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Abstract

We show that a homotopy equivalence between manifolds induces a correspon-
dence between their spinc–structures, even in the presence of 2–torsion. This is
proved by generalizing spinc–structures to Poincaré complexes. A procedure is
given for explicitly computing the correspondence under reasonable hypotheses.
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1 Introduction

The theory of spinc–structures has attained new importance through its recent
application to the topology of smooth 4–manifolds. Among smooth, closed,
oriented 4–manifolds (with b1 + b+ odd) a typical homeomorphism type con-
tains many diffeomorphism types. The only invariants known to distinguish
such diffeomorphism types are those arising from gauge theory, as pioneered by
Donaldson (eg [1]). The most efficient approach currently known is to assign a
Seiberg–Witten invariant (eg [6]) to any such 4–manifold X with a fixed spinc–
structure. To extract the most information from these invariants, one must
understand how spinc–structures transform under homeomorphisms. This is
straightforward if H2(X;Z) has no 2–torsion (for example, if X is simply con-
nected), for then the Chern class will distinguish any two spinc–structures on
X . The general case is less obvious, however. In high dimensions, a homeo-
morphism between smooth manifolds need not be covered by an isomorphism
of their tangent bundles. While such isomorphisms always exist in dimen-
sion 4, they are not canonical, and automorphisms of the tangent bundle cov-
ering idX may permute the spinc–structures on X . (For example, such an
automorphism over RP 3 or RP 3 × S1 can be constructed from the diffeomor-
phism RP 3 → SO(3).) In this note, we show how to canonically assign to
any orientation-preserving proper homotopy equivalence X1 → X2 between
manifolds a correspondence between spinc–structures on X1 and those on X2 .

Our approach is to generalize the theory of spin and spinc–structures from
SO(n) to more general structure groups H . Most of the homotopy of SO(n)
does not enter into the theory. In fact, it suffices for H to be path con-
nected with a nontrivial double cover so that we can generalize the definition
spinc(n) = (spin(n)×spin(2))/Z2 . The resulting theory generalizes the classical
theory in the obvious way, for example, with spinc–structures on a bundle ξ over
X classified by H2(X;Z) whenever W3(ξ) = 0 (Proposition 1). Ultimately, the
map BSO → BSG of classifying spaces allows us to generalize spinc–structures
from smooth manifolds to Poincaré complexes, and the latter theory has the
required functoriality with respect to homotopy equivalences by naturality of
the Spivak normal fibration (Theorem 5). Under reasonable hypotheses, one
can explicitly compute the correspondence of spinc–structures induced by a ho-
motopy equivalence; a procedure is given following Theorem 5. The concluding
remarks include other characterizations of classical spinc–structures.
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2 Generalized spinc–structures

A naive approach to generalizing the theory of spin and spinc–structures would
be to define spin(H) to be a preassigned double cover of a path connected
topological group H , and let spinc(H) denote the group spin(H × SO(2)) di-
agonally double covering H × SO(2). One could then generalize the theory in
the obvious way, using principal spin(H) and spinc(H)–bundles, the natural
epimorphisms from spinc(H) to H and SO(2), and the involution of spinc(H)
induced by conjugation on SO(2) = U(1). However, to avoid the difficulties
of adapting principal bundle theory to spherical fibrations, we translate the
argument into the language of classifying spaces, replacing epimorphisms of
groups with kernel Z2 or SO(2) by fibrations of the corresponding classifying
spaces with fiber BZ2 = K(Z2, 1) = RP∞ or BSO(2) = K(Z, 2) = CP∞ ,
respectively. We remove the groups from the theory while keeping the sugges-
tive notation, obtaining a theory of spin and spinc–structures on bundles or
fibrations classified by a universal bundle (fibration) ξH → BH , where BH is
homotopy equivalent to a simply connected CW –complex, and a nonzero class
w ∈ H2(BH;Z2) is specified (corresponding to a choice of double cover of H ).
We can recover the classical theory by setting BH = BSO(n) (n ≥ 2), with w
the unique nonzero class w∗ ∈ H2(BSO(n);Z2) ∼= Z2 .

Recall [8] that any map f : X → Y can be transformed into a fibration by
replacing X by the space P of paths from X to Y in the mapping cylinder
of f . The initial point fibration p0: P → X has contractible fiber, and the
endpoint fibration p1: P → Y is homotopic to f ◦ p0 . The fiber F of p1 is
homotopy equivalent to a CW –complex if X and Y are [4], and p0|F is a
fibration with fiber the loop space ΩY .

Now let (BH,w) be as above. Then w defines epimorphisms H2(BH;Z2)→ Z2

and hence ϕw: π2(BH) → Z2 . We apply the previous paragraph to the map
BH → K(Z2, 2) induced by ϕw , and let Bspin(H,w) denote the fiber F . The
fibration Bspin(H,w) → BH induces isomorphisms of πi(Bspin(H,w)) with
kerϕw for i = 2 and πi(BH) otherwise, and its fiber is K(Z2, 1) = RP∞ .
Now we define Bspinc(H,w) to be Bspin(H×, w + w∗), where BH× = BH ×
BSO(2). We immediately obtain fibrations pH and pSO(2) of Bspinc(H,w)
over BH and BSO(2), whose fibers are Bspin(SO(2), w∗) = K(Z, 2) and
Bspin(H,w), respectively, and each fibration restricted to the opposite fiber
is the map arising from the definition of Bspin(·). (Compare with the projec-
tions of spinc(H,w) to H and SO(2) on the level of groups.) By obstruction
theory, complex conjugation on the second factor BSO(2) = CP∞ of BH× lifts
uniquely from BH× to a map on Bspinc(H,w) whose square is fiber homotopic
to the identity, and the map is homotopic to conjugation on each CP∞–fiber
of pH .
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To define spinc–structures over H , recall that an H –bundle (or fibration) ξ →
X over a CW –complex is classified by a bundle map

ξ
f̃−→ ξHy y

X
f−→ BH.

For two choices of classifying map f̃ , there is a canonical homotopy (up to
homotopy rel 0,1) between the corresponding maps f , characterized by lifting
to a homotopy of the maps f̃ through bundle maps. This allows us to define
spinc–structures in a manner independent of the choice of f̃ .

Definition A spin structure on an H –bundle (fibration) ξ (relative to w) is
a function assigning to each classifying bundle map f̃ : ξ → ξH a homotopy
class of lifts f̂ : X → Bspin(H,w) of f : X → BH , such that for two choices
of f̃ the canonical homotopy between the maps f lifts to a homotopy of the
corresponding maps f̂ . A spinc–structure is defined similarly with spin replaced
by spinc .

We denote the sets of spin and spinc–structures on an H –bundle ξ by S(ξ, w)
and Sc(ξ, w), respectively. Note that in either case, any lift of a single f with a
specified f̃ uniquely determines such a structure, but changing f̃ with f fixed
may result in an automorphism of S(ξ, w) or Sc(ξ, w).

To define characteristic classes, let Y ⊂ X be a possibly empty subcomplex,
and let τ be a trivialization of ξ|Y . Then we can assume that the clas-
sifying map f : X → BH of ξ is constant on Y , and that τ determines
the restriction f̃ |Y : ξ|Y → ξH . Set w2(ξ, τ) = f∗(w) ∈ H2(X,Y ;Z2) and
W3(ξ, τ) = βw2(ξ, τ) ∈ H3(X,Y ;Z), where β is the Bockstein homomor-
phism. Any spinc–structure s ∈ Sc(ξ, w) determines a homotopy class of lifts
f̂ : X → Bspinc(H,w) of f , and we define a trivialization τ̂ of s|Y over τ

to be a choice of f̂ (within the given homotopy class) that is constant on Y,
up to homotopies through such maps. (Equivalently, τ̂ is a spinc–structure
on X/Y that pulls back to s on X .) We define Chern classes by setting
c1(s, τ̂ ) = f̂∗p∗SO(2)(c) ∈ H2(X,Y ;Z), where c ∈ H2(BSO(2),Z) ∼= Z is the
generator c1(ξSO(2)). If Y is empty, we use the notation w2(ξ), W3(ξ), c1(s).

Proposition 1 The set S(ξ, w) of spin structures on an H –bundle (or fibra-
tion) ξ → X is nonempty if and only if w2(ξ) = 0. If so, then H1(X;Z2) acts
freely and transitively on S(ξ, w). The set Sc(ξ, w) is nonempty if and only
if W3(ξ) = 0, and if so, then H2(X;Z) acts freely and transitively on it. For
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s ∈ Sc(ξ, w) and a ∈ H2(X;Z), we have c1(s + a) = c1(s) + 2a. Conjugation
induces an involution on Sc(ξ, w) that reverses signs of Chern classes and the
H2(X;Z)–action. For Y ⊂ X and τ̂ as above, c1(s, τ̂) reduces modulo 2 to
w2(ξ, τ).

Thus, choosing a base point in S(ξ, w) or Sc(ξ, w) (if nonempty) identifies it
with H1(X;Z2) or H2(X;Z).

Proof The first two sentences are immediate from obstruction theory, since
the fiber of Bspin(H,w) → BH is K(Z2, 1). In fact, w2(ξ, τ) is the obstruc-
tion to lifting f to a map f̂ : X → Bspin(H,w) with f̂ |Y constant, as can
be seen by first considering the case where Y contains the 1–skeleton of X .
Similarly, H2(X;Z) acts as required on Sc(ξ, w) (when nonempty) via differ-
ence classes, since the fiber of pH is K(Z, 2). Now recall that Bspinc(H,w) =
Bspin(H×, w +w∗) with BH× = BH ×BSO(2). Thus, a lift of f to f̂ : X →
Bspinc(H,w) with f̂ |Y constant is the same as a choice of complex line bundle
L → X with a trivialization τL over Y , together with a spin structure on the
bundle ξ×L→ X (classified by BH×BSO(2)) whose defining lift f̂ is constant
on Y . The resulting spinc–structure s with trivialization τ̂ over τ will satisfy
c1(s, τ̂ ) = c1(L, τL), since pSO(2)◦f̂ is the classifying map of L. Such a structure
exists if and only if 0 = w2(ξ×L, τ×τL) = w2(ξ, τ)+w2(L, τL), or equivalently
w2(ξ, τ) = w2(L, τL) = c1(L, τL)|2 . Thus, Sc(ξ, w) is nonempty if and only if
w2(ξ) has a lift to H2(X;Z), ie W3(ξ) = 0, and any c1(s, τ̂ ) reduces mod 2 to
w2(ξ, τ). Given s, s′ ∈ Sc(ξ, w), the difference class d(s, s′) takes coefficients in
π2(K(Z, 2)), where K(Z, 2) is the fiber of pH . Since (pSO(2))∗: π2(K(Z, 2))→
π2(BSO(2)) is multiplication by 2, we have 2d(s, s′) = c1(s′)− c1(s). Equiva-
lently, c1(s+ a) = c1(s) + 2a for a = d(s, s′). The assertion about conjugation
is clear from the way it lifts to Bspinc(H,w).

Now suppose we are given pairs (BH,w) and (BH ′, w′) as before, and a map
h: BH → BH ′ covered by a bundle map h̃: ξH → ξH′ , with h∗w′ = w .
Then any H –bundle ξ → X determines an H ′–bundle ξ′ → X with the
same w2 and W3 , and h determines maps Bspin(H,w) → Bspin(H ′, w′) and
Bspinc(H,w) → Bspinc(H ′, w′). We obtain canonical equivariant identifica-
tions S(ξ, w) ∼= S(ξ′, w′) and Sc(ξ, w) ∼= Sc(ξ′, w′), and the latter preserves
Chern classes and conjugation. On the other hand, given an H –bundle map
g̃: ξ1 → ξ2 covering g: X1 → X2 , we have induced maps g∗: S(ξ2, w) →
S(ξ1, w) and g∗: Sc(ξ2, w) → Sc(ξ1, w) that are equivariantly equivalent to
g∗: H1(X2;Z2) → H1(X1;Z2) and g∗: H2(X2;Z) → H2(X1;Z) when the do-
mains are nonempty, and characteristic classes and conjugation are preserved
in the obvious way. If g is a homotopy equivalence, then the maps g∗ are
isomorphisms.
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Examples 2 (a) If h: BSO(m) → BSO(n), 2 ≤ m ≤ n, is induced by the
usual inclusion of groups, we recover the stabilization-invariance of classical spin
and spinc–structures. We are free to pass to the limiting group SO , eliminating
the dependence on n.

(b) An oriented topological n–manifold X has the homotopy type of a CW –
complex, and it has a tangent bundle classified by a map into the universal
bundle over BSTOP (n) (eg [3]). There is a canonical map h: BSO(n) →
BSTOP (n) that corresponds to interpreting ξSO(n) as a topological bundle
and is a π2–isomorphism of simply connected spaces. We immediately ob-
tain a theory of spin and spinc–structures on oriented topological manifolds
by using their tangent bundles (stabilized if n < 2). As before, the theory
is stabilization-invariant, and we can pass to the limiting case of BSTOP .
On smooth manifolds, the new theory canonically reduces via h to the classi-
cal theory. However, any orientation-preserving homeomorphism g: X1 → X2

induces an isomorphism of topological tangent bundles, hence, isomorphisms
g∗: S(X2) ∼= S(X1) and g∗: Sc(X2) ∼= Sc(X1) as above.

To generalize to homotopy equivalences, we need one further construction. Sup-
pose we are given a bundle map

ξH × ξH′
k̃−→ ξH′′y y

BH ×BH ′ k−→ BH ′′

with k∗(w′′) = w+w′ . Then a pair of bundles ξ, ξ′ → X classified by BH,BH ′

determine an H ′′–bundle ξ′′ → X , and w2 and W3 add.

Proposition 3 A trivialization of ξ′′ induces equivariant isomorphisms k∗:
S(ξ, w) → S(ξ′, w′) and k∗: Sc(ξ, w) → Sc(ξ′, w′), and the latter preserves
conjugation and Chern classes.

Proof By obstruction theory, the map k uniquely determines a map k̂ making
the diagram

Bspin(H,w)×Bspin(H ′, w′) k̂−→ Bspin(H ′′, w′′)yp1

yp2

BH ×BH ′ k−→ BH ′′

commute, and a similar diagram is induced for spinc via the map k × k0 ,
where k0: BSO(2)×BSO(2)→ BSO(2) induces addition on π2 . The diagrams
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determine a map k#: S(ξ, w) × S(ξ′, w′)→ S(ξ′′, w′′) and similarly for Sc . In
the latter case, k# commutes with conjugation and adds Chern classes. In
either case, k̂ restricts to addition on the homotopy groups of the fibers of
p1 and p2 , so difference classes add under k# , and for suitably chosen base
points k# is given by addition on H1(X;Z2) or H2(X;Z) whenever its domain
is nonempty. Now a trivialization of ξ′′ determines a trivial spinc–structure
s′′ ∈ Sc(ξ′′, w′′). Since W3(ξ) + W3(ξ′) = W3(ξ′′) = 0, it follows that Sc(ξ, w)
is nonempty if and only if Sc(ξ′, w′) is. For each s ∈ Sc(ξ, w) there is a unique
“inverse” s′ ∈ Sc(ξ′, w′) with k#(s, s′) = s′′ . Let k∗(s) equal the conjugate
of s′ . Then k∗: Sc(ξ, w) → Sc(ξ′, w′) is an equivariant isomorphism, and it
preserves conjugation and Chern classes since s′′ is conjugation-invariant with
c1(s′′) = 0. A similar procedure (with k∗(s) = s′ ) works for spin structures.

Example 4 Any oriented, smooth n–manifold X admits a unique isotopy
class of proper embeddings in RN for N sufficiently large. This determines a
normal bundle νX that is unique up to stabilization. Since the tangent bundle
τX satisfies τX⊕νX = τRN |X and the latter bundle is canonically trivial, the
obvious map BSO(n)×BSO(N −n)→ BSO(N) determines canonical equiv-
ariant identifications S(νX,w∗) ∼= S(τX,w∗) and Sc(νX,w∗) ∼= Sc(τX,w∗),
the latter preserving Chern classes and conjugation.

Theorem 5 Let (X,∂X) be an oriented, possibly noncompact Poincaré pair.
There is a canonical procedure for defining sets S(X) and Sc(X) of spin and
spinc–structures on X having the structure described in Proposition 1 (with
respect to the usual classes w2(X) and W3(X)). For (X,∂X) a smooth man-
ifold, the theory is canonically equivariantly equivalent to the standard one
(preserving Chern classes and conjugation). For pairs (Xi, ∂Xi) as above, any
orientation-preserving, pairwise, proper homotopy equivalence g: (X1, ∂X1)→
(X2, ∂X2) induces equivariant isomorphisms g∗: S(X2) ∼= S(X1) and g∗:
Sc(X2) ∼= Sc(X1), the latter preserving Chern classes and conjugation, and
the construction is functorial for such maps g .

Proof The pair (X,∂X) has a canonical Spivak normal fibration [7] defined
by embedding (X,∂X) pairwise and properly in half-space RN × ([0,∞), {0})
(uniquely for N sufficiently large), and making a fibration out of the collapsing
map of the boundary of a regular neighborhood. The resulting oriented spher-
ical fibration over X is classified by a fiber-preserving map into the universal
spherical fibration, whose base space stabilizes to BSG. As in Example 2(b),
there is a canonical map h: BSO → BSG induced by the spherical fibrations
ξSO(n)−(0–section), and h is a π2–isomorphism of simply connected spaces. We
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immediately obtain S(X), Sc(X) and characteristic classes satisfying Propo-
sition 1, using the Spivak fibration and BSG. (The resulting classes w2(X)
and W3(X) are well known.) For (X,∂X) a smooth manifold, the theory is
canonically equivalent (via h) to that of the stable normal bundle, which is the
usual theory over the tangent bundle by Example 4. A homotopy equivalence g
as above induces a fiber-preserving map of the corresponding Spivak fibrations,
and hence, the required maps g∗ .

The map g∗: Sc(X2) ∼= Sc(X1) induced by a homotopy equivalence can fre-
quently be computed explicitly. We consider the case where X2 contains a
1–dimensional subcomplex with a regular neighborhood N2 that is a manifold,
such that H2(X2,N2;Z) has no 2–torsion. We also assume that g: X1 → X2

restricts to a homeomorphism from N1 = g−1(N2) to N2 . These condi-
tions are always satisfied if g is a homeomorphism between smooth mani-
folds, for example by taking N2 to be a neighborhood of the 1–skeleton of
X2 . Now the map g∗: H∗(X2,N2) ∼= H∗(X1,N1) is an isomorphism. A (sta-
ble) trivialization τ2 of the tangent bundle of N2 (or equivalently, of the sta-
ble normal bundle) pulls back via g|N1 to a trivialization τ1 over N1 , and
g∗w2(X2, τ2) = w2(X1, τ1). Given spinc–structures si ∈ Sc(Xi), pick any triv-
ializations τ̂i of si|Ni over τi . Then by Proposition 1, g∗c1(s2, τ̂2)− c1(s1, τ̂1)
reduces to zero mod 2. Since H2(X1,N1;Z) has no 2–torsion, there is a unique
class δ(s1, s2) ∈ H2(X1,N1;Z) with 2δ(s1, s2) = g∗c1(s2, τ̂2)− c1(s1, τ̂1). If we
change τ̂i with τi fixed, then δ(s1, s2) changes by the coboundary of a cochain
in N1 , so it represents a class d(s1, s2) ∈ H2(X1;Z) that depends only on
s1 and s2 (τi fixed). But δ(s1, s2) vanishes for s1 = g∗s2 and τ̂1 given by
pulling back τ̂2 , and a change of si changes 2δ(s1, s2) by twice the correspond-
ing relative difference class (by the addition formula of Proposition 1 applied to
Xi/Ni ). Thus, d(s1, s2) is precisely the difference class d(s1, g

∗s2), in a form
accessible to computation.

Remarks (a) Spinc–structures have several other convenient characteriza-
tions. As we observed in proving Proposition 1, a spinc–structure on ξ → X is
the same as a line bundle L and spin structure on ξ×L→ X . For a different ap-
proach, recall that Milnor [5] observed that a spin structure on an oriented vec-
tor bundle over a CW –complex is equivalent (after stabilizing if necessary) to a
trivialization over the 1–skeleton that can be extended over the 2–skeleton, just
as an orientation is a trivialization over the 0–skeleton that extends over the 1–
skeleton. Similarly, a spinc–structure over an oriented vector bundle is equiva-
lent (after stabilizing if the fiber dimension is odd or ≤ 2) to a complex structure
over the 2–skeleton that can be extended over the 3–skeleton. To see this, ob-
serve that the map of classifying spaces induced by inclusion i: U(n)→ SO(2n)
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lifts canonically to a map j: BU(n) → Bspinc(SO(2n), w∗) by first lifting the
map id × B det : BU(n) → BU(n) × BSO(2) to Bspinc(U(n), i∗w∗). (In
fact, the corresponding diagram exists on the group level.) Thus, any complex
structure determines a spinc–structure (and the correspondence preserves c1
and conjugation). For n ≥ 2, this correspondence is bijective for 2–complexes
and surjective for 3-complexes, since the map j has a 2–connected fiber. The
observation now follows from the fact that restriction induces a bijection from
spinc–structures to those over the 2–skeleton extending over the 3–skeleton.
The same remark applies to bundles classified by BSTOP or BSG if we define
a complex structure to be a lift of the classifying map to BU .

(b) The Wu relations are known to hold for Poincaré complexes. In particular,
for a compact, oriented 4–dimensional Poincaré complex X (without boundary)
we have w2(X)∪x = x∪x for all x ∈ H2(X;Z2). The usual argument [2] then
shows that W3(X) = 0, so all such complexes admit spinc–structures.

(c) As in the classical case, we have a canonical map i : Bspin(H,w) →
Bspinc(H,w) as the fiber of pSO(2) (induced by inclusion of groups), inducing
a map α : S(ξ, w)→ Sc(ξ, w) that is equivariantly equivalent (when the domain
is nonempty) to the Bockstein homomorphism β: H1(X;Z2) → H2(X;Z).
The image Im α is the set of spinc–structures with c1 = 0, or equivalently,
the set of conjugation-invariant structures. To verify that α has the stated
equivariance and image, note that we can either consider i to be an inclu-
sion into the fixed set of conjugation or replace it by a fibration p. Over each
point in BH , i and p will restrict to the canonical inclusion and fibration
RP∞ → CP∞ , respectively, both of which represent the unique nontrivial ho-
motopy class of maps in [RP∞,CP∞]. For a fixed classifying map f̃ : ξ → ξH ,
spin structures s1, s2 ∈ S(ξ, w) determine lifts f̂1, f̂2: X → Bspin(H,w). We
can assume that these agree over the 0–skeleton and that p ◦ f̂1 , p ◦ f̂2 agree
over the 1–skeleton, giving us obstruction cochains d(s1, s2) ∈ C1(X;Z2) and
d(αs1, αs2) ∈ C2(X;Z). Now d(αs1, αs2) evaluated on a 2–cell c is the el-
ement of π2(CP∞) ∼= Z given by p ◦ f̂2(c) − p ◦ f̂1(c). Since the boundary
operator π2(CP∞) → π1(RP 1) of p is multiplication by 2, the same coef-
ficient is obtained as 1

2
〈d(s1, s2), ∂c〉 = 〈βd(s1, s2), c〉. Thus, we obtain the

required equivariance d(αs1, αs2) = βd(s1, s2). To compute Im α, first note
that any s ∈ Im α is conjugation-invariant (since i is) with c1 = 0. If S(ξ, w)
is nonempty, fix s ∈ Im α and let s′ be any spinc–structure that either is
conjugation-invariant or satisfies c1(s′) = 0. By Proposition 1, 2d(s, s′) = 0, so
d(s, s′) ∈ Im β and s′ ∈ Im α. It now suffices to show that when S(ξ, w)
is empty, no spinc–structure has c1 = 0 or is conjugation-invariant. The
first assertion is obvious since c1|2 = w2 6= 0. For the remaining asser-
tion, choose s ∈ Sc(ξ, w) with conjugate s̄. Since π1(CP∞,RP∞) = 0, we
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can assume that the lift f̂ : X → Bspinc(H,w) determined by s maps the
1–skeleton X1 into i(Bspin(H,w)), which is fixed by conjugation. Thus, f̂
and its conjugate determine a difference cochain d(s, s̄) ∈ C2(X,Z). Since
π2(CP∞)→ π2(CP∞,RP∞) is multiplication by 2 on Z, we can change d(s, s̄)
by any coboundary by changing f̂ |X1: X1 → i(Bspin(H,w)). Thus, if s = s̄

we can assume that d(s, s̄) = 0, so over each 2–cell, f̂ is conjugation-invariant
up to homotopy rel ∂ . But conjugation fixes only 0 in π2(CP∞,RP∞), so f̂
can then be homotoped into i(Bspin(H,w)), ie s ∈ Im α.
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