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Abstract

Using the ‘Riemann Problem with zeros’ method, Ward has constructed ex-
act solutions to a (2 + 1){dimensional integrable Chiral Model, which exhibit
solitons with nontrivial scattering. We give a correspondence between what
we conjecture to be all pure soliton solutions and certain holomorphic vector
bundles on a compact surface.
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1 Introduction

Nonlinear equations admitting soliton solutions in 3{dimensional space-time
have been studied recently both numerically and analytically. See [4] and [6]
for a discussion of solitons in planar models.

In this paper, we study an integrable model introduced by Ward which is
remarkable in that it possesses interacting soliton solutions of �nite energy
[4, 6, 3]. This SU(N) chiral model with torsion term may be obtained by di-
mensional reduction and gauge �xing from the (2+2) Yang{Mills equations [6]
or more directly from the (2 + 1) Bogomolny equations. Static solutions of the
model correspond to harmonic maps of R2 ! U(N) which extend analytically
to S2 i� they have �nite energy.

The basic equations of Ward are
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where J : R3 ! SU(N). To this equation Ward added the boundary condition:

J(r; �; t) = I+
1
r
J1(�) +O

�
1
r2

�
as r!1; (1.2)

we will assume J1(�) is continuous. Ward showed that analytic solutions to
(1.1) correspond to doubly-framed holomorphic bundles on the open surface
TP1 . We will show that a neccessary and su�cient condition for the bundle to
extend to the compacti�cation fTP1 , the second Hirzebruch surface is that J
be analytic and that the operator
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(1.3)

have null monodromy around u 2 R [ f1g, where

�(u) def= (cos � u+ x0; sin � u+ y0; 0); (1.4)

for all x0; y0 2 R and � 2 S1 , i.e. for all lines in R2 . There is some evidence
that our techniques can be applied to the case of nonanalytic solutions, but we
will not do so here. We also leave open the question as to whether these are all
the pure soliton solutions.
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Before going on, consider the null monodromy of (1.3) in the U(1) case, i.e. for
the usual d’Alembert equation. Let j = log J be some logarithm of a solution.
The monodromy of (1.3) becomesZ 1

−1
[(1 + cos �)��jx + sin �(��jy + ��jt)] du = 0

where jx = @j
@x , etc. The fundamental theorem of calculus and the boundary

condition (1.2) imply Z 1
−1

cos � ��jx + sin � ��jy du = 0:

Combining the two integrals with � = �0 and � = �0 + � , we obtain

0 =
Z 1
−1

sin �0 �
�jt du = sin �0

@

@t

Z 1
−1

��j du

and

0 =
Z 1
−1

��jx du:

The �rst statement is that the Radon transform of j on a space-plane is inde-
pendent of time, and hence j is a harmonic function. Since j is also bounded
(a result of (1.2)) it must be constant. This provides some support for the idea
that (1.3) has null monodromy for pure soliton solutions only.

We explain (in x4) how the boundary conditions can be interpreted in terms
of the extension of the holomorphic bundle to the �brewise compacti�cation
(fTP1 ) when J satis�es (1.2) and (1.3) has null monodromy, and to in�nite
points for �bres not above the equator in P1 (i.e. f� 2 C [ f1g : j�j 6= 1g),
when J satis�es (1.2) alone.

When (1.3) does have null monodromy, Serre’s GAGA principle tells us that
the associated bundles are algebraic. This explains the algebraic nature of the
solutions constructed so far, and was a strong motivation for proving the main
theorem.

Main Theorem There are bijections between the sets of

1) analytic solutions J of (1.1) satisfying (1.2) for which (1.3) has null mon-
odromy; and
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2) holomorphic rank N bundles V ! TP1 which are real in the sense that
they admit a lift

V ~�−−−! V??y ??y
TP1 �−−−! TP1

of the
antiholomorphic

involution

��� = 1=��
��� = −��−2��

(1.5)

(where � and � are standard base and �bre coordinates of TC � TP1 )
and which extend to bundles on the singular quadric cone TP1[f1g, such
that restricted to real sections (sections invariant under the real structure)
V is trivial, and restricted to the compacti�ed tangent planes T�P1[f1g
for j�j = 1, V is trivial, with a �xed, real framing.

Remark 1.6 The null monodromy of (1.3) makes sense for initial conditions
on a space-plane ft = t0g. It follows from the proof that the initial value prob-
lem with null-monodromy initial conditions has an analytic solution extending
forward and backward to all time, i.e. it cannot blow up in �nite time.

Construction of solutions

There are currently three methods of solving this system. The �rst method
of Ward was to give a twistor correspondence between solutions of (1.1) and
holomorphic bundles on TP1 , the holomorphic tangent space to the complex
projective line. This led to the construction of noninteracting soliton solutions.
Thereafter, numerical simulations of these solutions by Sutcli�e led to his dis-
covery of interacting soliton solutions. Exact solutions with two interacting
solitons were then constructed by Ward using a Zakharov{Shabat procedure.
Using this procedure, more general solutions were constructed by Ioannidou
concurrently with the present work. In a future paper, we will present a closed-
form expression for all solutions satisfying (1.1), (1.2) with null (1.3) mon-
odromy, including all known exact soliton solutions. This will build on the
monad-theoretic work in [1].
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2 Zero Curvature and the Bogomolny equations

Ward’s equations are not a reduction in the sense of dimensional reduction. We
obtain them from the Bogomolny equations by �xing a gauge.

On R2+1 , the Bogomolny equations for a connection r = d + A and a Higgs
�eld (section of the adjoint bundle) � are

−rt� = [rx;ry] (2.1a)
rx� = [ry;rt] (2.1b)
ry� = [rt;rx]: (2.1c)

They are completely integrable, and can be written in the form

[r�z +
i�

2
rt −

�

2
�;rz −

i

2�
rt −

1
2�

�] = 0 for all � 2 C�: (2.2)

When j�j = 1 this is the curvature for an underlying connection on a family of
planes. Integrating it, we obtain a circle of special gauges in which

� = <�Ax + =�Ay
At = =�Ax −<�Ay:

Ward’s equations are equations for the gauge transformation from the � = −1
gauge to the � = 1 gauge. We will call the � = −1 gauge the standard gauge.

If J is the gauge transformation, (2.1b) is Ward’s equation (1.1), and in the
standard gauge, r = d+A and � are

−Ax = � =
1
2
J−1@xJ

Ay = At =
1
2
J−1

(
@y + @t

�
J:

(2.3)

Conversely, given J , we can form (r;�) in this way. Moreover, if J satis�es
(1.2) and has null (1.3) monodromy, the resulting map J(z; t = 0; �) : R2�S1 !
SU(N) extends to a based map S2�S1 ! SU(N). This associates a topological
charge in �3(SU(N)) = Z to any such solution J .

Conjecture 2.4 This topological degree can be de�ned for all �nite-energy so-
lutions, and is equal to the energy minus the e�ect of Lorentz boosting, internal
spinning and radiation.
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3 Twistor constructions of Ward and Hitchin

Hitchin showed that the set of oriented geodesics on an odd-dimensional real
manifold has a complex structure ([2]). In particular, the set of lines in R3 is
isomorphic as a complex manifold to the holomorphic tangent bundle of the
complex projective line. Using this equivalence he shows that solutions to the
Bogomolny equations correspond to holomorphic bundles on TP1 .

Very briefly, given a solution (r;�) to the Bogomolny equations, one associates
to a line the vector space of covariant constant frames of the modi�ed connection
r − i� on the line. This is a complex bundle. The operator r�� where �
represents a holomorphic �bre coordinate on TP1 commutes with r− i�, and
hence descends to a �@{operator on the bundle.

The key point is the commuting of the two operators and after a recombination,
this can be written as a zero curvature condition. See [2] for a full account.

4 The holomorphic bundle

Given a solution J , let (r = d+A;�) be the solution to the Bogomolny equa-
tions, in the standard gauge, as in (2.3). The extension to the compacti�cation
requires one argument near the equator (j�j = 1) (which requires null (1.3)
monodromy) and another on the open hemispheres.

4.1 Away from the equator

Consider the z{plane, ft = 0g, and the ‘projection’:

TS2 ,! R3 � S2 ! R2 � S2 (4.2)

onto this plane.

The zero curvature connection has a characteristic direction in this plane,
and the appropriate linear combination of the operators in (2.2) gives the �@ {
operator for a rank N bundle V� ! T�P1 :

r�
def= (1 + �2)@x + i(1 − �2)@y + (1 + �)2Ax + i(1− �2)(Ay +At): (4.3)

The kernel of this operator is the set of holomorphic sections of a bundle with
respect to the complex variable

� =
z − �2�z
1− ���

: (4.4)
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Together with @�� , this de�nes an operator

r : gl(CN )! gl
�
CN ⊗ T (0;1)

�
j�j < 1; � 2 C

}�
:

Since r� depends holomorphically on � , r2 = 0. Under the assumption
that J 2 C1(R3) plus boundary conditions (1.2), r will be continuous on
fj�j < 1; � 2 Cg which we identify with fj�j < 1; z 2 R2g. Near z =1

−�2r� = @1=� + C1(�; �)r2Ax + C2(�; �)r2(Ay +At)

where z = rei� , and the functions C1 and C2 are bounded in � for each �xed
� , i.e. they are polynomials in sin � and cos � . The boundary conditions (1.2)
for J imply

Ax = J−1(cos �@r +
sin �
2ir

@�)J

= 1=r2A0x(1=r; �; t)
(4.5)

where A0x is continuous near z =1 , and similarly for Ay and At . Hence r�
is continuous with a bounded singularity at z =1 .

This implies that the coe�cient is Lploc(S
2) for 0 < p � 1 which is su�cient

to show that iterating convolution with the Cauchy kernel produces local holo-
morphic gauges. Since the data vary holomorphically in � , the gauges can be
used to de�ne a holomorphic structure on V ! (fTP1 \ fj�j < 1g).

Remark 4.6 The extension to the compacti�ed nonequatorial �bres does not
require the null (1.3) monodromy, and thus gives a necessary but not necessarily
su�cient condition for a bundle to represent a solution satisfying the weak
boundary condition.

4.7 Null monodromy and the equator

In the last section, we found a ‘ �@ {operator’ hidden in the zero curvature condi-
tion (2.2). Away from the poles, we can make a di�erent recombination of the
operators, which on the equator can be written in the manifestly real form

cos �
@

@x
+ sin �

@

@y
+ 1

2(1 + cos �)J−1 @

@x
J + 1

2 sin � J−1

�
@

@y
+
@

@t

�
J: (4.8)
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Under the assumption that J is analytic, this represents an S1 � R{family
of �rst order ODEs on the line which vary analytically with the parameter
� 2 R . The boundary condition (1.2) implies that the functions r2J−1 @

@xJ

and r2J−1 @
@yJ are bounded on R2 , which means that J−1dJ has at worst a

bounded discontinuity on S2 , the conformal compacti�cation of a space plane.
Since the L1 norm is the natural norm in this context, we can convert all the
integrals on in�nite lines to integrals over compact circles through 1 2 S2 .
It follows that the coe�cients vary continuously in L1 with the choice of line,
and it makes sense, given � , to solve the whole family of ODEs on parallel
lines giving a function S2 ! U(N), which is continuous at 1 i� (1.3) has null
monodromy.

The result is an analytic map from f� 2 S1g to C0(S2;U(N)). By analytic,
we mean that it can be expanded in local power series in � with coe�cients in
C0(S2;U(N)), which converge in some neighbourhood with respect to the L1

norm (measured pointwise by geodesic distance from the unit in U(N)). This
follows from the fact that the operator (4.8) is analytic in � and hence has a
power series which (in particular) converges in the L1 norm, and the integration
map which solves the initial value problem is an absolutely continuous map, i.e.
the L1 norm of the solution is bounded by the L1 norm of the integrand.

The resulting analytic map

S1 ! C0(S2;U(N));

can be continued to an analytic map

f1− � < j�j < 1 + �g ! C0(S2;GL(N));

on some annulus containing the equator. Since (4.8) is the ‘real form’ of the
‘holomorphic’ equation (4.3), this solution de�nes a global trivialisation of the
bundle V on a deleted neighbourhood of the equator, and we can use it to de�ne
the holomorphic structure of the bundle over the equator. Grauert’s Theorem
implies that the bundle is trivial on generic �bres.

To see this rigorously, observe that (4.3) and (4.8) can both be completed to
the system (2.2) by adding a second operator which has nonzero @

@t component.
The solution to (4.8) has a unique extention to a neighbourhood of ft = t0g and
the extension is in the kernel of this second operator. The resulting solution is a
solution to (2.2) and hence a solution to (4.3). The important point is that null
(1.3) monodromy insures that the solution is de�ned on the compacti�cation of
ft = t0g to a sphere, otherwise the resulting holomorphic trivialisation would
have been for a neighbourhood in TP1 and not in fTP1 .
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4.9 Reality

Reality of the associated bundle is independent of the boundary conditions and
gauge �xing, and is implied by the analogous property for arbitrary solutions
of the Bogomolny equations. The simplest way to see it in this case is via the
formula

�2 ~f−1��r� ~f ~f−1
t

= r�(�� ~f)
t

for a local gauge, ~f , which shows that holomorphic gauges are transformed into
antiholomorphic gauges of the dual bundle.

4.10 The section at in�nity and the framing

Over a (possibly pinched) tubular neighbourhood of G1 , the section at in�n-
ity, the iterative Cauchy-kernel argument de�nes a holomorphic framing. The
radius of the tubular neighbourhood depends on an energy estimate and is
nonzero away from the equator. Since the data are holomorphic in � , the re-
sult is holomorphic in base and �bre directions and on G1 agrees with the
trivialisation coming from integrating (1.3) from in�nity. The resulting triv-
ialization of VjG1 de�nes the canonical framing. Grothendieck’s theorem on
formal functions implies that any bundle trivial on a rational curve of negative
self-intersection is trivial on a neighbourhood of the curve. So the bundle is
actually trivial on a neighbourhood of G1 .

5 Inverse construction : compact twistor �bration

The inverse construction follows the inverse construction of r;� due to Hitchin.
To accommodate the boundary condition, we need to extend the twistor �bra-
tion (and de�nition of J ) to a compact twistor �bration.

The �rst step is to embed TP1 as the nonsingular part of the singular quadric
Q

def= f�2 = �γg � P3 by

(�; �) 7! [1;−2i�;−�2;−�] = [�; �; γ; �]

(in terms of a�ne coordinates � d
d� 2 TP1 and homogeneous coordinates on

P3 ). Since the bundle is trivial on a (complex) neighbourhood of the section
at in�nity, V pushes down via the collapsing map fTP1 ! Q (G1 ! singular
point) to a bundle on Q .
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The next step is to construct the compact double twistor �bration:

X
def=
�
a�+ b� + cγ + d� = 0

�2 = �γ

�
� P3 � P3

�1 . & �2

R2+1 �P3 Q

Grauert’s Theorem implies that pulling V back to X and pushing it forward to
P3 gives a coherent sheaf which we assume is locally-free on a neighbourhood
of R2+1 � C3 � P3 . (We will show in a future paper that this assumption
is unneccessary, i.e. that real bundles which are trivial on equatorial �bres are
necessarily trivial on real sections.) Call the new sheaf W ! P3 . Fixing a �bre
P� � fTP1 such that VjP� is trivial, the composition

Wy = H0(Gy ;V)
eval�= VjGy\P�

eval�= H0(P�;V) �= CN ;

where Gy
def= �2��

−1
1 (y), gives a natural frame of WjY ,

Y
def= fy 2 P3 : (��2V)j�−1

1 (y) is trivialg:

In particular, the standard gauge comes from the �xed framing of VjP−1 , and
J is the gauge transformation from the P−1 to the P1 framing. It follows that
J extends meromorphically to P3 .

In terms of projective coordinates [a; b; c; d] on P3 , the ‘�nite’ hyperplane sec-
tions f[a; b; c; 1]g = C3 � P3 represent the sections f� = a − 2ib� − c�2g of
TP1 . The ‘in�nite’ hyperplanes f[a; b; c; 0]g represent the completion of the lin-
ear system on fTP1 to include the family of divisors G[a;b;c;0]

def= G1+P�0 +P�−1

(where a− 2ib�i− c�2
i = 0). We know that the set of such hyperplane sections

over which V is trivial is open and includes the circle fG1 + 2P� : � 2 S1g.
The intersection G[a;b;c;0] \ P� is either P� \ G1 or P� . Since P� was taken
so that VjP� is trivial, the de�nition of the standard and P� frames extends to
an open set of points of the plane at in�nity in P3 , and they agree on this set
by de�nition. In particular, J� , the transformation from the P−1 frame to the
Pei� frame is the identity on the in�nite points. Since Jei� is in the kernel of
(1.3) and is de�ned on compacti�ed space planes, (1.3) has null monodromy.

Since J is analytic by construction, we can use power series: Let b=a , c=a , d=a
be a�ne coordinates on P3 centred at a point at in�nity. J is de�ned on an
open set in this coordinate chart containing (0; 1; 0). The plane at in�nity is
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cut out by the equation d=a = 0. Since J jfd=a=0g = I , we can expand J in a
power series

J = I+
X
i�1
j;k�0

�
d

a

�i� b
a

�j � c
a

�k
Jijk

= I+
�
d

a

�X
k�0

� c
a

�k
J10k

+
�
d

a

�2� b
d

�X
j�1
k�0

�
b

a

�j−1 � c
a

�k
Jijk

+
�
d

a

�2 X
i�2
j;k�0

�
d

a

�i−2� b
a

�j � c
a

�k
Jijk

= I+ 1=rJ1(�) + 1=r2J2(�; t) + 1=r2J3(�; 1=r; t)

(5.1)

where we have used d=a = 1=z = 1=re−i� , b=a = −2it=rei� , c=a = e−2i� in
terms of cylindrical coordinates on C3 , which shows that J satis�es the required
boundary conditions (1.2).

This completes the proof that solutions of Ward’s equations satisfying the
boundary conditions (1.2) with null (1.3) monodromy are in one to one cor-
respondence with framed holomorphic bundles over fTP1 which satisfy a reality
and certain triviality conditions.

Remark 5.2 In a future paper, we will use monads to show that triviality on
equatorial �bres plus reality implies triviality on real �bres.

Remark 5.3 It follows from (5.1) that the energy decays as 1
r4 as r ! 1 ,

as Ward observed for his solutions. This is a property of analytic functions on
S2 � R which are constant on f1g � R .
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