ISSN 1364-0380

Geometry & Topology Volume 4 (2000) 451{456 Published: 26 November 2000

Di eomorphisms, symplectic forms and Kodaira brations

Claude LeBrun

Department of Mathematics, SUNY at Stony Brook Stony Brook, NY 11794-3651, USA

Email: claude@math.sunysb.edu

Abstract

As was recently pointed out by McMullen and Taubes [7], there are 4{manifolds for which the di eomorphism group does not act transitively on the deformation classes of orientation-compatible symplectic structures. This note points out some other 4{manifolds with this property which arise as the orientationreversed versions of certain complex surfaces constructed by Kodaira [3]. While this construction is arguably simpler than that of McMullen and Taubes, its simplicity comes at a price: the examples exhibited herein all have large fundamental groups.

AMS Classi cation numbers Primary: 53D35

Secondary: 14J29, 57R57

Keywords: Symplectic manifold, complex surface, Seiberg{Witten invariants

Proposed: Ronald Stern Seconded: Yasha Eliashberg, Ronald Fintushel Received: 11 June 2000 Accepted: 21 November 2000

Copyright Geometry and Topology

Let M be a smooth, compact oriented 4{manifold. If M admits an orientationcompatible symplectic form, meaning a closed 2{form ! such that $! \land !$ is an orientation-compatible volume form, one might well ask whether the space of such forms is connected. In fact, it is not di cult to construct examples where the answer is negative. A more subtle question, however, is whether the group of orientation-preserving di eomorphisms M ! M acts transitively on the set of connected components of the orientation-compatible symplectic structures of M. As was recently pointed out by McMullen and Taubes [7], there are 4{manifolds M for which this subtler question also has a negative answer. The purpose of the present note is to point out that many examples of this interesting phenomenon arise from certain complex surfaces with Kodaira brations.

A *Kodaira* bration is by de nition a holomorphic submersion f: M ! B from a compact complex surface to a compact complex curve, with base *B* and ber 2. (In C^{1} terms, f is thus a locally trivial $F_z = f^{-1}(z)$ both of genus ber bundle, but nearby bers of *f* may well be non-isomorphic as complex curves.) One says that M is a Kodaira- bered surface if it admits such a bration f. Now any Kodaira- bered surface M is algebraic, since $K_M f K_B$ is obviously positive for su ciently large '. On the other hand, recall that a holomorphic map from a curve of lower genus to a curve of higher genus must be constant.¹ If f: M ! B is a Kodaira bration, it follows that M cannot contain any rational or elliptic curves, since composing f with the inclusion would result in a constant map, and the curve would therefore be contained in a ber of f; contradiction. The Kodaira{Enriques classi cation [2] therefore tells us that M is a minimal surface of general type. In particular, the only non-trivial Seiberg{Witten invariants of the underlying oriented 4{manifold M are [8] those associated with the canonical and anti-canonical classes of M. Any orientation-preserving self-di eomorphism of M must therefore preserve $f c_1(M)g$.

We have just seen that M is of Kähler type, so let denote some Kähler form on M, and observe that is then of course a symplectic form compatible with the usual 'complex' orientation of M. Let ' be any area form on B, compatible with *its* complex orientation, and, for su ciently small " > 0, consider the closed 2{form

$$! = " - f':$$

¹Indeed, by Poincare duality, a continuous map h: X ! Y of non-zero degree between compact oriented manifolds of the same dimension must induce inclusions $h: H^j(Y;\mathbb{R}) ! H^j(X;\mathbb{R})$ for all j. Such a map h therefore cannot exist whenever $b_j(X) < b_j(Y)$ for some j.

Then

$$\frac{I \wedge I}{I} = -2(f') \wedge + I' \wedge = (I' - hf'; I) \wedge ;$$

where the inner product is taken with respect to the Kähler metric corresponding to \therefore Now hf'; i is a positive function, and, because M is compact, therefore has a positive minimum. Thus, for a su-ciently small " > 0, ! ^ ! is a volume form compatible with the *non-standard* orientation of M; or, in other words, ! is a symplectic form for the reverse-oriented 4{manifold \overline{M} . For related constructions of symplectic structures on ber-bundles, cf [6].

If follows that \overline{M} carries a unique deformation class of almost-complex structures compatible with !. One such almost-complex structure can be constructed by considering the (non-holomorphic) orthogonal decomposition

$$TM = \ker(f) \quad f(TB)$$

induced by the given Kähler metric, and then reversing the sign of the complex structure on the 'horizontal' bundle f(TB). The rst Chern class of the resulting almost-complex structure is thus given by

$$c_1(\overline{M}; !) = c_1(M) - 4(1 - \mathbf{g})F;$$

where \mathbf{g} is the genus of B, and where F now denotes the Poincare dual of a ber of f. For further discussion, cf [4, 5, 9].

Of course, the product B = F of two complex curves of genus 2 is certainly Kodaira bered, but such a product also admits orientation-reversing di eomorphisms, and so, in particular, has signature = 0. However, as was rst observed by Kodaira [3], one can construct examples with > 0 by taking *branched covers* of products; cf [1, 2].

Example Let *C* be a compact complex curve of genus *k* 2, and let *B*₁ be a curve of genus $\mathbf{g}_1 = 2k - 1$, obtained as an unbranched double cover of *C*. Let : *B*₁ ! *B*₁ be the associated non-trivial deck transformation, which is a free holomorphic involution of *B*₁. Let *p*: *B*₂ ! *B*₁ be the unique unbranched cover of order 2^{4k-2} with $p [_1(B_2)] = \ker [_1(B_1) ! H_1(B_1 / \mathbb{Z}_2)]$; thus *B*₂ is a complex curve of genus $\mathbf{g}_2 = 2^{4k-1}(k-1) + 1$. Let *B*₂ *B*₁ be the union of the graphs of *p* and *p*. Then the homology class of is divisible by 2. We may therefore construct a rami ed double cover *M* ! *B*₂ *B*₁ branched over

. The projection $f_1: M \not ! B_1$ is then a Kodaira bration, with ber F_1 of genus $2^{4k-2}(4k-3)+1$. The projection $f_2: M \not ! B_2$ is also a Kodaira bration, with ber F_2 of genus 4k-2. The signature of this doubly Kodaira- bered complex surface is $(M) = 2^{4k}(k-1)$.

Geometry and Topology, Volume 4 (2000)

We now axiomatize those properties of these examples which we will need.

De nition Let M be a complex surface equipped with two Kodaira brations f_j : $M \mid B_j$, j = 1/2. Let \mathbf{g}_j denote the genus of B_j , and suppose that the induced map

$$f_1$$
 f_2 : $M ! B_1 B_2$

has degree r > 0. We will then say that $(f_1; f_2)$ is a Kodaira double-bration of M if $(M) \neq 0$ and

$$(\mathbf{g}_2 - 1) \not o r(\mathbf{g}_1 - 1)$$
:

In this case, $(M; f_1; f_2)$ will be called a *Kodaira doubly- bered* surface.

Of course, the last hypothesis depends on the ordering of (f_1, f_2) , and is automatically satis ed, for xed r, if $\mathbf{g}_2 = \mathbf{g}_1$. The latter may always be arranged by simply replacing M and B_2 with suitable covering spaces.

Note that r = 2 in the explicit examples given above.

Given a Kodaira doubly- bered surface $(M; f_1; f_2)$, let \overline{M} denote M equipped with the non-standard orientation, and observe that we now have two di erent symplectic structures on \overline{M} given by

$$!_1 = " - f_1'_1$$

 $!_2 = " - f_2'_2$

for any given area forms ' $_i$ on B_i and any su ciently small " > 0.

Theorem 1 Let $(M; f_1; f_2)$ be any Kodaira doubly- bered complex surface. Then for any self-di eomorphism : M ! M, the symplectic structures $!_1$ and $!_2$ are deformation inequivalent.

That is, l_1 , $-l_1$, l_2 , and $-l_2$ are always in di erent path components of the closed, non-degenerate 2{forms on \overline{M} . (The fact that l_1 and $-l_1$ are deformation inequivalent is due to a general result of Taubes [10], and holds for any symplectic 4{manifold with $b^+ > 1$ and $c_1 \neq 0$.)

Theorem 1 is actually a corollary of the following result:

Theorem 2 Let $(M; f_1; f_2)$ be any Kodaira doubly- bered complex surface. Then for any self-di eomorphism : M ! M,

$$[c_1(M; !_2)] \notin c_1(M; !_1)$$

Geometry and Topology, Volume 4 (2000)

454

Proof Because $(M) \neq 0$, any self-di eomorphism of M preserves orientation. Now M is a minimal complex surface of general type, and hence, for the standard 'complex' orientation of M, the only Seiberg{Witten basic classes [8] are $c_1(M)$. Thus any self-di eomorphism of M satis es

$$[c_1(\mathcal{M})] = c_1(\mathcal{M}).$$

Letting F_j be the Poincare dual of the ber of f_j , and letting \mathbf{g}_j denote the genus of B_j , we have

$$c_1(\overline{\mathcal{M}}; !_j) = c_1(\mathcal{M}) + 4(\mathbf{g}_j - 1)F_j$$

for j = 1/2. The adjunction formula therefore tells us that

$$[c_1(\overline{M}; !_j)] \quad [c_1(M)] = (2 + 3)(M) - 2 \quad (M) = 3 \quad (M) \neq 0;$$

where the intersection form is computed with respect to the 'complex' orientation of M.

If we had a di eomorphism : M ! M with $[c_1(\overline{M}; !_2)] = c_1(\overline{M}; !_1)$, this computation would tell us that that

$$[c_1(M)] = c_1(M) =) \qquad [c_1(\overline{M}; !_2)] = c_1(\overline{M}; !_1)$$

and that

$$[c_1(\mathcal{M})] = -c_1(\mathcal{M}) =) \qquad [c_1(\overline{\mathcal{M}}; !_2)] = -c_1(\overline{\mathcal{M}}; !_1):$$

In either case, we would then have

$$4(\mathbf{g}_1 - 1)F_1 = c_1(\overline{M}; !_1) - c_1(M) = [c_1(\overline{M}; !_2) - c_1(M)] = 4(\mathbf{g}_2 - 1) \quad (F_2):$$

On the other hand, F_1 , $F_2 = r$, so intersecting the previous formula with F_2 yields

$$4(\mathbf{g}_1 - 1)r = 4(\mathbf{g}_1 - 1)F_1 \quad F_2 = 4(\mathbf{g}_2 - 1)[\qquad (F_2) \quad F_2];$$

and hence

$$(\mathbf{g}_2 - 1) j r(\mathbf{g}_1 - 1);$$

in contradiction to our hypotheses. The assumption that $[c_1(\overline{M}; l_1)] = c_1(\overline{M}; l_2)$ is therefore false, and the claim follows.

Theorem 1 is now an immediate consequence, since the rst Chern class of a symplectic structure is deformation-invariant.

Acknowledgment This work was supported in part by NSF grant DMS-0072591.

Geometry and Topology, Volume 4 (2000)

References

- M F Atiyah, *The signature of bre-bundles*, from \Global Analysis (Papers in honor of K Kodaira)", Univ. Tokyo Press, Tokyo (1969) 73{84
- [2] W Barth C Peters, AV de Ven, Compact complex surfaces, Springer{Verlag (1984)
- [3] K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207{215
- [4] **D Kotschick**, *Signatures, monopoles and mapping class groups*, Math. Res. Lett. 5 (1998) 227{234
- [5] NC Leung, Seiberg{Witten invariants and uniformizations, Math. Ann. 306 (1996) 31{46
- [6] D McDu , D Salamon, Introduction to symplectic topology, Oxford Science Publications, The Clarendon Press and Oxford University Press, New York (1995)
- [7] **CT McMullen**, **CH Taubes**, 4{manifolds with inequivalent symplectic forms and 3{manifolds with inequivalent brations, Math. Res. Lett. 6 (1999) 681{696
- J Morgan, The Seiberg{Witten equations and applications to the topology of smooth four{manifolds, vol. 44 of Mathematical Notes, Princeton University Press (1996)
- J Petean, Inde nite Kähler{Einstein metrics on compact complex surfaces, Comm. Math. Phys. 189 (1997) 227{235
- [10] C H Taubes, More constraints on symplectic forms from Seiberg{Witten invariants, Math. Res. Lett. 2 (1995) 9{14

456