
Geometry & Topology GGGG
G
GGG G GG

G
G
G
G

T TT
T
T
TT

TTTTT
T
T
T

Volume 3 (1999) 137{153
Published: 20 June 1999

R{covered foliations of hyperbolic 3{manifolds

Danny Calegari

Department of Mathematics
UC Berkeley

Berkeley, CA 94720

Email: dannyc@math.berkeley.edu

Abstract
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1 R{covered foliations that are not uniform

1.1 R{covered foliations

De�nition 1.1 We say a foliation F of a compact 3{manifold M is R{covered
if the pulled back foliation ~F of the universal cover ~M of M is topologically
the standard foliation of R3 by horizontal R2 ’s.

The �rst step in our construction is to produce a manifold M with an R{
covered foliation F which is not uniform. The condition that a foliation be
R{covered is a somewhat elusive one, and in particular it does not seem to be
su�cient to �nd a cover M̂ of M so that the leaf space of F̂ is R. This is
related to the question of when an in�nite braid in R3 is trivial.

Lemma 1.1 A taut foliation F of M is R{covered i� F has no spherical or
projective plane leaves, and for every arc � between two points p; q 2M there
is an arc �̂ homotopic to � rel. endpoints which is either contained in a leaf of
F or which is everywhere transverse to F .

Proof If F is R{covered, lift � to some ~� in ~M and make it transverse there.
If F is not R{covered, either M is covered by S2�S1 or the leaf space L of ~F
is a non-Hausdor� simply connected 1{manifold. This follows from a theorem
of Palmeira, which says that the foliation of R3 by the universal cover of a taut
foliation is topologically equivalent to a product of a foliation on R2 and R,
and therefore such a foliation of R3 by planes whose leaf space is R is a product
foliation (see [5]). In particular, there are distinct leaves �; � 2 L which cannot
be joined by an immersed path in L. That is, the topology of L provides an
obstruction to �nding such a �̂ as above.

Note that one does not have an analogue of Palmeira’s theorem for arbitrary
open 3{manifolds | that a foliation with leaf space R should be a product |
and in fact this is not true. For example, remove from R3 foliated by horizontal
R2 ’s a properly embedded bi-in�nite transverse curve which does not intersect
every leaf. This is where the di�culty resides in showing that a foliation is
R{covered by investigating an intermediate cover.

Many (most?) taut foliations of 3{manifolds are not R{covered. In particular,
by a theorem of Fenley, an R{covered foliation of a hyperbolic 3{manifold has
the property that in the universal cover, every leaf limits to all of S2

1 . However,
any compact leaf of a taut foliation which is not a �ber of a �bration over S1

lifts to a quasi-isometrically embedded plane in the universal cover, and its limit
set is a quasicircle (see [3] for a fuller discussion).
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1.2 Uniform foliations

De�nition 1.2 A taut foliation F of a compact 3{manifold M is uniform if
in the pullback foliation ~F of the universal cover ~M , every two leaves �; � are
a bounded distance apart. That is, there is some � depending on �; � so that
� is contained in the �{neighborhood of �, and vice versa. A foliation F is
obtained from a slithering over S1 if there is a �bration � : ~M ! S1 such that
�1(M) acts as bundle maps of this �bration, and such that the foliation of ~M
by components of the �bers of � agrees with ~F . We will also refer to such a
foliation, perhaps ungrammatically, as a slithering.

For additional details and de�nitions, see [7]. It is shown in [7] that a uniform
foliation with every leaf dense is obtained from a slithering.

It is almost tautological from the de�nition of a slithering over S1 that the
action of �1(M) on the leaf space L of ~F is conjugate to a representation in
˜Homeo(S1), the universal central extension of Homeo(S1).

3{manifold topologists will be familiar with the short exact sequence

0! Z! ˜PSL(2;R)! PSL(2;R)! 0

This sits inside the short exact sequence

0! Z! ˜Homeo(S1)! Homeo(S1)! 0

Informally, ˜Homeo(S1) is the group of homeomorphisms of R which are peri-
odic with period 1.

Let Z be the generator of the center of ˜Homeo(S1). Then Z acts on L by
translations, and by choosing an invariant metric on L for this action, the
action of every element of �1(M) on L is periodic with some period equal to
the translation length of Z . Z is known as the slithering map.

The condition that a foliation be uniform is reflected in the action of �1(M)
on L in the following way: since leaves do not converge or diverge too much at
in�nity, holonomy cannot expand or contract the leaf space too much. Every
compact interval in L can be included in a larger compact interval which is
\incompressible": no element of �1(M) takes it to a proper subset or superset
of itself. If every leaf is dense, L can be tiled with a countable collection of
these incompressible intervals laid end to end, so that the slithering map Z acts
on this tiling as a permutation.
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Note that a foliation F may come from a slithering in many di�erent ways. For
instance, if F admits a nonsingular transverse measure then the leaf space of
~F inherits an invariant measure making it isometric to R. Then for any real
t > 0 there is a slithering

�t : ~M ! S1

de�ned by the composition
~M ! L! S1

where the last map is reduction mod t. Since the action of �1(M) on L pre-
serves the property of points being integral multiples of t apart, this map is a
slithering.

However generic foliations come from a slithering in essentially at most one way.
The slithering map Z commutes with the action of every element of �1(M).
So, for instance, if an element � acts on L with isolated �xed points, the map
Z must permute this �xed point set. If, further, the action of �1(M) on L
is minimal (ie every leaf of F is dense), the map Z is determined uniquely
up to taking iterates. That is, there is a minimal slithering � : ~M ! S1 with
the property that for every other slithering �0 : ~M ! S1 determining the same
foliation, there is a �nite cover  : S1 ! S1 so that � =  � �0 .

This theory is developed in [7].

Following [7] we de�ne some auxiliary structure that will be used to show that
certain foliations are uniform or R{covered.

De�nition 1.3 Let X transverse to F be a vector �eld. Then X is regulating
if the lifts of the integral curves of X to ~M intersect every leaf of ~F .

These lifts determine a one dimensional foliation of ~M . A leaf in this foliation
and a leaf in ~F intersect in exactly one point, and consequently one can identify
the leaf space of the one dimensional foliation with any �xed leaf of ~F|that
is, with R2 . Such one dimensional foliations are called product covered in [2].
The main point for our purposes of this structure is the following theorem:

Theorem 1.2 Suppose F is uniform (respectively R{covered) and X is a
transverse regulating vector �eld with a closed trajectory �. Then the restric-
tion of F to M − � is also uniform (respectively R{covered).

Proof The universal cover ~M of M is foliated as a product by ~F and the
integral curves of X give this the structure of a product R2 �R in such a way
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that �1(M) acts by elements of Homeo(R2)�Homeo(R). Let N be obtained
from ~M by removing the lifts of �. Then N is the cover of M−� corresponding
to the subgroup of �1(M − �) normally generated by the meridian of �. One
sees from the structure of X that N is foliated as a product by in�nitely
punctured disks and therefore that ~N is R3 foliated by horizontal R2 ’s. If F
was uniform, any two leaves in N would be a �nite distance apart. But leaves
in ~N correspond bijectively with leaves in N under the covering projection
and therefore the same is true in ~N ; that is, the restriction of F to M − � is
uniform.

Notice from the construction that if F came from a slithering, then the restric-
tion of F to M − � comes from a slithering which agrees with the restriction
of the slithering map on ~M to the complement of the lifts of �.

1.3 Building uniform foliations from representations

Let Fng denote the surface of genus g with n punctures. Then F 1
1 is the punc-

tured torus, and �1(F 1
1 ) = Z �Z. Let �l; �l be standard generators for �1(F 1

1 ).

Then we can choose a representation � of �1(F 1
1 ) ! ˜Homeo(S1) by sending

�l to translation through length t and �l to some monotone element perhaps
with a periodic collection of �xed points, each distance 1 apart. Let Ml be the
trivial circle bundle Ml = F 1

1 � S1 over the punctured torus, and pick a flat
Homeo(S1) connection on this bundle whose holonomy realizes the representa-
tion �. Note that after �xing a trivialization of the product, the representation
is well-de�ned in ˜Homeo(S1) and not just Homeo(S1). The distribution de-
termined by this connection is integrable, by flatness, and integrates to give a
foliation Fl .

Geometrically, there is a foliation of ~F 1
1 �S1 by leaves ~F 1

1 �point. �1(F 1
1 ) acts

on this space by
(x; �)! (�(x); �(�)(�))

which preserves the foliation. This foliation therefore descends to a foliation on

Ml = ~F 1
1 � S1=�1(M)

transverse to the S1 �bers.

This foliation of Ml comes from an obvious slithering � : ~F 1
1 � R ! S1 which

is just projection onto the second factor followed by the covering map R! S1

corresponding to the circles in Ml . The action of �1(Ml) on the leaf space is
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exactly given by the representation � in ˜Homeo(S1) thought of as sitting in
Homeo(R).

Then the curve �l � 0 sits in Ml transverse to Fl , and there is also a foliation
on Ml − �l which we also denote by Fl .

It is easy to see that for irrational choice of t the foliation Fl has every leaf
dense.

Furthermore we have the following lemma:

Lemma 1.3 The foliation Fl of Ml − �l comes from a slithering. Further-
more, this slithering can be taken to be the restriction of � : ~Ml ! S1 to the
complement of the lifts of �l in ~Ml . Moreover, by choosing �(�l) suitably
generic, this slithering is minimal as de�ned above.

Proof By theorem 1.2 it su�ces to show there is a regulating vector �eld
of Ml which agrees with �0l when restricted to �. Since Ml is topologically
just F 1

1 � S1 it has a projection map to F 1
1 . Let H be the torus foliated by

circles that is the preimage of the curve � on F 1
1 under this projection. Then

Ml − N(H) has an obvious codimension 2 foliation by S1 �bers. We extend
this foliation over N(H), which can be parameterized as S1 � S1 � [−1; 1], by
foliating each S1 � S1 � � with parallel lines which rotate continuously from
vertical (parallel to the � � S1 direction in Ml ) on the boundary to horizontal
(parallel to �) on H , always staying transverse to Fl . It is obvious that this
is a foliation by regulating curves, and we denote its associated unit tangent
vector �eld by Xl .

If we choose �(�l) to be generic and close to the identity with isolated �xed
points, the slithering de�ned in the statement of the theorem is minimal.

On another punctured torus with basis for �1 given by �r; �r we pick another
representation � in ˜Homeo(S1) so that �(�r) is translation through s, where
again s is irrational and incommensurable with t, and �(�r) is some random
element which commutes with Z but not with �r . Then we can form Mr =
F 1

1 �S1 foliated as above, and remove �r from Mr to produce another foliated
manifold with a slithering.

Let M be obtained by gluing Ml−�l and Mr−�r along the torus boundaries
of neighborhoods of �l and �r respectively. Denote this torus in the sequel by
S � M . Each piece Ml − �l , Mr − �r admits a regulating vector �eld Xl;Xr

as constructed in lemma 1.3. We perform this gluing in such a way that the
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foliations of the boundary tori by meridional circles agree. If we like, we can
perform the gluing so that the restriction of the slithering maps for the left and
the right foliations commute, when restricted to their action on the leaf space
of the universal cover of S .

Then
�1(M) = �1(Ml − �l) �Z�Z �1(Mr − �r)

acts on R by the amalgamated action of each piece on the leaf space of its
respective universal cover, each canonically identi�ed with the leaf space of the
foliation of ~S .

Topologically, M is a graph manifold obtained from four copies of F 3
0 �S1 . To

see this, observe that Ml − N(H) (with notation as above) is exactly (F 1
1 −

N(�))� S1 which is F 3
0 � S1 . Also, observe that N(H) = S1� S1� [−1; 1] in

many di�erent ways, including a way in which � is S1 � � � 0. It follows that
N(H) − � is topologically also F 3

0 � S1 . However, these foliations by circles
cannot be made to agree on the boundary tori of di�erent pieces, and M is not
a Seifert �bered space.

Let F denote the induced foliation of M . Is F R{covered? To establish that
it is indeed R{covered, it will su�ce to show that each piece is uniform and
admits a regulating transverse vector �eld Xl;Xr which agree on the gluing
torus to make a global regulating vector �eld X .

Lemma 1.4 F is an R{covered foliation of M .

Proof Let M̂ foliated by F̂ be the cover of M obtained by taking copies of the
universal covers of Ml and Mr , drilling out countably many copies of the lifts
of �l and �r , then gluing along the boundary components. Then the regulating
vector �elds Xl;Xr lift to M̂ to give a global trivialization of this manifold as
a product of an in�nite genus Riemann surface with R. This implies that the
universal cover of M̂ is the standard R3 foliated by R2 ’s, and we see therefore
that F is R{covered.

Since every leaf of F is dense in M , if F were uniform it would come from
a slithering by [7]. However, we have seen that the action of �1(M) on the
leaf space of the universal cover is the amalgamation of the actions of �1(Ml −
�l) and �1(Mr − �r) along their gluing Z � Z. It follows that there is no
single translation � 2 Homeo(R) (ie an element without �xed points) which
commutes with both �l and �r for su�ciently generic choice of �(�r) and �(�l),
since the periods of the left and right slithering maps are incommensurable.
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More explicitly, let us �x a lift ~S of the torus S to ~M which divides a piece of
~M which is a lift of Ml − �l from a piece which is a lift of Mr − �r . Let us

identify the leaf space L with the leaf space of ~S . Let � 2 �1(M) corresponding
to the longitude of S preserve ~S and act on L as a translation. Fix a metric
on L such that � acts as translation through a unit length. Let Zl and Zr be
the translations in Homeo(L) corresponding to the slithering map of Ml − �l
and Mr − �r thought of as acting on the leaf space of ~S . Then Zl acts as
translation through length 1

s and Zr acts as translation through length 1
t . By

minimality, the only translations in Homeo(L) that commute with �(�l) are
multiples of Zl , whereas the only translations that commute with �(�r) are
multiples of Zr . It follows that no translation commutes with both elements,
and F does not come from a slithering.

We have therefore proved the following theorem:

Theorem 1.5 F as above is R{covered but not uniform.

2 Lorentz cone �elds

The following de�nition is from [7]:

De�nition 2.1 On any manifold M , a (Lorentz) cone �eld C transverse to
a codimension one foliation F is the �eld of timelike vectors (ie with positive
norm) for a (continuously varying) form on TM of signature (n − 1; 1) such
that TFp are spacelike. A cone �eld is regulating if every complete curve X
with X 0 2 C is regulating for an R{covered F .

Regulating cone �elds are discussed in [7], and shown to exist for all uniform
foliations. We show that the example constructed in the previous section admits
a regulating cone �eld.

Each piece Ml − �l , Mr − �r admits a regulating cone �eld Cl; Cr which
is degenerate along the boundary torus, coming from the restriction of the
regulating cone �elds on Ml;Mr which are tangent to �l and �r . Let C
denote the cone �eld on M which agrees with Cl and Cr away from a collar
of the separating torus, and which near this separating torus is su�ciently thin
so that every curve which crosses this collar must wind a distance at least T ,
as measured in periods of the longitude, transverse to the foliation.

Theorem 2.1 C as de�ned above is a regulating cone �eld for F .
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Proof We will do our calculations in M̂ , using the fact that M̂ admits a
regulating vector �eld coming from Xl;Xr which preserves each uniform piece.
Observe that M̂ has a decomposition into a countable collection of covering
spaces of Ml − �l , Mr − �r which we denote Li; Ri for some particular choice
of indices i. Also label the separating cylinders, all of them lifts of the gluing
torus in M , as Ai for some index i. Let di denote the metric on L, the leaf
space of F̂ , given by the transverse measure on FjS scaled so that the curves
�l = �r have period 1 and so that the left and right slithering maps act by
translations of this measure, as measured in the cylinder Ai . Then we claim
the following lemma:

Lemma 2.2 If Ai and Aj are separated by n cylinders Ak then for any two
leaves �; � 2 L,

jdi(�; �)− dj(�; �)j � (n+ 1) max(
1
s
;

1
t
)

Proof The proof follows immediately by induction once we show the result for
n = 0. If Ai and Aj bound a single Li or Ri , then the fact that the pieces Li
and Ri slither over S1 implies that di(�; �) and dj(�; �) di�er by at most one
period of the slithering, which in terms of the measure on the boundary torus,
is either 1

s or 1
t depending on whether we are in an Li or an Ri .

Let r = max(1
s ;

1
t ).

Now we will show that any curve γ supported by C makes de�nite progress
relative to any given di , and therefore relative to all of them. In particular, it
is regulating. After re-ordering indices, any such in�nite curve in M̂ , starting
on some leaf � 2 L1 , can be broken up into segments γ1; γ2; : : : where each
γi is contained in Li or Ri (according to sign). It is clear that if there are
only �nitely many γi (ie γ crosses only �nitely many separating annuli) then
eventually γ can be seen to be regulating, since it is supported by some lift of
Cr or Cl . So we suppose there are in�nitely many γi . Let Yi be the union of
the �rst i segments of γ . Let Zi be the shadow of Yi on �; that is, the curve
on � obtained by projecting M̂ to � along the integral curves of X . Let Y 0i
be the integral curve of X interpolating between the endpoint of Zi and the
endpoint of Yi . Then di(Yj) = di(Y 0j ) for all i; j since the curves Yj and Y 0j
have endpoints on the same pair of leaves.

We can estimate d1(Y 01) � T by hypothesis on C . It follows that d2(Y 01) � T−r .
But then d2(Y 02) � 2T − r and so d3(Y 02) � 2T − 2r . Continuing in this way
and by induction, we get dn(Y 0n) � nT − nr . But then

d1(Yn) = d1(Y 0n) � nT − 2nr
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and one can see that by choosing T � 2r the curve γ makes arbitrary progress
relative to some �xed di , and therefore is regulating.

An instructive analogy is given by the comparison between imperial and metric
weights and measures: suppose I have a small object which I can measure to
the nearest inch or to the nearest centimeter. Then I get estimates which vary
greatly compared to the length of the object. If the object is much bigger, the
estimates are comparatively better. My regulating curve above makes de�nite
progress, even though its progress is translated into inches, then centimeters,
then inches, then centimeters : : : rounding down every time.

2.1 A hyperbolic example

Theorem 2.3 Suppose M ,F is any compact oriented 3{manifold with a co-
orientable R{covered foliation, and suppose that F admits a transverse regu-
lating Lorentz cone �eld C . Let γ be any simple closed curve supported by C .
If Mn(γ) is obtained by taking an n{fold branched cover over γ , and Fn(γ)
denotes the pullback foliation, then Fn(γ) is R{covered. Moreover, Fn(γ) is
uniform i� F is.

Proof The point of having a regulating cone �eld C is that for any γ supported
as above, there is a regulating vector �eld X of M so that Xjγ = γ0 . This
follows immediately from obstruction theory, once one notices that sections of
C are contractible; eg use a partition of unity.

Now in ~M , the universal cover of M , γ lifts to a collection of bi-in�nite regu-
lating curves, and ~Mn(γ) is the universal orbifold cover of ~M where we declare
that there are order n cone angles along the lifts of γ . Let ~Fn(γ) be the pull-
back foliation in that universal orbifold cover and let �; � be two leaves there.
They can be joined by some arc � in the complement of the lifts of the cone
locus, which projects to an arc �(�) in ~M . By homotoping �(�) rel. endpoints
along integral curves of X , we can make it transverse to ~F without crossing any
lift of γ . Then this perturbed �(�) lifts to a perturbed � in ~Mn(γ) transverse
to ~Fn(γ), thereby demonstrating that Fn(γ) is R{covered, as required.

If F was not uniform, there would be a pair of leaves in ~F which diverge at
in�nity. They lift to leaves with the same property in ~Fn(γ). Alternatively, the
uniformity or lack thereof can be seen in the action of �1(Mn(γ)) on R.
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We return to the example M that we constructed in the previous section. In
M , it is clear that we can choose a curve γ supported by C whose complement
is hyperbolic. For, we can certainly do this in each side of M , and then by
crossing back and forth across the separating torus, we can arrange for the
complement of γ to be atoroidal. In particular, by choosing �(�l) and �(�r)
to be su�ciently close to translations, the regulating cone �elds Cl and Cr can
be as \squat" as we like, and we have a great deal of freedom in our choice of
the restriction of γ to the complement of a collar neighborhood of S .

For example, if �; � are chosen so that every element acts on the leaf space as
a translation through a rational distance, F would be a surface bundle over a
circle; in a product bundle, a curve whose projection to S1 is a homeomorphism
and whose projection to the base surface �lls up the surface (ie complementary
regions for the geodesic representative are disks) has atoroidal complement.
Similar curves are easily found in any surface bundle, and one can arrange
for them to wind several times in the circle direction when they pass through
some reducing torus. The point is that any su�ciently complicated curve will
su�ce. Then for nearby choices of �; � , such a curve will still be regulating
and contained in the regulating Lorentz cone �eld, as we show in the following
lemma:

Lemma 2.4 Suppose F 0l is a transversely measured foliation of Ml − �l as
above coming from some representation �(�l) = translation, and let C 0 be a
transverse Lorentz cone �eld for F 0l appropriately degenerate near �l . Then
for slitherings Fl coming from su�ciently close choices of �(�l), the cone �eld
C 0 is regulating for Fl .

Proof We need to check for su�ciently mild perturbations Fl of F 0l that any
curve supported by C 0 passes through at least one period of the slithering of
Fl , since then it must pass through arbitrarily many such periods and therefore
be regulating.

Observe �rst that any transverse Lorentz cone �eld is regulating for a trans-
versely measured foliation, since one can uniformly compare distance along a
curve supported by the cone �eld and distance with respect to the transverse
measure.

For Fl su�ciently close to F 0l , C 0 is a transverse Lorentz cone �eld for Fl .
The codimension 2 foliation Xl described in lemma 1.3 is regulating for every
choice of �(�l), and we assume that this foliation lifts to the vertical foliation of
R3 by point� R. We choose co-ordinates on R3 so that the regulating curves
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are of the form x = const., y = const. and the leaves of ~F 0l are of the form
z = const.

The slithering on Ml−�l comes from the slithering on Ml associated with the
circle bundle as above. We assume that the circles of the Seifert �bration away
from N(H) lift to vertical arcs of length 1.

With this choice of co-ordinates, for any foliations Fl constructed from a rep-
resentation as above and for every x; y; z , the points (x; y; z) and (x; y; z + 1)
in the universal cover are on leaves which are one period of the slithering apart.

For a point p in ~Ml given in co-ordinates by (x; y; z), let �p be the leaf of ~Fl
through p, and �p the leaf of ~Fl through (x; y; z + 1). Then the leaves �p
and �p di�er by a translation parallel to the z -axis of length 1. Note that this
translation need in no way correspond to the action of an element of �1(Ml)
on ~Ml . The light cone of C 0 through p intersects the horizontal plane passing
through (x; y; z+1) in a compact region. For su�ciently small perturbations of
�(�l), the leaf �p will be a small perturbation of the horizontal plane through
p, and the intersection of the light cone of C 0 through p with �p will also be a
compact region.

Now, Ml−�l is not compact, but we can consider its double N , foliated by the
double of F 0l , and equipped with a transverse Lorentz cone �eld obtained by
doubling C 0 which is degenerate along the boundary components of Ml − �l .
The compactness of N implies that for a su�ciently small perturbation F 0l of
Fl , the intersections as above will be compact for all p. This implies that a
curve supported by C 0 will need to go only a bounded distance before traveling
a full period of the slithering. In particular, any bi-in�nite curve supported by
C 0 will travel through in�nitely many periods of the slithering in either direction
and will therefore be regulating, which is what we wanted to show.

Remark 2.1 What is really essential to notice in the above set up is that the
leaves passing through (x; y; z) and (x; y; z+ 1) in the universal cover were one
period of the slithering away from each other for all Fl . In some sense, all the
slitherings are determined by the structure of the Seifert �bration where they
originated. For a generic perturbation of a uniform foliation, one has no control
over how the slithering map may vary, or even whether the perturbed foliations
are uniform at all.

Since for a transversely measured foliation, any transverse Lorentz cone �eld is
regulating, we can choose our curve γ to be any curve transverse to a measured
foliation F 0l with hyperbolic complement which is su�ciently steep near the
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separating torus, and then choose the representation �(�l) to be su�ciently
close to a translation that γ stays in a regulating cone �eld.

Since M − γ is hyperbolic, for su�ciently large n an n{fold branched cover of
M over γ is hyperbolic. One cannot be sure that an n{fold branched cover will
always exist, but at least one has a hyperbolic orbifold structure on M with
cone angle 2�=n along γ , and by Selberg’s lemma (see [6]) one knows this is
�nitely (orbifold) covered by a genuine hyperbolic manifold which is a branched
cover of M along γ .

By the discussion above, the induced foliation is R{covered but not uniform.
Moreover, by choosing �(�l) and �(�r) su�ciently close to translations, the
foliation F is as close to a transversely measured foliation as we like. Passing
to a branched cover preserves this fact. Since transversely measured foliations
of 3{manifolds are arbitrarily close (as 2{plane �elds) to surface bundles over
S1 , we have proved:

Theorem 2.5 There exist foliations of hyperbolic 3{manifolds which are R{
covered but not uniform. They can be chosen arbitrarily close to surface bundles
over circles.

Remark 2.2 It is clear that the construction outlined above can be made in
some generality. One can construct R{covered but not uniform foliations by
plumbing together uniform foliations along boundary tori in numerous ways.
In a great number of cases, these will admit regulating transverse cone �elds,
and by branching as above one can produce many atoroidal examples. One
can easily arrange for these examples to be closed; for instance, by doubling M
before removing a curve with atoroidal complement in the examples constructed
above.

Another construction, explained in detail in [7], involves choosing a train track
with integer weights supported by a regulating cone �eld, then plumbing the
leaves along the train track with a surface of genus given by the track weight.
These plumbed surfaces can be \twisted" by a surface automorphism under
the monodromy around loops of the train track. Thurston expects that these
examples are su�ciently flexible to allow one to prescribe the homology of M .
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3 General R{covered foliations

3.1 Regulating vector �elds

For a general R{covered foliation, we do not know whether or not there exists
a transverse Lorentz cone �eld.

In what follows, F will be an R{covered taut foliation of a 3{manifold M with
hyperbolic leaves.

We show in [1] that the circles at in�nity of each leaf in the universal cover of
M can be included in a topological cylinder at in�nity C1 on which �1(M)
acts by homeomorphisms.

The following theorem is proved in [1]:

Theorem 3.1 With notation as above, there is a global trivialization of C1
as S1 � R so that the action of �1(M) preserves the horizontal and vertical
foliations of C1 by S1 � point and point� R1 .

In [8] it is suggested that all taut foliations should have a pair of essential lam-
inations �+;�− transverse to each other and to the foliation which intersect
each leaf in a (1{dimensional) geodesic lamination. In the case of R{covered
foliations, these laminations should come from a pair of 1{dimensional lami-
nations �̂+; �̂− of the universal S1 described in the theorem above which are
invariant under the action of �1(M).

Let the universal S1 bound a hyperbolic plane D , and let �̂+; �̂− be the associ-
ated geodesic laminations in D . Then since each circle at in�nity is canonically
associated with this S1 , each point in �̂+ \ �̂− determines a unique point in
each leaf of ~F . Similarly, each segment of �̂� between points of intersection
determines a unique geodesic segment in each leaf, and each complementary
region determines a unique geodesic polygon in each leaf. If one �xes some
canonical geometric parameterization of the family of convex geodesic polygons
of a �xed combinatorial type, this parameterization gives rise to a canonical
identi�cation of each leaf with each other leaf, preserving the strati�cation out-
lined above. The �bers of this identi�cation give a one-dimensional foliation
transverse to ~F , and the tangent vectors to this foliation are a regulating vector
�eld.

It is easy to see that non-quadrilateral complementary regions in D give rise to
solid cylinders in ~M which cover solid tori in M , since their cores are isolated.
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The cores of these solid tori are necessarily regulating, and therefore de�ne
elements of �1(M) which act on the leaf space by translation.

In fact, Thurston has communicated to this author a sketch of a proof that an
R{covered foliation admits some transverse lamination which intersects every
leaf in geodesics (though not necessarily a pair of such). In [1] we can show
by methods slightly di�erent to those above that this assumption is enough to
imply that there exists a regulating vector �eld transverse to F which can be
chosen to have closed orbits. In short, we have the following theorem:

Theorem 3.2 Let F be an R{covered foliation. Then there exists a regu-
lating vector �eld transverse to F which can be taken to have closed orbits.
These orbits determine elements � 2 �1(M) which act on the leaf space of ~F
without �xed points. Branched covers of M over these closed orbits give new
R{covered foliations.

One hopes these results are all pieces of a uni�ed picture tying the intrin-
sic geometry of R{covered foliations to the extrinsic geometry of the foliated
manifolds containing them. Not all the details of this picture are yet visible.
Nevertheless, it seems worthwhile to make this picture as explicit as possible.

3.2 Instability of R{covered foliations

Despite the positive results of the previous sections, it seems that the property
of being R{covered is quite delicate. The following example is suggestive.

Let M be a hyperbolic surface bundle over a circle with �ber F and pseudo-
Anosov monodromy  : F ! F . Let F be the induced foliation by surfaces.
Let γ be a simple closed curve on F so that γ \  (γ) = ;. Note that it is
easy to show that there exist such examples, by �rst choosing any γ;  ; F and
then using the fact that surface groups are LERF to lift to a �nite regular cover
where γ and its image are disjoint.

Let M̂ be the Z{cover of M de�ned by the circle direction. Topologically, M̂
is F � R foliated by closed surfaces F � point. Let the group Z generated by
the deck translation, which we denote Ψ, act by Ψ(x; t) = ( (x); t + 1).

Let A be the annulus γ� [−�; 1+�]. Then by construction, A and its translates
are disjoint. Let � : [−�; 1 + �]! [−�; 1 + �] be a homeomorphism close to the
identity which moves every point except the endpoints up some small amount.
Then we can cut open M̂ along A and its translates, and shear the foliation on
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one side by the translation id� � to get a new foliation G . This can certainly
be done in such a way that G is arbitrarily close to F .

Now whenever an integral curve of G passes through A or a translate in the
\positive" direction, it will be sheared upward (relative to F ) by �.

Let us suppose that by choosing a suitable path in G , we can arrange that a
curve starting at some (x0; 0) can get to (x1; 1) in length t, as measured in G ,
by winding su�ciently many times through A. Now, the curve can continue to
wind around Ψ(A), and after moving a distance 2t, it can reach (x2; 2), and so
on. Remember that there is a transverse regulating vector �eld X to F given
by tangents to the curves point� R.

Since  is pseudo-Anosov, when we compare arclength at (x; t) and (x; 0) by
projection along X , we see that a vector of norm �t at (x; t) might project to
a vector of norm 1 at (x; 0), where � is the multiplier of  on the invariant
transverse measure of the unstable lamination of F . Hence, as measured in G , a
curve γ beginning at (x; 0) could have length nt but its projection to F; 0 could
have length as little as

Pn
i=1 t=�

i . In particular, a curve in G could \escape
to in�nity" while its projection to (F; 0) could move only a �nite distance. By
picking two points (x; 0) and (x; n) su�ciently far apart, and moving them by
curves in G joined by integral curves of X , it seems plausible that one could �nd
a path in G where holonomy was not de�ned after some �nite time, suggesting
that G was not R{covered.

Of course, there are problems with making this concrete: distances in G are only
magni�ed in the direction of the stable lamination as we go upwards; perhaps to
make the curves cross through A and its translates su�ciently often, we need to
go in both stable and unstable directions. Moreover, even if one could show that
holonomy failed to be de�ned for all time along integral curves of X , it does not
rule out the possibility that G is still R{covered and X is merely not regulating,
although the author understands that very recently S�ergio Fenley has shown
that a pseudo-Anosov flow transverse to an R{covered foliation should always
be regulating ([4]). A similar result is also proved in [1].
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