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The Kauffman bracket skein module

of a twist knot exterior
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Abstract We compute the Kauffman bracket skein module of the comple-
ment of a twist knot, finding that it is free and infinite dimensional. The
basis consists of cables of a two-component link, one component of which
is a meridian of the knot. The cabling of the meridian can be arbitrarily
large while the cabling of the other component is limited to the number of
twists.
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1 Introduction

At first glance, and in original intent [13], the Kauffman bracket skein module
is a formal extension of the Kauffman bracket polynomial to an arbitrary 3-
manifold. As Kauffman’s polynomial (for framed links in S3 ) is equivalent to
the Jones polynomial (for oriented links in S3 ), one may think of the skein
module as a generalization of the Jones polynomial. More recently the module
has taken on a different significance: it is now seen as a deformation of the
SL2(C)-characters of the fundamental group [4, 5, 14]. Using this interpretation
of the skein module of a knot exterior, Frohman, Gelca and the second author
here constructed a quantum version the A-polynomial [6]. This is related back
to the Jones polynomial [15, 16] (not simply by generality) and has implications
for the hyperbolic volume conjecture [9, 12]. Despite all this, there have as
yet been no computations of Kauffman bracket skein modules for hyperbolic
manifolds.

Early computations [13] depended on an I -bundle structure for the manifold,
since projection along the I factor gave a natural mechanism for controlling
complexity. The only other successful method [1, 7, 8] has been to consider the
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effect of adding a single 2-handle to a handlebody. This creates a presentation
with fairly simple generators (any basis for the module of the handlebody),
but having an unwieldy set of relations. Eliminating redundant relations is the
most difficult part of the task. What is needed is an effective method of creating
relations among relations, or syzygies, and then keeping track of which relations
can be removed.

This has been managed for all genus one manifolds [7, 8], and for (2, q)-torus
knot exteriors [1]. In principle, the combinatorics ought to be accessible for
genus two manifolds with toral boundary (one added handle), but the compu-
tations are quite daunting in practice. Even for (2, q)-torus knots, the trick was
managed only with help from a particularly nice basis.

The innovation in this paper is a simpler method of keeping track of the re-
lations. We use the established handle addition technique, but we twist the
handlebody instead of the handle, which simplifies many bracket computations.
Our viewpoint also leads to a comfortable and practical method for producing
syzygies that reduce the initial presentation to a simple basis.

2 The theorem

Let M be an orientable 3-manifold. A framed link in M is an embedding
of a disjoint collection of annuli into M . Framed links are depicted by link
diagrams showing the cores of an annuli lying flat in the projection plane (i.e.
with blackboard framing).

Two framed links in M are equivalent if there is an isotopy of M taking one
to the other. Let LM denote the set of equivalence classes of framed links in
M , including the empty link. With R = Z[t±1], form a free module RLM

with basis LM . Define S(M) to be the smallest submodule of RLM containing
all expressions of the form − t − t−1 and © + t2 + t−2 , where
the framed links in each expression are identical outside balls pictured in the
diagrams. The Kauffman bracket skein module K(M) is the quotient

RLM/S(M).

A q -twist knot (right-handed, if not amphichiral) is the alternating knot formed
by inserting a left-to-right string of q half-twists into the coupon in Figure 1.
The 2-twist knot in Figure 2, for example, is the familiar figure-8 knot. Let
Mq be the twist knot exterior, and denote by xy the 0-framed, two component
link also pictured in Figure 1. The meridian is x and the other component is
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Figure 1: Exterior of a q -twist knot and the link xy

Figure 2: Figure-8 knot as a 2-twist knot

y . In general, xlym denotes the cable of xy consisting of l parallel copies of x
and m parallel copies of y . The exponents run over non-negative integers and
1 denotes the empty link.

Theorem 2.1 K(Mq) is free with basis {xlym | m ≤ q}

3 Initial presentation

The knot exterior Mq decomposes into a pair of genus two handlebodies glued
along the 4-punctured sphere S shown in Figure 3. Let H be the closure of the
component of Mq − S containing the coupon. Figure 4(a) depicts H , slightly
deformed so that the upper left and lower right punctures are in the foreground.

The portions of the knot outside H are parallel to a pair of arcs in S that
cut it into an annulus. Therefore, Mq is homeomorphic to H with a 2-handle
attached along this annulus. Its core is shown in Figure 4(b).

There is a standard argument [1, 2, 7, 8, 10] that says K(Mq) is K(H) modulo
skeins differing by slides across the 2-handle. We find this language to be a
little imprecise, so we will rephrase it in terms of relative skeins. Suppose that
the core of the attaching annulus is given the blackboard framing in S . We cut
out a very small bit of this curve, as indicated in Figure 4(c), leaving a framed
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Figure 3: Decomposing sphere S in Mq

(a) (b) (c)

Figure 4: (a) H (b) Core of the attaching annulus (c) The core as a relative link

arc whose ends are a pair of framed points in ∂H . Following [11, 13], let K1(H)
be the skein module of H relative to those two framed points.

Let L be a relative link in H . Since the ends of L are very close together we
can unambiguously define the completion of L to be the result of gluing its ends
together. The slide of L is formed by gluing its ends to the cut open core of the
attaching annulus. Completion and slide are denoted by c(L) and s(L). Let
r(L) = c(L)− s(L) and extend linearly to r : K1(H) → K(H). The image of r
is the set of all possible relations in K(H) induced by handle slides. Therefore,

K(Mq) = K(H)/r(K1(H)).

Since K(H) is free, the quotient provides a presentation of K(Mq). Any basis
for K(H) serves as a generating set. For relations, choose generators for K1(H),
apply r , and express everything in terms of the basis of K(H). The more
efficient your generating set for K1(H), the more efficient your presentation.
However, even a basis for K1(H) yields unnecessary relations. Computing
K(Mq) thus becomes a search for all relations among the relations in this
presentation.

We need to fix a basis for K(H). Let x and y be the knots in Figure 1, but
only up to isotopy in H . Let z be a meridian that is not isotopic to x in H .
As usual, x, y and z are 0-framed. The set of cables, B = {xlymzn}, is a basis
for K(H) [13].
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We also need to fix generators of K1(H), but first some notes on multiplicative
notation for (possibly relative) links in H .

• The notation is commutative and associative.

• xl , ym and zn denote cables.

• If L is a (possibly relative) link then xlL means the union of L, pushed
away from the knot boundary, with a cable of x very near the knot
boundary.

• Similarly for znL.

• If σ is a (possibly relative) skein then xlznσ is defined by distributing
xlzn across any linear combination of links representing σ . This is well
defined because representatives of σ differ by skein relations that take
place away from the knot boundary.

• If σ is written in terms of the basis {xiyjzk} then xlznσ is just polynomial
multiplication.

• In general, ymL is not well defined, but there are some specific embed-
dings of L for which we want ymL to make sense. These are explained
below.

If L is one of the relative knots

X = , Z = or U =

then ymL denotes a copy of ym inserted into the twist coupon. If 0 ≤ k ≤ q ,
let

Yk = q − k k

where the coupons contain q − k and k twists. By ymYk we mean a cable of y
inserted into the coupon containing k twists, even if k = 0. Lastly,

ymY−1 = q 0

with ym inserted in the coupon that contains no twists.

Lemma 3.1 K1(H) is generated by {xlymznL | L = X , Y0 , Z , or U }.1

1It’s actually a basis, but the proof is annoying and the result is unnecessary.

Algebraic & Geometric Topology, Volume 5 (2005)



112 Doug Bullock and Walter Lo Faro

Figure 5

Proof Given any relative link in H , it can be isotoped into the oval neighbor-
hood shown in Figure 5. Once there, grab the top and bottom of the oval and
twist in opposite directions a quarter turn each. This should make the tubes
perpendicular to the page so that

X = , Y0 = , Z = and U = .

If not, twist the opposite way and it will.

Now resolve according to a relative version of the argument in [3, Lemmas 1–3].
Each term of the resolution will be a cable of

together with one of X , Y0 , Z or U . The modification introduced in [14,
Theorem 6.2] lets us force an X to end up above the cabled link and a Z to
end up below it. Neither Y0 nor U can become entangled. Now we untwist
the oval neighborhood, returning X , Y0 , Z and U to their initial embeddings.
This will twist the cabled link , but it can be further resolved into a polynomial
in x, y and z .

4 Sufficient relations

In this section we locate in r(K1(H)) sufficient relations to eliminate all but
{xlym | m ≤ q} from B . It turns out that powers of z are easy to eliminate and
that powers of y index the complexity of other computations. For this reason,
we introduce the notation σ ∼ ym , meaning σ = t±pym modulo the span of
{xiyjzk | j < m}.

Where x and z are concerned, the relation submodule behaves like an ideal.

Lemma 4.1 If σ ∈ r(K1(H)), then xizkσ ∈ r(K1(H)).
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Proof Suppose L is a relative link in H . Since x and z are nowhere near
the attaching annulus on ∂H , it’s easy to see that xizkr(L) = r(xizkL). This
extends to all of K1(H).

In practice, you compute a relation by grinding some r(σ) down to a polynomial
in x, y and z . Lemma 4.1 then says that any formal multiple of that relation
by xizk is another relation. For example, from the relation r(ymZ) we obtain
a class of relations:

xl−1znr(ymZ) = xl−1zn(ymz − ymx) (1)

= xl−1ymzn+1 − xlymzn

Relations (1) can be used to eliminate {xlymzn | n > 0} from the presentation
of K(Mq). Powers of y are more troublesome. To eliminate {xlym | y > q},
we need some new relations.

Lemma 4.2 c(ymYk) ∼ ym+k+1

Proof Induct on k . If k = 0, we have

c(ymY0) = −t−3
m

By counting wrapping numbers in each term of the resolution one can see that
c(ymY0) ∼ ym+1 .

Another wrapping number argument shows that no term of c(ymY−1) has a
power of y larger than m.

For k ≥ 1 consider the relation

k − 1 = t2 k − 1 + t−2
k − 1 (2)

+ k − 1 + k − 1

Insert ym into the coupon and take the closure of every term to get

c(ym+1Yk−1) = t2c(ymYk−2) + t−2c(ymYk) + ym(meridians),

which can be solved for ymYk .
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Lemma 4.3 s(ymYq) ∼ yq+m .

Proof Note first that

s(Yq) = = −t3 (3)

= −t4c(Yq−1) − t2(meridians)

Then insert ym into the coupon and apply Lemma 4.2.

Lemmas 4.2 and 4.3 imply r(ymYq) ∼ yq+m+1 . Extended to include powers of
x, there relations serve to eliminate any remaining terms of B with y -degree
greater than q . Hence, with

R = {xizkr(ymZ)} ∪ {xir(ymYq)}

Proposition 4.4 The presentation B modulo R reduces to the free presenta-
tion of Theorem 1.

To finish the proof of Theorem 1 we must find relations among the relations
r(K1(H)) sufficient to write them all in terms of R. Such a relation among
relations is called a syzygy.

5 Syzygies

Here we show that R generates r(K1(H)). Recall that R contains relations of
the form

r(xlymznZ), and

r(xlymYq)

We need to show that the span of R, denoted 〈R〉, contains all relations of the
form

r(xlymznX),

r(xlymznY0), and

r(xlymznU)

Lemma 5.1 If L is any link in H (or any skein in K(H)), then xL−zL ∈ 〈R〉.
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Proof Express L in terms of the basis B and then apply (1).

Lemma 5.2 r(xlymznX) ∈ 〈R〉

Proof Slide X and resolve as

s(X) = =

= t + t−1

= t + + t−2

= −t−2 + + t−2

Modulo terms of the form xL − zL, this is

s(X) = −t−2xs(Yq) + c(X) + t−2xc(Yq)

which is the syzygy r(X) = −t−2r(xYq). Inserting ym into the coupon and
multiplying by xlzn gives the syzygy

r(xlymznX) = −t−2r(xl+1ymznYq)

Finally, on the right hand side, convert z ’s to x’s by repeated applications of

r(xiymzkYq) = r(xiymzkYq) − r(xi+1ymzk−1Yq) + r(xi+1ymzk−1Yq)

= zr(xiymzk−1Yq) − xr(xiymzk−1Yq) + r(xi+1ymzk−1Yq)

This will express r(xlymznYq) as r(xl+nymYq) plus terms of the form xL− zL.
Lemma 5.1 insures that all terms are in 〈R〉.

Lemma 5.3 Modulo relations of the form xL − zL, we have the syzygy

r(ymYq) = t4r(ymYq−1)
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Figure 6

Proof Leaving obvious isotopies to the reader,

t4s(Yq−1) = −t = −t2x2 − c(Yq)

Subtract this equation from Equation (3) and insert ym as usual.

Lemma 5.4 For 0 ≤ k ≤ q , r(xlymYk) ∈ 〈R〉.

Proof Induct downward on k . If k = q we are looking at r(xlymYq). If
k = q − 1, apply the syzygy from Lemma 5.3 multiplied by xl .

If k ≤ q−2, apply r to Equation (2) k+1 twists in the coupon. Modulo terms
of the from xL − zL, this becomes the syzygy

r(yYk+1) = t2r(Yk) + t−2r(Yk+2) + r(xX) + r(xZ)

Solve for r(Yk), multiply by xl , and insert ym in the usual place.

Lemma 5.5 r(xlymznY0) ∈ 〈R〉.

Proof Convert r(xlymzlY0) to r(xl+nymY0) as in the proof of Lemma 5.2.
Then apply Lemmas 5.1 and 5.4.

Lemma 5.6 r(xlymznU) ∈ 〈R〉.

Proof Consider the link in Figure 6. The relative component is Yq , and the
closed component isotops into the coupon where it resolves into some polyno-
mial p(x, y, z). On the other hand, by resolving the crossings as shown we
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obtain (modulo terms of the form xL − zL)

pYq = t2U + x + xX + t−2

= t2U + x + xX − t

= t2U + x + xX − t2Y0 − xX

Now apply r to this equation to obtain the syzygy

r(pYq) = t2r(U) ± r(xZ) − t2r(Y0)

(The sign of r(xZ) depends on the number of twists in the coupon.) Insert ym ,
multiply by xlzn , and solve for r(U). Except for the term r(xlymznU), convert
all z ’s to x’s as usual. The resulting linear combination will lie in 〈R〉

We have shown that 〈R〉 = r(K1(H)), so K(Mq) must be presented as in
Proposition 1.
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