ISSN 1364-0380

Geometry & Topology Volume 3 (1999) 397{404 Published: 30 November 1999

The Burau representation is not faithful for n = 5

Stephen Bigelow

Department of Mathematics UC Berkeley Berkeley, CA 94720, USA

Email: bigelow@math.berkeley.edu

Abstract

The Burau representation is a natural action of the braid group B_n on the free $\mathbb{Z}[t; t^{-1}]$ {module of rank n-1. It is a longstanding open problem to determine for which values of n this representation is faithful. It is known to be faithful for n = 3. Moody has shown that it is not faithful for n = 9 and Long and Paton improved on Moody's techniques to bring this down to n = 6. Their construction uses a simple closed curve on the 6{punctured disc with certain homological properties. In this paper we give such a curve on the 5{punctured disc, thus proving that the Burau representation is not faithful for n = 5.

AMS Classi cation numbers Primary: 20F36

Secondary: 57M07, 20C99

Keywords: Braid group, Burau representation

Proposed: Joan Birman Seconded: Shigeyuki Morita, Dieter Kotschick Received: 21 July 1999 Accepted: 23 November 1999

Copyright Geometry and Topology

1 Introduction

The braid groups B_n appear in many di erent guises. We recall here the de nition we will be using and some of the main properties we will need. For other equivalent de nitions see [1].

Let *D* denote a disc and let q_1 ; ...; q_n be *n* distinct points in the interior of *D*. For concreteness, take *D* to be the disc in the complex plane centered at the origin and having radius n + 1, and take q_1 ; ...; q_n to be the points 1; ...; *n*. Let D_n denote the punctured disc $D n f q_1$; ...; $q_n g$, with basepoint p_0 on @D, say $p_0 = -(n + 1)i$.

De nition 1.1 The braid group B_n is the group of all equivalence classes of orientation preserving homeomorphisms $h: D_n ! D_n$ which x @D pointwise, where two such homeomorphisms are equivalent if they are homotopic rel @D.

It can be shown that B_n is generated by $_1$; $_{n-1}$, where $_i$ exchanges punctures q_i and q_{i+1} by means of a clockwise twist.

Let x_1 ; ...; x_n be free generators of $_1(D_n; p_0)$, where x_i passes counterclockwise around q_i . Consider the map : $_1(D_n)$! **Z** which takes a word in x_1 ; ...; x_n to the sum of its exponents. Let D_n be the corresponding covering space. The group of covering transformations of D_n is **Z**, which we write as a multiplicative group generated by t. Let denote the ring **Z**[t; t^{-1}]. The homology group $H_1(D_n)$ can be considered as a {module, in which case it becomes a free module of rank n - 1.

Let be an autohomeomorphism of D_n representing an element of B_n . This can be lifted to a map ~: $D_n ! D_n$ which xes the ber over p_0 pointwise. This in turn induces a {module automorphism ~ of $H_1(D_n)$. The *(reduced) Burau representation* is the map

∏ ~ :

This is an (n-1){dimensional representation of B_n over

The main result of this paper is the following.

Theorem 1.2 The Burau representation is not faithful for n = 5.

The idea is to use the fact that the Dehn twists about two simple closed curves commute if and only if those simple closed curves can be freely homotoped o each other. Our construction will use two simple closed curves which cannot

Geometry and Topology, Volume 3 (1999)

398

be freely homotoped o each other but in some sense fool the Burau representation into thinking that they can. To make this precise, we rst make the following de nition.

De nition 1.3 Suppose and are two arcs in D_n . Let ~ and ~ be lifts of and respectively to D_n . We de ne

$$= \frac{\times}{k2\mathbf{Z}} (t^k \sim; \tilde{}) t^k;$$

where $(t^k \sim; \sim)$ denotes the algebraic intersection number of the two arcs in D_n . Note that this is only de ned up to multiplication by a power of t, depending on the choice of lifts \sim and \sim . This_R will not pose a problem because we will only be interested in whether or not is zero.

Theorem 1.4 For n = 3, the Burau representation of B_n is not faithful if and only if there exist embedded arcs and on D_n such that goes from q_1 to q_2 , goes from p_0 to q_3 or from q_3 to q_4 , cannot be homotoped o rel endpoints, and = 0.

The special case in which goes from p_0 to q_3 follows easily from [3, Theorem 1.5]. This special case is all we will need to prove Theorem 1.2. Nevertheless, we will give a direct proof of Theorem 1.4 in Section 2. In Section 3 we give a pair of curves on the 5{punctured disc which satisfy the requirements of Theorem 1.4, thus proving Theorem 1.2.

Throughout this paper, elements of the braid group act on the left. If $_1$ and $_2$ are elements of the braid group B_n then we denote their commutator by:

 $\begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 2 \end{bmatrix}$

2 **Proof of Theorem 1.4**

It will be useful to keep the following lemma in mind. It can be found in [2, Proposition 3.10].

Lemma 2.1 Suppose and are simple closed curves on a surface which intersect transversely at nitely many points. Then and can be freely homotoped to simple closed curves which intersect at fewer points if and only if there exists a \digon", that is, an embedded disc whose boundary consists of one subarc of and one subarc of .

First we prove the \only if" direction of Theorem 1.4. Let n = 3 be such that for any embedded arcs from q_1 to q_2 and from p_0 to q_3 in D_n satisfying = 0 we have that can be homotoped or relendpoints. Let : $D_n ! D_n$ lie in the kernel of the Burau representation. We must show that is homotopic to the identity map.

be the straight arc from q_1 to q_2 and let be the straight arc from p_0 Let to q_3 . Then () = 0. Thus () can be homotoped o . By applying this same argument to an appropriate conjugate of we see that () can be homotoped o the straight arc from p_0 to q_j for any j = 3; ...; n. It follows that we can homotope so as to \mathbf{x} . Similarly, we can homotope so as to x every straight arc from q_j to q_{j+1} for j = 1; $\dots n - 1$. The only braids with this property are powers of , the Dehn twist about a simple closed curve parallel to @D. But acts as multiplication by t^n on $H_1(\mathcal{D}_n)$. Thus the only power of which lies in the kernel of the Burau representation is the identity.

We now prove the converse for the case in which is an embedded arc from q_3 to q_4 in D_n . Let be an embedded arc from q_1 to q_2 such that cannot be homotoped or relendpoints but = 0. Let $: D_n ! D_n$ be a half Dehn twist" about the boundary of a regular neighborhood of . This is the homeomorphism which exchanges punctures q_1 and q_2 and whose square is a full Dehn twist about the boundary of a regular neighborhood of . Similarly, let be a half Dehn twist about the boundary of a regular neighborhood of

. We will show that the commutator of and is a non-trivial element of the kernel of the Burau representation.

Let be an embedded arc in D_n which crosses once. Figure 1 shows and

Figure 1: The action of

its image under the action of $\$. Thus the e ect of $\$ on $\$ is, up to homotopy rel endpoints, to insert the $\$ gure-eight" $\$ shown in Figure 2. Now let \sim be

Figure 2: The \setminus gure eight" 0

a lift of to the covering space D_n . Note that ${}^{\ell}$ lifts to a closed curve in

 \mathcal{D}_n . Thus the e ect of ~ on ~ is, up to homotopy rel endpoints, to insert a lift of ℓ .

Let ~ be a closed arc in \mathcal{D}_n . The e ect of ~ on ~ is to insert some lifts of ${}^{\ell}$. If we consider ~ and ${}^{\ell}$ as representing elements of $\mathcal{H}_1(\mathcal{D}_n)$ then

$$(\sim) (\sim) = \sim + P(t) \sim^{\theta}$$

where P(t) 2. Similarly,

$$(\sim) (\sim) = \sim + Q(t) \sim^{\theta}$$

where Q(t) 2 and ℓ is a gure eight de ned similarly to ℓ .

Any lift of $\ ,$ and hence of $\ ^{\ell},$ has algebraic intersection number zero with any lift of $\ .$ It follows that

$$(\sim) (\sim^{\theta}) = \sim^{\theta}$$

Thus

$$(\sim \sim) (\sim) = (\sim + Q(t)^{\sim 0}) + P(t)^{\sim 0}$$

Similarly

$$(\sim \sim) (\sim) = (\sim + P(t) \sim^{\theta}) + Q(t) \sim^{\theta}$$

Thus (~) and (~) commute, so the commutator [$\ \ ;\ \]$ lies in the kernel of the Burau representation.

It remains to show that [;] is not homotopic to the identity map. Let be the boundary of a regular neighborhood of . Using Lemma 2.1 and the fact cannot be freely homotoped o , it is not hard to check that that () cannot be freely homotoped o . A similar check then shows that () cannot be freely homotoped o (). Thus () is not freely homotopic to () = is not homotopic to (). But (). Thus , so [;] is not homotopic to the identity map.

The case in which goes from p_0 to q_3 can be proved by a similar argument. Instead of a half Dehn twist about the boundary of a regular neighborhood of

we use a full Dehn twist about the boundary of a regular neighborhood of [@D]. Instead of a gure eight curve ${}^{\ell}$ we obtain a slightly more complicated curve which is a commutator of @D and the boundary of a regular neighborhood of .

Figure 3: Arcs on the 5{punctured disc

3 Proof of Theorem 1.2

Let and be the embedded arcs on D_5 as shown in Figure 3. These cannot be homotoped o each other rel endpoints, as can be seen by applying Lemma 2.1 to boundaries of regular neighborhoods of and [@D. It remains to show that = 0.

Let ~ and ~ be lifts of and $_{\mathbb{R}}$ to D_5 . Each point p at which crosses contributes a monomial t^k to $^{\mathbb{R}}$. The exponent k is such that ~ and t^k ~ cross at a lift of p, and the sign of the monomial is the sign of that crossing. We choose our lifts and sign conventions such that the rst point at which crosses is assigned the monomial $+ t^0$.

In Figure 3, the sign of the monomial at a crossing p will be positive if is directed upwards at p and negative if is directed downwards at p. The exponents of the monomials can be computed using the following remark:

Remark Let $p_1: p_2 2 \land$ and let k_1 and k_2 be the exponents of the monomials at p_1 and p_2 respectively. Let ${}^{\ell}$ and ${}^{\ell}$ be the arcs from p_1 to p_2 along and respectively and suppose that ${}^{\ell} \land {}^{\ell} = fp_1: p_2 g$. Let k be such that ${}^{\ell} [{}^{\ell}$ bounds a k{punctured disc. Then $jk_2 - k_1j = k$. If ${}^{\ell}$ is directed counterclockwise around the k{punctured disc then $k_2 = k_1$, otherwise $k_2 = k_1$.

One can now progress along , using the above remark to calculate the exponent at each crossing from the exponent at the previous crossing. Reading the

crossings from left to right, top to bottom, we obtain the following:

$$= -t^{-3} - t^{0} + t^{1} + t^{-1} + t^{-3}$$

$$- t^{-1} - t^{2} + t^{3} + t^{1} + t^{-1} - t^{-2} - t^{0} - t^{2} + t^{1} + t^{-2}$$

$$- t^{-1} + t^{0} - t^{1} + t^{2} - t^{3} + t^{2} - t^{1} + t^{0} - t^{-1} + t^{-2}$$

$$- t^{1} - t^{4} + t^{5} + t^{3} + t^{1} - t^{0} - t^{2} - t^{4} + t^{3} + t^{0}$$

$$- t^{1} + t^{2} - t^{3} + t^{4} - t^{5} + t^{4} - t^{3} + t^{2} - t^{1} + t^{0}$$

$$- t^{2} + t^{1} - t^{0} + t^{-1} - t^{-2}$$

$$= 0:$$

Thus and satisfy the requirements of Theorem 1.4, and we conclude that the Burau representation is not faithful for n = 5.

The proof of Theorem 1.4 gives an explicit non-trivial element of the kernel, namely the commutator of a half Dehn twist about the boundary of a regular neighborhood of and a full Dehn twist about the boundary of a regular neighborhood of [@D]. The following element of B_5 sends to a straight arc from q_4 to q_5 :

$$1 = \frac{-1}{3} 2 \frac{2}{1} 2 \frac{3}{4} 3 2$$

The following element of B_5 sends to a straight arc from p_0 to q_5 :

$$_2 = {\begin{array}{*{20}c} -1 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \\ 1 \end{array}} {\begin{array}{*{20}c} -2 \\ 2 \end{array}} {\begin{array}{*{20}c} 2 \\ 1 \end{array}} {\begin{array}{*{20}c} 2 \\ 2 \end{array}} {\begin{array}{*{20}c} 1 \\ 4 \end{array}} {\begin{array}{*{20}c} 5 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \\ 4 \end{array}} {\begin{array}{*{20}c} 2 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \\ 4 \end{array}} {\begin{array}{*{20}c} 2 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \end{array}} {\begin{array}{*{20}c} -2 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \end{array}} {\begin{array}{*{20}c} -2 \\ 4 \end{array}} {\begin{array}{*{20}c} -2 \end{array}}$$

Thus the required kernel element is:

This is a word of length 120 in the generators.

The arcs in Figure 3 were found using a computer search, although they are simple enough to check by hand. A similar computer search for the case n = 4 has shown that any pair of arcs on D_4 satisfying the requirements of Theorem 1.4 must intersect each other at least 500 times.

We conclude with an example of a non-trivial braid in the kernel of the Burau representation for n = 6 which is as simple such a braid as one could reasonably hope to obtain from Theorem 1.4. The curves in Figure 4 give us the braid

$$\begin{bmatrix} -1 \\ 1 & 3 & 1 & 2 & 3 & 2 \end{bmatrix}$$

where

$$1 = 4 5^{-1} 2^{-1} 1^{-1}$$

Figure 4: Arcs on the 6{punctured disc

and

$$2 = \begin{bmatrix} -1 & 2 & -2 \\ 4 & 5 & 2 & 1 \end{bmatrix}$$

This is a word of length 44 in the generators.

References

- [1] Joan S Birman, *Braids, links, and mapping class groups*, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, NJ (1974)
- [2] A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, Seminaire Orsay, Asterisque 66{67, Societe Mathematique de France, Paris (1979) [MR 82m:57003]
- [3] **D D Long**, **M Paton**, *The Burau representation is not faithful for n* 6, Topology, 32 (1993) 439{447
- [4] John Atwell Moody, The Burau representation of the braid group B_n is unfaithful for large n, Bull. Amer. Math. Soc. 25 (1991) 379{384