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Abstract

As was recently pointed out by McMullen and Taubes [7], there are 4{manifolds
for which the di�eomorphism group does not act transitively on the deforma-
tion classes of orientation-compatible symplectic structures. This note points
out some other 4{manifolds with this property which arise as the orientation-
reversed versions of certain complex surfaces constructed by Kodaira [3]. While
this construction is arguably simpler than that of McMullen and Taubes, its
simplicity comes at a price: the examples exhibited herein all have large fun-
damental groups.
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Let M be a smooth, compact oriented 4{manifold. If M admits an orientation-
compatible symplectic form, meaning a closed 2{form ! such that ! ^ ! is an
orientation-compatible volume form, one might well ask whether the space of
such forms is connected. In fact, it is not di�cult to construct examples where
the answer is negative. A more subtle question, however, is whether the group
of orientation-preserving di�eomorphisms M !M acts transitively on the set
of connected components of the orientation-compatible symplectic structures
of M . As was recently pointed out by McMullen and Taubes [7], there are
4{manifolds M for which this subtler question also has a negative answer. The
purpose of the present note is to point out that many examples of this interesting
phenomenon arise from certain complex surfaces with Kodaira �brations.

A Kodaira �bration is by de�nition a holomorphic submersion f : M ! B from
a compact complex surface to a compact complex curve, with base B and �ber
Fz = f−1(z) both of genus � 2. (In C1 terms, f is thus a locally trivial
�ber bundle, but nearby �bers of f may well be non-isomorphic as complex
curves.) One says that M is a Kodaira-�bered surface if it admits such a
�bration f . Now any Kodaira-�bered surface M is algebraic, since KM⊗f�K⊗‘B
is obviously positive for su�ciently large ‘. On the other hand, recall that a
holomorphic map from a curve of lower genus to a curve of higher genus must
be constant.1 If f : M ! B is a Kodaira �bration, it follows that M cannot
contain any rational or elliptic curves, since composing f with the inclusion
would result in a constant map, and the curve would therefore be contained in
a �ber of f ; contradiction. The Kodaira{Enriques classi�cation [2] therefore
tells us that M is a minimal surface of general type. In particular, the only
non-trivial Seiberg{Witten invariants of the underlying oriented 4{manifold M
are [8] those associated with the canonical and anti-canonical classes of M .
Any orientation-preserving self-di�eomorphism of M must therefore preserve
f�c1(M)g.

We have just seen that M is of Kähler type, so let  denote some Kähler form on
M , and observe that  is then of course a symplectic form compatible with the
usual ‘complex’ orientation of M . Let ’ be any area form on B , compatible
with its complex orientation, and, for su�ciently small " > 0, consider the
closed 2{form

! = " − f �’:

1Indeed, by Poincar�e duality, a continuous map h: X ! Y of non-zero degree
between compact oriented manifolds of the same dimension must induce inclusions
h�: Hj(Y;R) ,! Hj(X;R) for all j . Such a map h therefore cannot exist whenever
bj(X) < bj(Y ) for some j .
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Then
! ^ !
"

= −2(f�’) ^  + " ^  = ("− hf�’; i) ^  ;

where the inner product is taken with respect to the Kähler metric correspond-
ing to  . Now hf�’; i is a positive function, and, because M is compact,
therefore has a positive minimum. Thus, for a su�ciently small " > 0, ! ^ !
is a volume form compatible with the non-standard orientation of M ; or, in
other words, ! is a symplectic form for the reverse-oriented 4{manifold M .
For related constructions of symplectic structures on �ber-bundles, cf [6].

If follows that M carries a unique deformation class of almost-complex struc-
tures compatible with ! . One such almost-complex structure can be con-
structed by considering the (non-holomorphic) orthogonal decomposition

TM = ker(f�)� f�(TB)

induced by the given Kähler metric, and then reversing the sign of the com-
plex structure on the ‘horizontal’ bundle f�(TB). The �rst Chern class of the
resulting almost-complex structure is thus given by

c1(M;!) = c1(M)− 4(1− g)F;

where g is the genus of B , and where F now denotes the Poincar�e dual of a
�ber of f . For further discussion, cf [4, 5, 9].

Of course, the product B � F of two complex curves of genus � 2 is certainly
Kodaira �bered, but such a product also admits orientation-reversing di�eo-
morphisms, and so, in particular, has signature � = 0. However, as was �rst
observed by Kodaira [3], one can construct examples with � > 0 by taking
branched covers of products; cf [1, 2].

Example Let C be a compact complex curve of genus k � 2, and let B1 be
a curve of genus g1 = 2k − 1, obtained as an unbranched double cover of C .
Let �: B1 ! B1 be the associated non-trivial deck transformation, which is a
free holomorphic involution of B1 . Let p: B2 ! B1 be the unique unbranched
cover of order 24k−2 with p�[�1(B2)] = ker[�1(B1)! H1(B1;Z2)]; thus B2 is a
complex curve of genus g2 = 24k−1(k−1)+1. Let � � B2�B1 be the union of
the graphs of p and � � p. Then the homology class of � is divisible by 2. We
may therefore construct a rami�ed double cover M ! B2 �B1 branched over
�. The projection f1: M ! B1 is then a Kodaira �bration, with �ber F1 of
genus 24k−2(4k−3)+1. The projection f2: M ! B2 is also a Kodaira �bration,
with �ber F2 of genus 4k − 2. The signature of this doubly Kodaira-�bered
complex surface is �(M) = 24k(k − 1).
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We now axiomatize those properties of these examples which we will need.

De�nition Let M be a complex surface equipped with two Kodaira �brations
fj: M ! Bj , j = 1; 2. Let gj denote the genus of Bj , and suppose that the
induced map

f1 � f2: M ! B1 �B2

has degree r > 0. We will then say that (f1; f2) is a Kodaira double-�bration
of M if �(M) 6= 0 and

(g2 − 1) 6 j r(g1 − 1):

In this case, (M;f1; f2) will be called a Kodaira doubly-�bered surface.

Of course, the last hypothesis depends on the ordering of (f1; f2), and is auto-
matically satis�ed, for �xed r , if g2 � g1 . The latter may always be arranged
by simply replacing M and B2 with suitable covering spaces.

Note that r = 2 in the explicit examples given above.

Given a Kodaira doubly-�bered surface (M;f1; f2), let M denote M equipped
with the non-standard orientation, and observe that we now have two di�erent
symplectic structures on M given by

!1 = " − f�1’1

!2 = " − f�2’2

for any given area forms ’j on Bj and any su�ciently small " > 0.

Theorem 1 Let (M;f1; f2) be any Kodaira doubly-�bered complex surface.
Then for any self-di�eomorphism �: M ! M , the symplectic structures !1

and ���!2 are deformation inequivalent.

That is, !1 , −!1 ,��!2 , and −��!2 are always in di�erent path components
of the closed, non-degenerate 2{forms on M . (The fact that !1 and −!1 are
deformation inequivalent is due to a general result of Taubes [10], and holds for
any symplectic 4{manifold with b+ > 1 and c1 6= 0.)

Theorem 1 is actually a corollary of the following result:

Theorem 2 Let (M;f1; f2) be any Kodaira doubly-�bered complex surface.
Then for any self-di�eomorphism �: M !M ,

��[c1(M;!2)] 6= �c1(M;!1):
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Proof Because �(M) 6= 0, any self-di�eomorphism of M preserves orienta-
tion. Now M is a minimal complex surface of general type, and hence, for the
standard ‘complex’ orientation of M , the only Seiberg{Witten basic classes [8]
are �c1(M). Thus any self-di�eomorphism � of M satis�es

��[c1(M)] = �c1(M):

Letting Fj be the Poincar�e dual of the �ber of fj , and letting gj denote the
genus of Bj , we have

c1(M;!j) = c1(M) + 4(gj − 1)Fj

for j = 1; 2. The adjunction formula therefore tells us that

[c1(M;!j)] � [c1(M)] = (2�+ 3�)(M) − 2�(M) = 3�(M) 6= 0;

where the intersection form is computed with respect to the ‘complex’ orienta-
tion of M .

If we had a di�eomorphism �: M !M with ��[c1(M;!2)] = �c1(M;!1), this
computation would tell us that that

��[c1(M)] = c1(M) =) ��[c1(M;!2)] = c1(M;!1)

and that

��[c1(M)] = −c1(M) =) ��[c1(M;!2)] = −c1(M;!1):

In either case, we would then have

4(g1−1)F1 = c1(M;!1)−c1(M) = ���[c1(M;!2)−c1(M)] = �4(g2−1)��(F2):

On the other hand, F1 � F2 = r , so intersecting the previous formula with F2

yields
4(g1 − 1)r = 4(g1 − 1)F1 � F2 = 4(g2 − 1)[���(F2) � F2];

and hence
(g2 − 1) j r(g1 − 1);

in contradiction to our hypotheses. The assumption that ��[c1(M;!1)] =
�c1(M;!2) is therefore false, and the claim follows.

Theorem 1 is now an immediate consequence, since the �rst Chern class of a
symplectic structure is deformation-invariant.
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