧DS2r−1
+ → F (S2r−1

+ ,X)

Algebraic & Geometric Topology, Volume 5 (2005)



666 Robert R. Bruner and John Rognes

where DS2r−1
+ = F (S2r−1

+ , S) is the functional dual of S2r−1
+ , which is a weak

equivalence since S2r−1
+ is a finite CW complex. Hence there is a natural

isomorphism

ν : H∗(X; Fp)⊗H−∗(S2r−1; Fp)
∼=
−→ H∗(F (S2r−1

+ ,X); Fp) ,

where we have identified the spectrum homology H∗(DS2r−1
+ ; Fp) with the

space-level cohomology H−∗(S2r−1; Fp). We write H∗(S2r−1; Fp) = E(ι2r−1),
where ι2r−1 is the canonical generator in degree (2r−1) and E(−) denotes the
exterior algebra.

Proposition 3.2 The composite map

H∗(F (S(Cr)+,X)T; Fp)
ϕ∗

−→ H∗(F (S2r−1
+ ,X); Fp)

ν∗←−
∼=

H∗(X; Fp)⊗H−∗(S2r−1; Fp)

takes any class x′ that maps to x ∈ E2r
0,t ⊂ Ht(X; Fp) by the restriction map

H∗(F (S(Cr)+,X)T; Fp)→ H∗(F (S(C)+,X)T; Fp) = H∗(X; Fp)

to the sum
(ν−1

∗ ϕ∗)(x
′) = x⊗ 1 + δx⊗ ι2r−1 ,

where d2r(x) = yr · δx in E2r
−2r,t+2r−1 . Suppressing the power of y we may

somewhat imprecisely write this formula as

ϕ∗(x) = x⊗ 1 + d2r(x)⊗ ι2r−1 .

The case r = 1 of this result says that d2(x) = y · σx, and follows e.g. from
[Ro98, 3.3].

Proof This is really a corollary to Lemma 3.1, but for the observation that
the restriction of the non-equivariant x′ to the subspace St ⊂ S(Cr)+ ∧ St

equals the restriction of the non-equivariant x to the same subspace St ⊂
S(C)+ ∧ St , which in turn corresponds to x ∈ E2r

0,t under the identification

H∗(F (S(C)+,X)T; Fp) = H∗(X; Fp). There are no signs in these formulas,
because the canonical map ν is derived from the non-symmetric part of the
closed monoidal structure on the stable homotopy category. (See e.g. [LMS86,
III.1].)

Remark 3.3 Lemma 3.1 says that the differential in the homotopy fixed point
spectral sequence is essentially the T-equivariant root invariant for H ∧X . A
corresponding description of the Mahowald C2 -equivariant root invariant for S
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can be found in [BG95, 2.5]: Let Sn+kα denote the C2 -equivariant sphere
that is the one point compactification of R

n ⊕R
k(−1), where C2 acts trivially

on R
n and by negation on R

k(−1). Given a non-equivariant (stable) map
x : Sn → S0 , let x′ : Sn+kα → S0 be a C2 -equivariant extension of x with
k maximal. Then the C2 -equivariant root invariant of x contains the non-
equivariant map x′ : Sn+k → S0 underlying x′ .

4 Commutative S -algebras

Now suppose that X = R is a naively T-equivariant commutative S -algebra,
i.e., a commutative S -algebra with a continuous point-set level action by the cir-
cle group T, through commutative S -algebra maps. We shall be concerned with
the homotopy fixed points of R, rather than its genuine fixed points, so only this
weak notion of an equivariant spectrum will be needed. Cf. [GM95, Ch. 1]. Our
principal example is R = THH (B), the topological Hochschild homology spec-
trum of a non-equivariant commutative S -algebra B . The cyclic structure on
topological Hochschild homology [EKMM97, Ch. IX] then provides the relevant
T-action. In terms of the tensored structure on commutative S -algebras over
topological spaces, one model for the topological Hochschild homology spec-
trum is THH (B) = B ⊗ T, and then T acts naturally through commutative
S -algebra maps by group multiplication in the T-factor.

In this situation the homotopy fixed point spectrum RhT = F (ET+, R)T is
also a commutative S -algebra. Writing µ : R ∧ R → R for the T-equivariant
multiplication map of R, the corresponding multiplication map for RhT is given
by the composite

F (ET+, R)T ∧ F (ET+, R)T ∧
−→ F ((ET × ET)+, R ∧R)T

µ#∆#
+

−−−−→ F (ET+, R)T .

Here ∧ smashes together two T-equivariant maps Σ∞ET+ → R, and considers
the resulting (T× T)-equivariant map as being T-equivariant via the diagonal
action. The map µ# composes on the left by µ : R ∧ R → R, while the map

∆#
+ composes on the right by the diagonal map ∆+ : ET+ → (ET × ET)+ .

Since µ is commutative and ∆+ is cocommutative, the resulting multiplication
on RhT is also strictly commutative.

Writing η : S → R for the T-equivariant unit map of R, the corresponding unit
map for RhT is the composite

S → F (ET+, S)T
η#
−−→ F (ET+, R)T .
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To define the first map, we must use that T acts trivially on S .

The same constructions can be applied for the T-CW skeleta of ET, so each
F (S(Cn)+, R)T is also a commutative S -algebra. In particular, the continu-
ous homology Hc

∗(R
hT; Fp) is a limit of graded commutative algebras, and is

therefore itself a graded commutative algebra.

Proposition 4.1 Let R be a T-equivariant commutative S -algebra. Then
the homological homotopy fixed point spectral sequence

E2
∗∗(R) = P (y)⊗H∗(R; Fp) =⇒ Hc

∗(R
hT; Fp)

is an A∗ -comodule algebra spectral sequence, where P (y) is the polynomial
algebra on y in bidegree (−2, 0), and H∗(R; Fp) has the Pontryagin product.

Proof The algebra product in Er(R) is derived from the T-equivariant com-
mutative S -algebra product in R and a T-equivariant cellular approximation d
to the diagonal map ∆: ET → ET × ET. The deduction is in principle stan-
dard, but due to our homological indexing and perhaps unusual choice of exact
couple defining the spectral sequence, it is not so easy to find an applicable ref-
erence. (The closest may be a combination of Remark 2.2(c) and [HM03, 4.3.5],
adapted from the G-Tate construction for a finite group G to the T-homotopy
fixed point spectrum.) We therefore provide the following outline.

The product (T × T)-CW structure on ET × ET can be refined to a T-CW
structure, by starting with a T-CW structure on T × T with the diagonal T-
action. Fix a choice of a T-equivariant cellular map d : ET → ET × ET that
is equivariantly homotopic to ∆.

To shorten the notation, we shall write

ET
m
a = ET

(m)/ET
(a−1)

within this proof. Then for all integers s, s′ and r ≥ 1, d induces a map of
subquotients

d : ET
−s−s′+r−1
−s−s′ → ET

−s+r−1
−s ∧ ET

−s′+r−1
−s′ ,

since each T-m-cell in the source maps into the (T × T)-m-skeleton in the
product structure on the target, which is the union of products of T-k -cells
and T-k′ -cells with k ≥ −s, k′ ≥ −s′ and k + k′ ≤ m. For s = −2n and
s′ = −2n′ non-positive and even, and r = 1, this is a map

d : T+ ∧ S2n+2n′

→ T+ ∧ S2n ∧ T+ ∧ S2n′

(4.1)

homotopic to the (2n + 2n′)-th suspension of the diagonal T+ → (T× T)+ .
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For integers a ≤ b, let

H(a, b) = H∗(F (ET
b−1
a , R)T; Fp)

be the finite terms of a Cartan–Eilenberg system [CE56, XV.7], with E1
s =

H(−s,−s + 1). Applying F (−, R)T and homology to d, we obtain homomor-
phisms

ϕr : H(−s,−s + r)⊗H(−s′,−s′ + r)→ H(−s− s′,−s− s′ + r)

for all integers s, s′ and r ≥ 1. For s = −2n, s′ = −2n′ non-positive and
r = 1, this is the homomorphism

ϕ1 : E1
−2n ⊗ E1

−2n′ → E1
−2n−2n′

that takes yn ·x⊗yn′

·x′ to yn+n′

·µ∗(x⊗x′), under the identification E1
−2n,t =

yn · Ht(R; Fp) from Section 2. So E1 = E2 equipped with the product ϕ1 is
isomorphic to the tensor product of the polynomial algebra P (y) and H∗(R; Fp)
with the Pontryagin product µ∗ .

To verify that the spectral sequence differentials dr are derivations, so that
each term Er+1 inductively inherits an algebra structure from Er , it suffices
to check that we have a multiplicative Cartan–Eilenberg system, i.e., that the
pairings ϕr satisfy the relation

δ(ϕr(z ⊗ z′)) = ϕ1(δ(z) ⊗ η(z′)) + (−1)|z|ϕ1(η(z) ⊗ δ(z′)) (4.2)

in E1
s+s′−r , for z ∈ H(−s,−s + r) of degree |z| and z′ ∈ H(−s′,−s′ + r).

Here δ : H(−s,−s + r) → H(−s + r,−s + r + 1) = E1
s−r is the degree (−1)

homomorphism induced by the stable connecting map

δ : Σ−1ET
−s+r
−s+r → ET

−s+r−1
−s

of the obvious triple, and η : H(−s,−s + r) → H(−s,−s + 1) = E1
s is the

homomorphism induced by the inclusion

η : ET
−s
−s → ET

−s+r−1
−s .

We use similar notations with s′ and s + s′ in place of s. The sufficiency of
this condition can be read directly off from the definition of the differentials in
the spectral sequence associated to an unrolled exact couple, or obtained from
[Ma54] or [Mc01, Ex. 2.2.1].

In geometric terms, (4.2) asks that the composite map

Σ−1ET
−s−s′+r
−s−s′+r

δ
−→ ET

−s−s′+r−1
−s−s′

d
−→ ET

−s+r−1
−s ∧ ET

−s′+r−1
−s′
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is homotopic, as a map of T-equivariant spectra, to the sum of the two com-
posite maps

Σ−1ET
−s−s′+r
−s−s′+r

d
−→ Σ−1ET

−s+r
−s+r ∧ ET

−s′

−s′
δ∧η
−−→ ET

−s+r−1
−s ∧ ET

−s′+r−1
−s′

and

Σ−1ET
−s−s′+r
−s−s′+r

(−1)sd
−−−−→ ET

−s
−s ∧ Σ−1ET

−s′+r
−s′+r

η∧δ
−−→ ET

−s+r−1
−s ∧ ET

−s′+r−1
−s′ .

There is only something to check when s, s′ and r are all even, with s and s′

non-positive. The common source of the T-equivariant stable maps to be com-
pared is then Σ−1

T+ ∧ S−s−s′+r , so by an adjunction we may as well compare
non-equivariant maps from S−s−s′+r−1 to

ET
−s+r−1
−s ∧ ET

−s′+r−1
−s′ ≃ (S−s+r−1 ∨ S−s) ∧ (S−s′+r−1 ∨ S−s′) .

The projection to the stable summand ΣET
(−s−1) ∧ ΣET

(−s′−1) = S−s ∧ S−s′

in the target is trivial for each of the three maps, since in each case two subse-
quent maps in a cofiber sequence occur as a factor of the composite map. The
projections to the summands ET

(−s+r−1) ∧ ΣET
(−s′−1) = S−s+r−1 ∧ S−s′ and

ΣET
(−s−1)∧ET

(−s′+r−1) = S−s∧S−s′+r−1 agree as required, by the same kind
of homotopy as in (4.1).

Finally, in the presence of strong convergence due to the vanishing of Board-
man’s obstruction group RE∞

∗∗ , we claim that the isomorphisms Fs/Fs−1
∼=

E∞
s take the associated graded algebra structure derived from the product on

Hc
∗(R

hT; Fp) to the algebra structure on E∞ -term. These isomorphisms are
obtained by descent to subquotients, as in (2.4), from the homomorphisms

lim
m

H∗(F (ET
m
−s, R)T; Fp) = H(−s,∞)→ H(−s,−s + 1) = E1

s ,

so it suffices to verify that the following diagram commutes:

H(−s,∞)⊗H(−s′,∞) //

��

H(−s− s′,∞)

��

E1
s ⊗ E1

s′
ϕ1

// E1
s+s′

This follows immediately from the commutativity of the following diagram,
where d is the diagonal approximation and the vertical maps are inclusions:

ET/ET
(−s−1) ∧ ET/ET

(−s′−1) ET/ET
(−s−s′−1)doo

ET
(−s)/ET

(−s−1) ∧ ET
(−s′)/ET

(−s′−1)

OO

ET
(−s−s′)/ET

(−s−s′−1)

OO

doo
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Commutative S -algebras are E∞ ring spectra ([EKMM97, II.4]), and are in
particular also H∞ ring spectra ([EKMM97, III.5] and [LMS86, VII.2]). Hence
there are Dyer–Lashof operations Qi acting on their mod p homology algebras
[BMMS86, III.1]. Recall that Qi is a natural transformation

Qi : Ht(R; Fp)→ Ht+iq(R; Fp)

for all integers t, where q = 2p− 2. We also include their composites βQi with
the homology Bockstein operation β : Ht(R; Fp) → Ht−1(R; Fp) as generators
of the Dyer–Lashof algebra. For p = 2 the standard notation is to write Q2i

and Q2i−1 for the operations that would otherwise be called Qi and βQi ,
respectively.

As noted before Proposition 4.1, the commutative S -algebra structure on RhT =
F (ET+, R)T restricts to one on each F (S(Cn)+, R)T , so each algebra homo-
morphism

Hc
∗(R

hT; Fp)→ H∗(F (S(Cn)+, R)T; Fp)

commutes with the Dyer–Lashof operations in the source and in the target. In
particular, for n = 1 the identification F (S(C)+, R)T ∼= R lets us recognize
the Dyer–Lashof operations in the target as those in H∗(R; Fp). This action by
Dyer–Lashof operations on the vertical axis E2

0,∗ can be algebraically extended

to an action on the full E2 -term, by the formula βǫQi(yn ·x) = yn ·βǫQi(x). Our
next result shows that this action extends further to all terms of the homological
homotopy fixed point spectral sequence.

Proposition 4.2 R be a T-equivariant commutative S -algebra and let Er(R)
be its homological homotopy fixed point spectral sequence. Then for each ele-
ment x ∈ E2r

0,t ⊂ Ht(R; Fp) we have the relation

d2r(βǫQi(x)) = βǫQi(d2r(x)) ,

for every integer i and ǫ ∈ {0, 1}. Here the right hand side should be interpreted
as follows: If d2r(x) = yr · δx with δx ∈ Ht+2r−1(R; Fp) then βǫQi(d2r(x)) =
yr · βǫQi(δx).

The case r = 1 appears as [AnR, 5.9], with a proof that we generalize as follows.

Proof Let x ∈ Ht(R; Fp) and suppose that x survives to the E2r -term. Then
there exists an extension x′ ∈ Ht(F (S(Cr)+, R)T; Fp) of x over the restriction
map

F (S(Cr)+, R)T → F (S(C)+, R)T ∼= R

Algebraic & Geometric Topology, Volume 5 (2005)



672 Robert R. Bruner and John Rognes

of commutative S -algebras, and z′ = βǫQi(x′) is an extension of z = βǫQi(x)
over the same map, by naturality of the Dyer–Lashof operations. The maps
ϕ and ν from Proposition 3.2 are both maps of commutative S -algebras, and
therefore induce algebra homomorphisms ϕ∗ and ν∗ that commute with the
Dyer–Lashof operations. Thus

(ν−1
∗ ϕ∗)(β

ǫQi(x′)) = βǫQi(x)⊗ 1 + δz ⊗ ι2r−1 (4.3)

where d2r(βǫQi(x)) = yr · δz , is equal to

βǫQi((ν−1
∗ ϕ∗)(x

′)) = βǫQi(x⊗ 1 + δx⊗ ι2r−1)

where d2r(x) = yr ·δx. Now the Dyer–Lashof operations on the homology of the
smash product R ∧DS2r−1

+ are given by a Cartan formula, and on the tensor
factor H∗(DS2r−1

+ ; Fp) ∼= H−∗(S2r−1; Fp) the operation βǫQi corresponds to the
Steenrod operation βǫP−i , by [BMMS86, III.1.2]. But the latter operations all
act trivially on H∗(S2r−1; Fp), except for P 0 = 1, so the Cartan formula gives

βǫQi(x⊗ 1 + δx⊗ ι2r−1) = βǫQi(x)⊗ 1 + βǫQi(δx)⊗ ι2r−1 .

Identifying this with (4.3) and comparing the coefficients of ι2r−1 we obtain the
identity

δz = βǫQi(δx) ,

as claimed.

The homological homotopy fixed point spectral sequence for S itself is partic-
ularly simple. For H∗(S; Fp) = Fp , so the spectral sequence collapses to

E2
∗∗(S) = P (y) ,

concentrated on the horizontal axis. Hence each power of y is an infinite cycle,
i.e., d2r(yn) = 0 for all r ≥ 1 and n. The spectral sequence E∗(X) for a general
T-equivariant S -module X is a module over the one for S , so the Leibniz
formula for the module pairing immediately yields part (a) of the following
result.

Lemma 4.3 Let X be any T-equivariant S -module.

(a) The differentials in the homological homotopy fixed point spectral sequence
converging to Hc

∗(X
hT; Fp) satisfy the relation

d2r(yn · x) = yn · d2r(x)

for all x ∈ E2r
0,∗ ⊂ H∗(X; Fp), 2r ≥ 2 and n ≥ 0.
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(b) Each class in E2r
−2n,t has the form yn · x for a class x ∈ E2r

0,t ⊂ Ht(X; Fp).
Hence the spectral sequence is completely determined by the differentials that
originate on the vertical axis.

(c) The y -torsion in E2r
∗∗ has height strictly less than r , and is concentrated

in filtrations −2r + 4 ≤ s ≤ 0.

Proof It remains to prove parts (b) and (c), which we do by induction on r .
The claims for r = 1 are clear from Propositions 2.1 and 4.1.

If z = yn · x ∈ E2r
−2n,t survives to the E2r+2 -term, then 0 = d2r(yn · x) =

yn · d2r(x) by part (a). By induction there is no y -torsion in or below the
filtration of d2r(x), so d2r(x) = 0, x survives to the E2r+2 -term, and we still
have z = yn · x.

If now y · z = 0 in the E2r+2 -term, then y · z in the E2r -term must be a
boundary of the form d2r(yn+1−r · w), with w on the vertical axis. If n ≥ r
then it follows that z = d2r(yn−r ·w) in the E2r -term, since by induction there
is no y -torsion in filtration −2n of the E2r -term. Thus the only y -torsion in
the E2r+2 -term lies in filtrations −2r + 2 ≤ s ≤ 0.

In Section 7 we shall remark on an analogous homological Tate spectral se-
quence, where P (y) is replaced by P (y, y−1) and the issue of y -torsion classes
becomes void.

5 Infinite cycles

The Dyer–Lashof operations satisfy instability conditions [BMMS86, III.1.1]
that are in a sense dual to those of the Steenrod operations. For a class x ∈
Ht(R; Fp) the lowest nontrivial operation is Qt(x) = x2 when p = 2, Qm(x) =
xp when p is odd and t = 2m is even, and βQm(x) when p is odd and t = 2m−1
is odd. Similarly, the lowest nontrivial operation on δx ∈ Ht+2r−1(R; Fp) with
d2r(x) = yr ·δx is Qt+2r−1(δx) = (δx)2 when p = 2, βQm+r(δx) when p is odd
and t = 2m is even, and Qm+r−1(δx) = (δx)p when p is odd and t = 2m− 1 is
odd. Thus there is in each case a sequence of (2r − 1) Dyer–Lashof operations
βǫQi whose action on x can be nontrivial, but whose action on δx must be
trivial. By Proposition 4.2, this sequence of operations on x will survive past
the E2r -term, at least to the E2r+2 -term. It is the main point of the present
article to show that these classes, and one more “companion class”, then in fact
go on indefinitely to survive to the E∞ -term, i.e., are infinite cycles!
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Theorem 5.1 Let R be a T-equivariant commutative S -algebra, suppose that
x ∈ Ht(R; Fp) survives to the E2r -term E2r

0,t ⊂ Ht(R; Fp) of the homological

homotopy fixed point spectral sequence for R, and write d2r(x) = yr · δx.

(a) For p = 2, the 2r classes

x2 = Qt(x), Qt+1(x), . . . , Qt+2r−2(x) and Qt+2r−1(x) + xδx

all survive to the E∞ -term, i.e., are infinite cycles.

(b) For p odd and t = 2m even, the 2r classes

xp = Qm(x), βQm+1(x), . . . , Qm+r−1(x) and xp−1δx

all survive to the E∞ -term, i.e., are infinite cycles.

(c) For p odd and t = 2m− 1 odd, the 2r classes

βQm(x), Qm(x), . . . , βQm+r−1(x) and Qm+r−1(x)− x(δx)p−1

all survive to the E∞ -term, i.e., are infinite cycles.

Proof The argument proceeds by considering a universal example. Recall that
a class x ∈ E2r

0,t is represented by a T-equivariant map x : S(C)+ ∧St → H ∧R
that admits an equivariant extension x′ : S(Cr)+ ∧ St → H ∧R. Let

X = Dp(S(Cr)+ ∧ St) = EΣp ⋉Σp (S(Cr)+ ∧ St)∧p

be the p-th extended power of the spectrum S(Cr)+ ∧ St .

Somewhat abusively, we write H∗(S(Cr)+ ∧ St; Fp) = Fp{x, δx} with |x| = t
and |δx| = t+2r−1. Then the homology of the p-th extended power spectrum
is

H∗(X; F2) = F2{xδx, Qi(x) | i ≥ t, Qi(δx) | i ≥ t + 2r − 1}

for p = 2,

H∗(X; Fp) = Fp{x
p−1δx, βǫQi(x) | i ≥ m + ǫ, βǫQi(δx) | i ≥ m + r}

for p odd and t = 2m even, and

H∗(X; Fp) = Fp{x(δx)p−1, βǫQi(x) | i ≥ m, βǫQi(δx) | i ≥ m + r − 1 + ǫ}

for p odd and t = 2m− 1 odd. Throughout i is an integer and ǫ ∈ {0, 1}.

The equivariant extension x′ induces an equivariant map

Dp(x
′) : X = Dp(S(Cr)+ ∧ St)→ Dp(H ∧R) .
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The T-equivariant commutative S -algebra structures on H and R combine to
form one on H ∧ R, and, as noted in Section 4, this gives H ∧ R an H∞ -
ring structure ([EKMM97, Thm. 0.1, II.4 and III.5] and [LMS86, VII.2]). The
associated H∞ structure includes, in particular, a T-equivariant structure map

ξp : Dp(H ∧R)→ H ∧R

that extends the p-fold multiplication map on H ∧ R. Taken together, these
produce an equivariant map

H ∧Dp(S(Cr)+ ∧ St)
1∧Dp(x′)
−−−−−−→ H ∧Dp(H ∧R)

1∧ξp
−−−→ H ∧H ∧R

µ∧1
−−→ H ∧R ,

where µ is the multiplication on H . Applying homotopy we have a homomor-
phism

H∗(X; Fp) = H∗(Dp(S(Cr)+ ∧ St); Fp)→ H∗(R; Fp) (5.1)

which, by definition, takes the classes generating H∗(X; Fp) to the classes with
the same names in H∗(R; Fp). Now X = Dp(S(Cr)+ ∧ St) is a T-equivariant
retract of the free commutative S -algebra

P ≃
∨

j≥0

Dj(S(Cr)+ ∧ St)

on the space S(Cr)+ ∧ St , so the homological homotopy fixed point spectral
sequence for X is a direct summand of the one for P . Thus the formula from
Proposition 4.2 for the d2r -differentials in the spectral sequence for P is also
applicable in the spectral sequence for X .

Now consider the homological homotopy fixed point spectral sequence for X =
Dp(S(Cr)+∧St), first for p = 2 and then for p odd. We shall show in each case
that the 2r classes in E2r

0,∗ ⊂ H∗(X; Fp), with names as listed in the statement
of the theorem, are infinite cycles. By naturality of the homotopy fixed point
spectral sequence with respect to the map H ∧ X → H ∧ R from (5.1), it
follows that the 2r target classes listed in E2r

0,∗ ⊂ H∗(R; Fp) are also infinite
cycles. This will complete the proof of the theorem.

(a) Let p = 2. The homological homotopy fixed point spectral sequence for X
has

E2
∗∗ = P (y)⊗ F2{xδx, Qi(x) | i ≥ t, Qi(δx) | i ≥ t + 2r − 1}

and nontrivial differentials d2r(xδx) = yr · (δx)2 and

d2r(Qi(x)) = yr ·Qi(δx)

for all i ≥ t + 2r − 1, together with their y -multiples.

Algebraic & Geometric Topology, Volume 5 (2005)



676 Robert R. Bruner and John Rognes

yr ·Qt+2r(δx) ...

yr · (δx)2 Qt+2r(x)
�

d2r

kkVVVVVVVVVVVVVVVVVVVVVV

Qt+2r−1(x)
�

d2r

kkWWWWWWWWWWWWWWWWWWWWWW

xδx�

d2r

mm

Qt+2r−2(x)

...

Qt(x) = x2

Figure 1: The case p = 2

This leaves

E2r+2
∗∗ = P (y)⊗ F2{Q

i(x) | t ≤ i < t + 2r − 1, Qt+2r−1(x) + xδx}

plus some y -torsion classes from E2
∗∗ in filtrations −2r < s ≤ 0. Hence there

are no classes remaining in the entire quadrant with filtration s ≤ −2r and
vertical degree ∗ > |xδx| = 2t+2r−1. All further differentials on the classes in
E2r+2

0,∗ on the vertical axis land in this zero region, since already E2
0,∗ starts in

degree 2t with the lowest class Qt(x) = x2 . Thus all further differentials from
the vertical axis are zero, and the spectral sequence collapses at E2r+2

∗∗ = E∞
∗∗ .

(b) Let p be odd and t = 2m even. The homological homotopy fixed point
spectral sequence for X has

E2
∗∗ = P (y)⊗ Fp{x

p−1δx, βǫQi(x) | i ≥ m + ǫ, βǫQi(δx) | i ≥ m + r}

and nontrivial differentials

d2r(βǫQi(x)) = yr · βǫQi(δx)

for i ≥ m + r . This leaves

E2r+2
∗∗ = P (y)⊗ Fp{x

p−1δx, Qi(x) | m + ǫ ≤ i < m + r}
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plus some y -torsion classes in filtrations −2r < s ≤ 0. Hence there are
no classes left in the region where s ≤ −2r and the vertical degree is ∗ >
|Qm+r−1(x)|.

yr ·Qm+r(δx) ...

yr · βQm+r(δx) Qm+r(x)
�

d2r

kkWWWWWWWWWWWWWWWWWWWWWWW

βQm+r(x)
�

d2r

kkWWWWWWWWWWWWWWWWWWWWWW

Qm+r−1(x)

βQm+r−1(x)

... xp−1δx

Qm(x) = xp

Figure 2: The case p odd and t = 2m even

Now, x was also a class in the E2r−2 -term, with d2r−2(x) = 0, so by induction
over r we may assume (by naturality from the case of (r− 1)) that the classes
βǫQi(x) with m + ǫ ≤ i < m + (r− 1) are infinite cycles. This leaves the three
classes xp−1δx, βQm+r−1(x) and Qm+r−1(x) in E2r+2

0,∗ that are not y -torsion,

and could therefore imaginably support a differential after d2r . But the first
two classes βQm+r−1(x) and Qm+r−1(x) are so close to the horizontal edge of
the vanishing region that all differentials after d2r must vanish on these classes.

The third class xp−1δx has odd degree, so an even length differential on it must
land in an even degree. The only even degree classes in filtrations s ≤ −2r
are the y -multiples of Qi(x) for m ≤ i < m + r , of which Qm(x) = xp is
in lower degree than that of xp−1δx. The remaining possible target classes
Qi(x) for m < i < m + r all have nontrivial Bockstein images βQi(x), but
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β(xp−1δx) = 0 in H∗(X; Fp). Therefore, by naturality of the differential with
respect to the Bockstein operation, all of these targets for a differential on
xp−1δx are excluded. Thus also xp−1δx is an infinite cycle.

(c) Let p be odd and t = 2m− 1 odd. The homological homotopy fixed point
spectral sequence for X has

E2
∗∗ = P (y)⊗ Fp{x(δx)p−1, βǫQi(x) | i ≥ m, βǫQi(δx) | i ≥ m + r − 1 + ǫ}

and nontrivial differentials d2r(x(δx)p−1) = yr · (δx)p and

d2r(βǫQi(x)) = yr · βǫQi(δx)

for i ≥ m + r − 1 + ǫ. This leaves

E2r+2
∗∗ = P (y)⊗ Fp{β

ǫQi(x) | m ≤ i < m + r − 1 + ǫ, Qm+r−1(x)− x(δx)p−1}

plus y -torsion classes in filtrations −2r < s ≤ 0. Hence there are no classes
left in the region where s ≤ −2r and the vertical degree is ∗ > |Qm+r−1(x)|.

yr · βQm+r(δx) ...

yr · (δx)p βQm+r(x)
�

d2r

kkWWWWWWWWWWWWWWWWWWWWWW

Qm+r−1(x)
�

d2r

kkWWWWWWWWWWWWWWWWWWWWWWW

x(δx)p−1�

d2r

nn

βQm+r−1(x)

...

βQm(x)

Figure 3: The case p odd and t = 2m− 1 odd

Again considering x as a class in E2r−2
0,∗ and using induction on r we may assume

that the classes βǫQi(x) for m ≤ i < m+ r− 2+ ǫ and Qm+r−2(x)−x(δ′x)p−1

are infinite cycles. Here δ′x is defined by d2r−2(x) = yr−1 · δ′x. The fact that
d2r−2(x) = 0 gives δ′x = 0, so in fact all the classes βǫQi(x) for m ≤ i <
m + r − 1 in E2r+2

∗∗ are infinite cycles.
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This leaves only the two classes βQm+r−1(x) and Qm+r−1(x) − x(δx)p−1 , but
these are so close to the horizontal border of the vanishing region that all
differentials after d2r must be zero on them.

6 Examples

Our Theorem 5.1 has applications to the homological homotopy fixed point
spectral sequence for the commutative S -algebra R = THH (B) given by
the topological Hochschild homology of a commutative S -algebra B . The T-
homotopy fixed point spectrum THH (B)hT is closely related to the topological
model TF (B) for the negative cyclic homology of B , which in turn is very
close to the topological cyclic homology TC(B) [BHM93] and algebraic K -
theory K(B) of B [Du97]. These spectral sequences therefore have significant
interest.

First consider the connective Johnson–Wilson spectrum B = BP 〈m−1〉, for
some prime p and integer 0 ≤ m <∞. So

π∗BP 〈m−1〉 = BP∗/(vn | n ≥ m) ,

where BP∗ = Z(p)[vn | n ≥ 1] and v0 = p, and

H∗(BP 〈m−1〉; Fp) =

{
P (ξ̄2

1 , . . . , ξ̄2
m, ξ̄m+1, . . . ) for p = 2,

P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ m) for p odd.

The latter is a sub-algebra of the dual Steenrod algebra A∗ = H∗(HFp; Fp).

Suppose that p and m are such that BP 〈m−1〉 admits the structure of a
commutative S -algebra. This is so at least for m ∈ {0, 1, 2}, when BP 〈−1〉 =
HFp , BP 〈0〉 = HZ(p) and BP 〈1〉 = ℓ, respectively, where ℓ is the Adams
summand of p-local connective topological K -theory ku(p) . When p = 2,
ℓ = ku(2) .

Then the Bökstedt spectral sequence

E2
∗∗ = HH∗(H∗(B; Fp)) =⇒ H∗(THH (B); Fp)

has E2 -term

E2
∗∗ =

{
H∗(BP 〈m−1〉; F2)⊗ E(σξ̄2

1 , . . . , σξ̄2
m, σξ̄m+1, . . . ) for p = 2,

H∗(BP 〈m−1〉; Fp)⊗ E(σξ̄k | k ≥ 1)⊗ Γ(στ̄k | k ≥ m) for p odd.

For x ∈ H∗(B; Fp), σx ∈ HH1(H∗(B; Fp)) is represented by the Hochschild
1-cycle 1⊗x. The operator σ is a differential (σ2 = 0) and a graded derivation
(σ(xy) = xσ(y)+(−1)|y|σ(x)y). Here Γ(−) denotes the divided power algebra.
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For p odd, Bökstedt found differentials

dp−1(γj(στ̄k)) = σξ̄k+1 · γj−p(στ̄k)

for j ≥ p, and in all cases the spectral sequence collapses at the Ep -term. So

E∞
∗∗ =

{
H∗(BP 〈m−1〉; F2)⊗ E(σξ̄2

1 , . . . , σξ̄2
m, σξ̄m+1, . . . ) for p = 2,

H∗(BP 〈m−1〉; Fp)⊗ E(σξ̄1, . . . , σξ̄m)⊗ Pp(στ̄k | k ≥ m) for p odd.

Here Pp(−) denotes the truncated polynomial algebra of height p.

If BP 〈m−1〉, and thus THH (BP 〈m−1〉), is a commutative S -algebra, then
there are multiplicative extensions (σξ̄k)

2 = σξ̄k+1 for p = 2 and (στ̄k)
p =

στ̄k+1 for p odd, so

H∗(THH (BP 〈m−1〉); Fp)

=

{
H∗(BP 〈m−1〉; F2)⊗ E(σξ̄2

1 , . . . , σξ̄2
m)⊗ P (σξ̄m+1) for p = 2,

H∗(BP 〈m−1〉; Fp)⊗ E(σξ̄1, . . . , σξ̄m)⊗ P (στ̄m) for p odd.
(6.1)

For more references and details on the calculation up to this point, see [AnR,
Ch. 5].

We now consider the homological homotopy fixed point spectral sequence for
R = THH (B). It starts with

E2
∗∗ = P (y)⊗H∗(THH (B); Fp)

and by Lemma 3.1 it has first differentials

d2(x) = y · σx

for all x ∈ H∗(THH (B); Fp). Here σx ∈ Ht+1(THH (B); Fp) is the image of
x⊗ s1 ∈ Ht(THH (B); Fp)⊗H1(T; Fp) under the circle action map

α : THH (B) ∧ T+ → THH (B) ,

where s1 ∈ H1(T; Fp) is the canonical generator. By Lemma 4.3(a) we have
similar differentials d2(yn · x) = yn+1 · σx for all n ≥ 0.

Hence we can find the columns of E4
∗∗ in the homological homotopy fixed point

spectral sequence by passing to the homology of E2
0,∗ = H∗(THH (B); Fp) with

respect to the operator σ , at least to the left of the vertical axis.

Proposition 6.1 The homological homotopy fixed point spectral sequence for
R = THH (B) with B = BP 〈m−1〉, for p and m such that B is a commutative
S -algebra, collapses after the d2 -differentials, with the following E∞ -term:
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(a) For p = 2,

E∞
∗∗ = P (y)⊗ P (ξ̄4

1 , . . . , ξ̄4
m, ξ̄2

m+1, ξ
′
m+2, . . . )⊗ E(ξ̄2

1σξ̄2
1 , . . . , ξ̄2

mσξ̄2
m)

plus some classes in filtration s = 0, where ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k for k ≥ m +1.

(b) For p odd,

E∞
∗∗ = P (y)⊗ P (ξ̄p

k | 1 ≤ k ≤ m)⊗ P (ξ̄k+1 | k ≥ m)

⊗ E(τ ′
k+1 | k ≥ m)⊗ E(ξ̄p−1

k σξ̄k | 1 ≤ k ≤ m) (6.2)

plus some classes in filtration s = 0, where τ ′
k+1 = τ̄k+1− τ̄k(στ̄k)

p−1 for k ≥ m.

Proof (a) For B = BP 〈m−1〉 and p = 2 we have

E2
0,∗ = H∗(THH (BP 〈m−1〉); F2)

= P (ξ̄2
1 , . . . , ξ̄

2
m, ξ̄m+1, . . . )⊗ E(σξ̄2

1 , . . . , σξ̄2
m)⊗ P (σξ̄m+1) . (6.3)

Here σ : ξ̄2
k 7→ σξ̄2

k for 1 ≤ k ≤ m and σ : ξ̄k+1 7→ σξ̄k+1 for k ≥ m. We have
σξ̄k+1 = (σξ̄k)

2 for k ≥ m + 1.

So the squares (ξ̄2
k)2 = ξ̄4

k and ξ̄2
m+1 , as well as the companion classes defined

by

ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k

for k ≥ m + 1, are d2 -cycles, while E(ξ̄2
k , σξ̄2

k) has homology E(ξ̄2
kσξ̄2

k) for
each k , and E(ξ̄m+1)⊗ P (σξ̄m+1) has homology F2 .

Hence the homological spectral sequence has

E4
∗∗ = P (y)⊗ P (ξ̄4

1 , . . . , ξ̄4
m, ξ̄2

m+1, ξ
′
m+2, . . . )⊗ E(ξ̄2

1σξ̄2
1 , . . . , ξ̄2

mσξ̄2
m)

plus the image of σ in filtration s = 0.

By our Theorem 5.1(a) applied to the classes x = ξ̄2
k for 1 ≤ k ≤ m, in even

degree t = |x|, the classes x2 = ξ̄4
k and Qt+1(x) + xσx = ξ̄2

kσξ̄2
k are infinite

cycles, for Qt+1(ξ̄2
k) = 0 by the Cartan formula.

Similarly, by Theorem 5.1(a) applied to the classes x = ξ̄k for k ≥ m+1, in odd
degree t = |x|, the classes x2 = ξ̄2

k and Qt+1(x) + xσx = ξ̄k+1 + ξ̄kσξ̄k = ξ′k+1

are infinite cycles. For Qt+1(ξ̄k) = ξ̄k+1 by [BMMS86, III.2.2 and I.3.6].

The extra classes in filtration s = 0 are y -torsion, hence infinite cycles. There-
fore the E4 -term above is generated as an algebra by infinite cycles, so the
homological spectral sequence collapses at this stage.
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(b) For B = BP 〈m−1〉 and p odd we have

E2
0,∗ = H∗(THH (BP 〈m−1〉); Fp)

= P (ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ m)⊗ E(σξ̄k | 1 ≤ k ≤ m)⊗ P (στ̄m) . (6.4)

Here σ : ξ̄k 7→ σξ̄k for 1 ≤ k ≤ m, σ : ξ̄k+1 7→ 0 for k ≥ m and σ : τ̄k 7→ στ̄k for
k ≥ m. We have στ̄k+1 = (στ̄k)

p for k ≥ m.

So the p-th powers ξ̄p
k for 1 ≤ k ≤ m, the classes ξ̄k+1 for k ≥ m, and the

companion classes defined by

τ ′
k+1 = τ̄k+1 − τ̄k(στ̄k)

p−1

for k ≥ m, are d2 -cycles, while Pp(ξ̄k)⊗E(σξ̄k) has homology E(ξ̄p−1
k σξ̄k) for

each 1 ≤ k ≤ m, and E(τ̄m)⊗ P (στ̄m) has homology Fp .

Hence the homological spectral sequence has

E4
∗∗ = P (y)⊗ P (ξ̄p

k | 1 ≤ k ≤ m)⊗ P (ξ̄k+1 | k ≥ m)

⊗ E(τ ′
k+1 | k ≥ m)⊗ E(ξ̄p−1

k σξ̄k | 1 ≤ k ≤ m) (6.5)

plus some classes in filtration s = 0.

Applying our Theorem 5.1(b) to the classes x = ξ̄k for 1 ≤ k ≤ m, in even
degree t = |x|, the classes xp = ξ̄p

k and xp−1σx = ξ̄p−1
k σξ̄k are infinite cycles.

Similarly, applying Theorem 5.1(c) to the classes x = τ̄k for k ≥ m, in odd

degree t = |x| = 2pk − 1, the classes βQpk

(x) = ξ̄k+1 and Qpk

(x)−x(σx)p−1 =

τ̄k+1 − τ̄k(στ̄k)
p−1 = τ ′

k+1 are infinite cycles, for Qpk

(τ̄k) = τ̄k+1 and βτ̄k+1 =
ξ̄k+1 by [BMMS86, III.2.3 and I.3.6].

Hence the E4 -term above is generated as an algebra by infinite cycles, and the
homological spectral sequence collapses after the d2 -differentials.

For convenience in the comparison with ko, we make the case B = ku at p = 2
explicit:

Corollary 6.2 The homological homotopy fixed point spectral sequence for
R = THH (ku) at p = 2 collapses after the d2 -differentials, with

E∞
∗∗ = P (y)⊗ P (ξ̄4

1 , ξ̄4
2 , ξ̄2

3 , ξ
′
4, . . . )⊗ E(ξ̄2

1σξ̄2
1 , ξ̄2

2σξ̄2
2)

plus some classes in filtration s = 0, where ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k for k ≥ 3.
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Proposition 6.3 The homological homotopy fixed point spectral sequence for
R = THH (B) collapses after the d2 -differentials, in both of the cases:

(a) B = ko and p = 2, when

E∞
∗∗ = P (y)⊗ P (ξ̄8

1 , ξ̄4
2 , ξ̄2

3 , ξ
′
4, . . . )⊗ E(ξ̄4

1σξ̄4
1 , ξ̄2

2σξ̄2
2)

plus classes on the vertical axis, and

(b) B = tmf and p = 2, when

E∞
∗∗ = P (y)⊗ P (ξ̄16

1 , ξ̄8
2 , ξ̄4

3 , ξ̄2
4 , ξ′5, . . . )⊗E(ξ̄8

1σξ̄8
1 , ξ̄

4
2σξ̄4

2 , ξ̄2
3σξ̄2

3)

plus classes on the vertical axis.

Proof (a) For B = ko with H∗(B; F2) = (A//A1)∗ = P (ξ̄4
1 , ξ̄2

2 , ξ̄3, . . . ) we
have

H∗(THH (ko); F2) = P (ξ̄4
1 , ξ̄2

2 , ξ̄3, . . . )⊗E(σξ̄4
1 , σξ̄2

2)⊗ P (σξ̄3) .

See [AnR, 6.2(a)].

As in the proof of Proposition 6.1, the squares ξ̄8
1 , ξ̄4

2 and ξ̄2
3 , as well as the

classes ξ′k+1 = ξ̄k+1 + ξ̄kσξ̄k for k ≥ 3 are d2 -cycles, while E(ξ̄4
1 , σξ̄4

1) and
E(ξ̄2

2 , σξ̄2
2) have homology E(ξ̄4

1σξ̄4
1) and E(ξ̄2

2σξ̄2
2), respectively. The homology

of E(ξ̄3)⊗ P (σξ̄3) is F2 . So

E4
∗∗ = P (y)⊗ P (ξ̄8

1 , ξ̄4
2 , ξ̄2

3 , ξ′4, . . . )⊗E(ξ̄4
1σξ̄4

1 , ξ̄
2
2σξ̄2

2)

plus some classes in filtration s = 0.

By Theorem 5.1(a), all of these algebra generators are in fact infinite cycles, so
the homological spectral sequence collapses, as claimed.

(b) For B = tmf with H∗(B; F2) = (A//A2)∗ = P (ξ̄8
1 , ξ̄4

2 , ξ̄
2
3 , ξ̄4, . . . ) we have

H∗(THH (tmf); F2) = P (ξ̄8
1 , ξ̄

4
2 , ξ̄2

3 , ξ̄4, . . . )⊗ E(σξ̄8
1 , σξ̄4

2 , σξ̄2
3)⊗ P (σξ̄4) .

See [AnR, 6.2(b)]. This gives the E2 -term of the homological spectral sequence,
and as before its homology with respect to the σ -operator is

E4
∗∗ = P (y)⊗ P (ξ̄16

1 , ξ̄8
2 , ξ̄4

3 , ξ̄
2
4 , ξ′5, . . . )⊗ E(ξ̄8

1σξ̄8
1 , ξ̄

4
2σξ̄4

2 , ξ̄2
3σξ̄2

3)

plus some classes in filtration s = 0.

By Theorem 5.1(a), all of these algebra generators are in fact infinite cycles, so
the homological spectral sequence collapses, as claimed.
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Theorem 6.4 The homological homotopy fixed point spectral sequence for
R = THH (B) collapses after the d2 -differentials, in both of the cases:

(a) B = MU , with

E∞
∗∗ = P (y)⊗ P (bp

k | k ≥ 1)⊗ E(bp−1
k σbk | k ≥ 1)

plus classes in filtration zero, and

(b) B = BP , with

E∞
∗∗ = P (y)⊗ P (ξp

k | k ≥ 1)⊗ E(ξp−1
k σξk | k ≥ 1)

plus classes in filtration zero. (When p = 2, substitute ξ2
k for ξk .)

Note that we do not need to assume that BP is a commutative S -algebra for
the result in part (b).

Proof (a) The integral homology algebra of MU is H∗(MU ; Z) = Z[bk |
k ≥ 1], where bk in degree 2k is the stabilized image of the generator βk+1 ∈
H2k+2(BU(1); Z), under the zero-section identification BU(1) ≃MU(1). So

H∗(MU ; Fp) = P (bk | k ≥ 1)

is concentrated in even degrees, and the E2 -term of the Bökstedt spectral
sequence is

E2
∗∗ = HH∗(H∗(MU ; Fp)) = H∗(MU ; Fp)⊗ E(σbk | k ≥ 1) .

All the algebra generators are in filtrations s ≤ 1, so the spectral sequence
collapses at this stage. There are no algebra extensions, since for p = 2,
(σbk)

2 = Q2k+1(σbk) = σQ2k+1(bk) = 0, where Q2k+1(bk) = 0 because it
has odd degree. For p odd, (σbk)

2 = 0 by graded commutativity, because σbk

has odd degree. Thus

H∗(THH (MU); Fp) = H∗(MU ; Fp)⊗ E(σbk | k ≥ 1) .

This much can also be read off from [MS93, 4.3], or from Cohen and Schlicht-
krull’s formula THH (MU) ≃MU ∧ SU+ [CS].

The homological homotopy fixed point spectral sequence has E2 -term

E2
∗∗ = P (y)⊗ P (bk | k ≥ 1)⊗ E(σbk | k ≥ 1) .

Its homology with respect to the d2 -differential, satisfying d2(bk) = y · σbk , is

E4
∗∗ = P (y)⊗ P (bp

k | k ≥ 1)⊗ E(bp−1
k σbk | k ≥ 1)
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plus the usual y -torsion on the vertical axis. By Theorem 5.1(a) and (b), the
algebra generators of this E4 -term are all infinite cycles. Hence the spectral
sequence collapses at this stage.

(b) The Brown–Peterson spectrum BP was originally constructed to have
mod p homology

H∗(BP ; Fp) =

{
P (ξ2

k | k ≥ 1) for p = 2,

P (ξk | k ≥ 1) for p odd.

This equals the sub-algebra (A//E)∗ of A∗ that is dual to the quotient algebra
A//E = A/AβA of A. Hereafter we focus on the odd-primary case; the reader
should substitute ξ2

k for ξk when p = 2.

The spectrum BP is known to be an (associative) S -algebra, and to receive
an S -algebra map from MU [BJ02, 3.5]. This map induces a split surjec-
tive algebra homomorphism H∗(MU ; Fp) → H∗(BP ; Fp) in homology, which
maps bpk−1 to ξk for k ≥ 1 and takes the remaining algebra generators bi to

0 for i 6= pk − 1. For the homology of BP injects into H∗(HZ(p); Fp) and
at the level of second spaces the composite map of spectra MU → BP →
HZ(p) is a p-local equivalence MU(1) → K(Z(p), 2). The generator βi+1 ∈

H̃2i+2(MU(1); Fp) maps to bi ∈ H2i(MU ; Fp), while the corresponding genera-
tor βi+1 ∈ H̃2i+2(K(Z(p), 2); Fp) maps to ξk ∈ H2i(HZ(p); Fp) when i = pk − 1
and to 0 otherwise [Mi58, Ch. 5]. This proves the claim.

The Bökstedt spectral sequence for BP has E2 -term

E2
∗∗ = HH∗(H∗(BP ; Fp)) = H∗(BP ; Fp)⊗ E(σξk | k ≥ 1) .

Note that the map MU → BP induces a surjection of Bökstedt spectral se-
quence E2 -terms. Thus the fact that the Bökstedt spectral sequence for MU
collapses at E2 with no algebra extensions implies the corresponding statement
for BP , also without the assumption that BP is a commutative S -algebra. We
can conclude that

H∗(THH (BP ); Fp) = H∗(BP ; Fp)⊗ E(σξk | k ≥ 1) .

The homological homotopy fixed point spectral sequence has E2 -term

E2
∗∗ = P (y)⊗ P (ξk | k ≥ 1)⊗ E(σξk | k ≥ 1) .

Again the map MU → BP induces a surjection of E2 -terms, so the d2 -
differentials satisfy d2(ξk) = y · σξk and d2(y) = 0, and are derivations. This
leaves

E4
∗∗ = P (y)⊗ P (ξp

k | k ≥ 1)⊗ E(ξp−1
k σξk | k ≥ 1)
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plus some y -torsion on the vertical axis, and the map from the E4 -term of the
spectral sequence for MU is still surjective. Thus the spectral sequence for BP
also collapses at this stage.

7 Generalizations and comments

In this section we note some generalizations of our results, and also comment
on the relation to similar patterns of differentials in other spectral sequences.
The generalizations are of two sorts. First, we can replace the homotopy fixed
points construction by the Tate construction or the homotopy orbits. Second,
we can change the group of equivariance. We consider these in order.

First, there are spectral sequences similar to the one considered here for the
Tate construction XtT = [ẼT ∧ F (ET+,X)]T (denoted tT(X)T in [GM95] and
Ĥ(T,X) in [AuR02]) and the homotopy orbit spectrum XhT = ET+ ∧T X .

Proposition 7.1 There is a natural spectral sequence

Ê2
∗∗ = Ĥ−∗(T;H∗(X; Fp)) = P (y, y−1)⊗H∗(X; Fp)

with y in bidegree (−2, 0), which is conditionally convergent to the continuous
homology Hc

∗(X
tT; Fp). We call this the homological Tate spectral sequence. If

H∗(X; Fp) is bounded below and finite in each degree, or the spectral sequence
collapses at a finite stage, then the spectral sequence is strongly convergent.

Proposition 7.2 There is a natural spectral sequence

E2
∗∗ = H∗(T;H∗(X; Fp)) = P (y−1)⊗H∗(X; Fp)

with y−1 in bidegree (2, 0), which is strongly convergent to H∗(XhT; Fp). We
call this the homological homotopy orbit spectral sequence. (Note that for XhT

the continuous homology is the same as the ordinary homology.)

Further, the middle and right hand maps of the (homotopy) norm cofiber se-
quence

ΣXhT

N
−→ XhT → XtT → Σ2XhT

induce the homomorphisms of E2 -terms given by tensoring H∗(X; Fp) with the
short exact sequence of P (y)-modules

0→ P (y)→ P (y, y−1)→ Σ2P (y−1)→ 0.
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Thus the homological Tate spectral sequence is a full-plane spectral sequence
whose E2 -term is obtained by continuing the y -periodicity in the homological
homotopy fixed point spectral sequence into the right half-plane, and the ho-
mological homotopy orbit spectral sequence (shifted 2 degrees to the right from
Proposition 7.2) has the quotient of these as its E2 -term.

Proposition 4.2 and Theorem 5.1 apply equally well to all three spectral se-
quences. For details, see the thesis of Lunøe–Nielsen [L-N].

Second, we could also consider these three spectral sequences for the action of
a finite cyclic subgroup C of T. For example, there is the homological Tate
spectral sequence

Ê2
∗∗ = Ĥ−∗(C;H∗(X; Fp))

converging conditionally to Hc
∗(X

tC ; Fp). The analogue of Lemma 4.3 still
holds, so that there are isomorphisms

Êr
∗∗
∼= Ĥ−∗(C; Fp)⊗ Êr

0,∗

for all r ≥ 2 (and now y is invertible, so there is no y -torsion), and all differen-
tials are determined by those originating on the vertical axis Êr

0,∗ . In turn, the
latter differentials are determined by those in the T-equivariant case, by natu-
rality with respect to the restriction map XtT → XtC . Therefore the collapse
results in Theorem 5.1 also hold in these cases. See [L-N] for more details.

These latter spectral sequences, for finite subgroups C ⊂ T, are essential in
the analysis of the topological model TF (B) for the negative cyclic homology
of B , and the topological cyclic homology TC(B).

Though the differentials here allow us to determine E∞
∗∗ in the cases of interest

(see Section 6), there are still A∗ -comodule extensions hidden by the filtration.
These are of course of critical importance for the analysis of the Adams spec-
tral sequence (1.3). A more elaborate study of the geometry of the universal
examples used in Section 5 allows these to be recovered. This too can be found
in [L-N].

Finally, it is interesting to compare the formulas for differentials here to anal-
ogous results in other spectral sequences. The first to be considered was the
Adams spectral sequence, where the results are due to Kahn [Ka70], Milgram
[Mi72], Mäkinen [Mak73] and the first author [BMMS86, Ch. VI]. For simplicity,
let us assume p = 2 in this discussion, as there are several cases to be consid-
ered at odd primes ([BMMS86, VI.1.1]). Suppose that x is in the Er -term of
the Adams spectral sequence

E∗∗
2 = Ext∗∗A (H∗(R; F2), F2) =⇒ π∗(R)∧2 ,
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where R is a commutative S -algebra. The commutative S -algebra structure
of R induces Steenrod operations in the E2 -term of the Adams spectral se-
quence, which are the analog in this situation of the Dyer–Lashof operations
in H∗(R; F2). (In fact, under the Hurewicz homomorphism, they map to the
Dyer–Lashof operations.) Then, in most cases we have

d∗(Sqjx) = Sqjdr(x) +̇ aSqj−vx , (7.1)

where A +̇ B denotes whichever of A or B is in the lower filtration, or their
sum, if they are in the same filtration. The subscript in d∗ is then the differ-
ence in filtrations between the right and left hand sides. In this formula, a is
an infinite cycle in the Adams spectral sequence for the homotopy groups of
spheres, and a and v are determined by j and the degree of x. When the first
half of the right hand side dominates we have

d2r−1(Sqjx) = Sqjdr(x) ,

and this formula resembles the formula

d2r(βǫQi(x)) = βǫQi(d2r(x))

of Proposition 4.2, in that both essentially say that the relevant differential
commutes with the Dyer–Lashof operations. The fact that the length of the
differential increases from r to (2r − 1) when we apply the squaring operation
in the Adams spectral sequence reflects the difference between the homotopy
fixed point filtration and the Adams filtration, and the way in which they
interact with the extended powers. A more extreme difference occurs when
the second term aSqj−vx is involved. In the homological homotopy fixed point
spectral sequence this term disappears, essentially because the element a ∈ π∗S
is mapped to 0 by the Hurewicz homomorphism. Homotopical homotopy fixed
point spectral sequences, as in [AuR02], will have differential formulas with
two parts, as in the Adams spectral sequence. Such two part formulas for
differentials reflect universally hidden extensions in the following sense.

The differential (7.1) arises from decomposing the boundary of the cell on which
Sqjx is defined into two pieces. One of the pieces carries Sqjdr(x) and the
other carries aSqj−vx. The half that lies in the lower filtration is killed by the
differential (7.1), and therefore appears to be 0 in the associated graded E∞ -
term. However, the geometry of the situation shows that it is actually equal
to the half of the formula that lies in the higher filtration, modulo still higher
filtrations. Thus we have a universally hidden extension, that is, an expression
which is 0 in the associated graded, by virtue of being equal to an expression
which lies in a higher filtration. We should expect this sort of phenomenon to
occur in homotopical homotopy fixed point spectral sequences.
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Finally, Theorem 5.1 seems to be particular to the homological homotopy fixed
point spectral sequence. Certainly the Adams spectral sequence seems to have
no analog of this extreme cutoff, in which certain terms die at Er and the
remaining terms live to E∞ .
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