
ISSN 1364-0380 (on line) 1465-3060 (printed) 651

Geometry & Topology GGGG
G
GGGG GG

G
G
G
G

T TT
T
T
TT

TTTTT
T
T
T

Volume 5 (2001) 651{682
Published: 15 August 2001

On iterated torus knots and transversal knots

William W Menasco

University at Bu�alo, Bu�alo, New York 14214, USA

Email: menasco@tait.math.buffalo.edu

URL: http://www.math.buffalo.edu/~menasco

Abstract

A knot type is exchange reducible if an arbitrary closed n{braid representative
K of K can be changed to a closed braid of minimum braid index nmin(K)
by a �nite sequence of braid isotopies, exchange moves and �{destabilizations.
(See Figure 1). In the manuscript [6] a transversal knot in the standard contact
structure for S3 is de�ned to be transversally simple if it is characterized up
to transversal isotopy by its topological knot type and its self-linking number.
Theorem 2 of [6] establishes that exchange reducibility implies transversally
simplicity. Theorem 1.1, the main result in this note, establishes that iterated
torus knots are exchange reducible. It then follows as a Corollary that iterated
torus knots are transversally simple.
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652 William W Menasco

1 Introduction

Let C � S3 be an oriented knot, let VC be a solid torus neighborhood of C and
let @VC = TC � S3 be a peripheral torus for C . The oriented simple closed curve
on TC that represents the homotopy class of pm+ ql , where m is the meridian
homotopy class, l is the preferred longitude homotopy class and p; q 2 Z, is
called the (p; q) cable of C . We will use the notion C(C; (p; q)) to indicate the
resulting oriented knot of this cabling operation. If C is the oriented unknot
and (p; q) is a co-prime pair then the cabling operation produces a (p; q){torus
knot. (Our discussion and results can be adapted to the situation where (p; q)
is not co-prime, but since we will be concerned with the iteration of the cabling
operation, to avoid ambiguity we require that the cabling produce a knot.)

We can, of course, iterate the cabling operation. Starting with an initial knot C0

and a sequence of co-prime 2{tuples of integers f(p1; q1); (p2; q2); � � � ; (ph; qh)g,
with p1 < q1 , we can construct the oriented knot

C(C(� � �C(C(C0; (p1; q1)); (p2; q2)) � � � ; (ph−1; qh−1)); (ph; qh)):

If C0 is the oriented unknot then any iteration of the cabling operation produces
an iterated torus knot. Letting (P;Q) = f(p1; q1); (p2; q2); � � � ; (ph; qh)g, the
�nal iteration produces an oriented knot, K(P;Q) , which is on the peripheral
torus of the next to last knot in the iteration; mainly,

TC(C(���C(C(C0;(p1;q1));(p2;q2))��� );(ph−1;qh−1)):

In Section 2 of [6] three moves are discussed which take closed braids to closed
braids, preserving knot type: braid isotopy, exchange moves and destabiliza-
tion. Braid isotopy means an isotopy in the complement of the braid axis which
preserves the braid structure. The exchange move is a special type of Reide-
meister II move illustrated in Figure 1(a). Destabilization means reducing the
braid index by eliminating a (positive or negative) trivial loop, as shown in Fig-
ure 1(b). Notice that braid isotopy and exchange moves preserve both algebraic
crossing number and braid index, whereas destabilization changes both. For a
more extensive treatment of these isotopies, see [1, 3, 4].)

As de�ned in [6], a knot type K is exchange reducible if an arbitrary closed n{
braid representative K of K can be changed to a closed braid representative of
minimum braid index, nmin(K), by a �nite sequence of braid isotopies, exchange
moves and �{destabilizations. The main result of [2] established the exchange
reducibility of the unknot. The main theorem in this paper is an analogous
result for iterated torus knots.
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Figure 1

Theorem 1.1 Iterated torus knots are exchange reducible.

It should be noted that in [5] it was shown that there are knots that can be
represented by two non-conjugate closed 3{braids where the di�ering conjugacy
classes are not related to each other by an exchange move. (In fact, they are
related to each other by a braid preserving flype.)

The proof of Theorem 1.1 involves adapting the braid-foliation machinery devel-
oped in [4] to the situation where there is a torus in S3 which is being foliated
and a knot is embedded on this torus. It employs the result from [12] that
an oriented iterated torus knot K(P;Q) has an unique braid representative of
minimal braid index

Qh
1 pi .

Theorem 1.1 has an immediate application to transversal knots. Let � be the
standard contact structure in oriented S3 . The structure � can be thought of
as a plane �eld that is totally non-integrable. A knot K is transversal if and
only if K intersects each plane in the plane �eld � transversally. A transversal
isotopy of K is an isotopy of K in S3 through transversal knots. (See [7].) If
K and K 0 are two transversal knots that are transversally isotopic, then they
are representatives of the same transversal knot type, T K .

A classical invariant of transversal knot types is a self-linking number, the Ben-
nequin number, �(T K). The self-linking is de�ned by pushing the transversal
knot o� itself in a direction which is in the contact plane. A well-de�ned di-
rection exists because S3 is parallelizable. See [6] for a precise description. A
transversal knot type T K is transversally simple if it is determined by its topo-
logical knot type K and its self-linking number. In [7] it was �rst shown that the
unknot is transversally simple. In [8] it was established that positive transver-
sal torus knots are transversally simple. In [6] a more general framework for
understanding transversally simple knots was established.
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654 William W Menasco

Theorem 1.2 (See [6]) If T K is a transversal knot type with associated
topological knot type K , where K is exchange reducible, then T K is transver-
sally simple.

Combining Theorems 1.1 and 1.2, we have the following immediate corollary.

Corollary 1.3 Let T K(P;Q) be a transversal knot type with associated topo-
logical knot type that of the iterated torus knot K(P;Q) . Then T K(P;Q) is
transversally simple.

The outline for this note is as follows. In Section 2 we review and adapt the
braid-foliation machinery for the torus that was initially introduced in [4]. We
will be concerned with the situation where we are given a torus which contains
a knot K(P;Q) and bounds a solid torus. However, we do not have a natural
way of identifying the core curve of the solid torus. Hence, we will use T�
as notation for the given torus containing K(P;Q) . The foliation machinery
on T� will involve understanding the manipulation of three di�erent types of
foliations|circular, mixed and tiled foliations. (These foliations will be de�ned
in Section 2.) In Section 3 we will prove Theorem 1.1 in the special case where
T� has a circular foliation. The overriding strategy of the remaining sections
is to reduce the mixed and tiled foliations to circular foliations. In Section
4 we show how destabilizations and exchange moves allow one to replace a
mixed foliation with a circular foliation. Similarly, in Section 5 we show how
destabilizations and exchange moves allow one to replace a tiled foliation with
a circular foliation.

Acknowledgments This work was partially supported by NSF grant DMS-
9626884. The author wishes to thanks Joan Birman and Nancy Wrinkle for
encouraging him to think about a proof of Theorem 1.1 during his brief sabbat-
ical stay at Columbia University. That stay was partially supported by NSF
grant DMS-9705019 .

2 The braid foliation machinery for the torus

In this section we adapt the combinatorics of [4] to the pair (K;T�), where
K = K(P;Q) is an iterated torus knot which lies on the torus T� . Since the
exposition in [1] supplies us with a centralized source for most of the previously
developed machinery, we will use it almost exclusively as our primary reference.

Geometry & Topology, Volume 5 (2001)
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Although the arguments in this note rely heavily on results in the existing
literature, a reader need only consult [1] and [4] in almost all cases.

Let K � S3 be an oriented closed n{braid with axis A. Then we can choose a
2{disc �bration of the open solid torus S3−A. We will refer to H = fH� j � 2
[0; 2�]g as this 2{disc �bration of S3 −A. Each H� is a disc with boundary
A. We consider the intersection of the H� ’s with T�|the induced singular
foliation on T� by H. We have a sequence of lemmas that begin to standardize
this foliation. These lemmas imitate the similar set of lemmas in Section 1 of [4]
which dealt with an essential torus in the complement of a closed braid. Since
our present case is slightly di�erent (the closed braid is actually a homotopically
non-trivial curve on the torus), we will only supply the additional details needed
to adapt the proofs of [4] to this case.

Lemma 2.1 We may assume that:

(i) The intersections of A with T� are �nite in number and transverse. Also,
if p 2 A\T� then p has a neighborhood on T� which is radially foliated
by its arcs of intersection with �bers of H.

(ii) All but �nitely many �bers H� 2 H meet T� transversally, and those
which do not (the singular �bers) are each tangent to T� at exactly one
point in the interior of both T� and H� . Moreover, the tangencies (which
are contained in singular leaves) are either local maxima, or minima, or
saddle points.

(iii) A leaf that does not contain a singular point (a non-singular leaf) is either
an arc having endpoints on A or a simple closed curve.

Proof We use exactly the same general position argument as in [4].

We refer to the leaves of the foliation of T� as b{arcs and c{circles. Each
b{arc and each c{circle lies in both T� and in some �ber H� 2 H. Since
K � T� , for all generic H� 2 H, each point of K \H� is contained in a b{arc
or c{circle. Finally, since K intersects each disc �ber of H coherently, K must
intersect each non-singular leaf coherently.

A b{arc, b � T�\H� , is essential if either b\K 6= ;, or both sides of H� split
along b are intersected by K . A c{circle, c � T�\H� , is essential if c\K 6= ;.
The de�nition of essential b{arcs and c{arcs is an adaptation of the de�nition
in [4], however inessential b{arcs (c{circles) are still arcs (respectively, circles)
splitting o� sub-discs (respectively, bounding subdiscs) of disc �bers that are
not intersected by K .

Geometry & Topology, Volume 5 (2001)
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Lemma 2.2 Assume that T� satis�es (i){(iii) of Lemma 2.1. Then T� is
isotopic to a cabling torus, T 0� , such that the foliation of T 0� also satis�es (i){
(iii) and in addition:

(1) All b{arcs are essential.

(2) All c{circles are essential.

(3) Any c{circle in the foliation is homotopically non-trivial on T 0� .

Moreover, the restriction of the isotopy to K is the identity.

Proof The argument for eliminating inessential b{arcs is exactly the same as
the argument used in the proof of Lemma 2 of [4]. Similarly, if c is a c{circle
in the foliation which is homotopically trivial on T� , we must have c \K = ;
since K cannot intersect a homotopically trivial circle on T� coherently. Then
we can, again, employ the argument in the proof of Lemma 2 [4], which relies
on the fact that c bounds a sub-disc in the disc �ber that does not intersect
K .

We now consider the di�erent types of singularities which can occur in the foli-
ation of T� . Having two possible non-singular leaves allows for the occurrence
of three possible types of singularities: a bb{singularity resulting from two
b{arcs \meeting" at a saddle point; a bc{singularity resulting from a b{arc
and a c{circle forming a saddle point; and cc{singularity resulting from two
c{circles. See Figure 2.

Ht −sequence

bb−tile

bc −tile

bb−singularity

bc −singularity

−foliation/tiling

Figure 2

Lemma 2.3 cc{singularities do not occur.

Geometry & Topology, Volume 5 (2001)
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Proof A surgery between two c{circles will produce a homotopically trivial
c{circle, violating statement 3 of Lemma 2.2.

We can now repeat the discussion in Section 1 of [4] which is based on the
observation that the existence of two di�erent types of singularities implies the
occurrence of two di�erent tiles: bb{tiles and bc{tiles as illustrated in Figure
2. (The reader should note that a bc{tile is in fact annular.)

Proposition 2.4 There are three possibilities for the foliation of T� :

� A circular foliation: every leaf is a c{circle. There are no singularities.

� A mixed foliation: there are both b{arcs and c{circles. This foliation
needs the occurrence of bc{tiles, but allows the occurrence of bb{tiles.

� A tiling: that is, a foliation involving only b{arcs and, thus, only bb{
tiles. (An example of a tiled torus is given in Figure 7.)

At this point an interested reader can reach the punch-line in rapid fashion by
reviewing the statements of Propositions 4.1 and 5.1, and then proceeding to the
argument in Section 3. No understanding of the machinery in the intervening
subsections is needed to understand the proof of Theorem 1.1 in Section 3. (To
understand Remark 3.2 it is useful to have reviewed the discussion on foliations
in Section 2.1 and Section 2.2.)

2.1 Isotopies of K in T�

In this section we discuss how the positioning of K in the foliation of T� at
times allows us to perform destabilizations and exchange moves on K . The
reader should note that any isotopy of K induces an isotopy of T� .

We adopt the terminology of the literature, referring to the points of A\T� �
T� as vertices. A vertex v is adjacent to a leaf in the foliation if v is an endpoint
of the leaf. The valence of a vertex v is the number of singular leaves which
end at v .

A meridian curve m � T� is a curve which intersects K coherently ph{times
and bounds a disc �m in S3 , with �m \ T� = m. We may assume that
m\A = ; and that m is transverse to the leaves of the foliation on T� . Being
transverse to leaves makes m a closed braid and we orient m so that it has
positive linking number with A. The orientation on m is consistent with the
forward direction of the foliation on T� .

Geometry & Topology, Volume 5 (2001)
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The disc �m is contained in the solid torus V� where @V� = T� . We also assign
an orientation to T� such that the positive side of T� \points" towards V� .
This choice of orientation allows us to make parity assignments to the vertices
and singularities in the foliation of T� . A vertex or singularity is positive if
the orientation of A agrees with the orientation of the positive normal vector
of T� at the vertex or singularity, otherwise it is negative. (We will deal with
meridian curves and discs in Section 5. Their introduction at this point was only
necessary for understanding parity assignments to vertices and singularities.)

Lemma 2.5 Let � � T� be a sub-disc such that @� = γ[� where � � K and
γ is an arc contained in a singular leaf of the foliation. Furthermore, suppose
that int(�) contains exactly one vertex v and no singular points. (See Figure
3.) Then an isotopy of �(� K) across � to a new position which is transverse
to the leaves of the foliation corresponds to a destabilization of the braid K .

v v

foliation/tiling geometric realization
of destabilization

∆ ∆

Figure 3: The vertex v has type (a).

Proof If we split T� along K we produce an annulus having two copies of K
as its boundary. The foliation of this annulus will contain a valence one vertex,
v , and the foliated neighborhood of v will be a type (a) vertex as described
in Section 2.3 of [1]. (See Figure 3.) As in [1], the isotopy of � across �
corresponds to a destabilization of K .

Lemma 2.6 Let � � T� be a sub-disc such that @� = γ+[γ−[�, where γ�
is included in a �{singular leaf of the foliation and where � is a subarc of the
knot K . (See Figure 4.) Suppose that the arcs γ+ and γ− have one endpoint
at a common vertex v1 and that int(�) contains exactly one vertex v0 and
no singular points. Then an isotopy of � through � to �0 corresponds to an
exchange move on the braid K , as illustrated in Figure 1(a).

Geometry & Topology, Volume 5 (2001)
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v0

v1

γ+
γ−

ρ

v0

v1

− +

∆

ρ after
exchange move

Figure 4

Proof Again, we split T� along K to produce an annulus whose boundary
consists of two copies of K . The foliation of this annulus will contain a valence
two vertex, v0 . The foliated neighborhood of v0 (see Figure 4) will correspond
to a type (a,b) vertex as described in Section 2.4 of [1]. As in [1], the isotopy of
� across such a neighborhood corresponds to an exchange move.

2.2 Manipulating the foliation of T�

Two operations, change of foliation and elimination of a valence two vertex,
played an important role in establishing control over the foliation of the torus
in [4]. We now discuss how these two operations are adapted to our present
situation, where we must deal not just with the foliation of the torus T� , but
with the pair (K;T�).

Change of foliation Let R � T� be the topological disc that is closure of
a connected region foliated by b{arcs having common endpoints at vertices
v+; v− � T� . (The subscripts indicate the parity.) Let s1; s2 � R � T� be the
two singularities that are on the boundary of R and assume that their parity
is the same. The existence of such a region R is the central assumption in the
discussion in Section 2.1 of [1]. Speci�cally, Theorem 2.1 of [1] allows the two
singular points to be either bc or bb singularities. Figure 5 shows how the
application of this result from [1] alters the foliation of T� . To adapt the [1]
change of foliation to our present situation we need only check that the presence
of the knot K � T� does not obstruct the change in foliation.

How might K intersect R? We consider an arc � � K \ R. Since K is
transverse to the foliation of T� we know that � is transverse to all of the

Geometry & Topology, Volume 5 (2001)
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R

v+

v−

s1 s2

K for
case 1

K for
case 1

K for
case 2

case 1

case 2

v+

v−

v+

v−

or

v+

v−

s’1

change of
fibration

s’2

s’2

s’2s’1 s’1

Figure 5: Parity of s1 equals parity of s2 . In case 1 there are two possible ways to
change the �bration of H and, thus, the foliation of T� . In case 2 there is only one
way to alter the �bration.

b{arcs of R and is away from the singular and vertex points of R. We can list
the possible cases for a component � � K \R as follows:

(1) The arc � splits the disc R into two discs, one containing the two singular
points and a vertex, and the other containing only one vertex.

(2) The arc � splits the disc R into two discs, each of which contains a vertex
and a singular point.

We recall (see [1]) that there are two possible ways the foliation of R can be
altered. If case 1 occurs then either of these foliation changes is permissible.
(See Figure 5.) If case 2 occurs then only one of the changes in foliation is
possible because only one of the changes results in K still being transverse
to the foliation. Figure 5 illustrates how a case 2 arc � determines the local
change in foliation in R. The proof that these changes in foliation correspond
to braid isotopies of the (K;T�) pair is straight forward, but has numerous
details. We will not repeat the argument in [1]. We will refer to this braid
isotopy (which only alters the foliation of T� in a disc neighborhood of R) as
a change of foliation. The following lemma describes the main features of the
change in foliation that we need:

Lemma 2.7 Let R be the closure of a region foliated by b{arcs such that
there are vertices v+; v− � @R and singularities s1; s2 � @R. Then there

Geometry & Topology, Volume 5 (2001)
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exists a change of foliation such that the valence of these two vertices has been
decreased.

Elimination of valence two vertices We next consider the con�guration in
the left sketch in Figure 6. (For the moment the reader should ignore the arcs
labeled � in Figure 6. They will be referred to in the proof of Lemma 2.8.)

!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!

star( v0)

v0 v2v1

s+

s−

v1

elimination of
vertex v0 

case 1

α  arc

case 2

α  arc

Figure 6: The vertex v0 is a type (b,b) vertex. In the situation where the case 2 � arcs
are absent, after an exchange move, the b{arcs between v0 and v2 are inessential.

Let v0 � T� be a vertex of valence 2. Let star(v0) be the topological disc
which is the closure of the union of all the b{arcs having v0 as an endpoint.
Let � be the parity of v0 then star(v0) contains exactly two additional vertices,
v1 and v2 , which will necessarily have parity −�. By Lemma 3.1 of [1], star(v0)
must contain both + and − singular points. So let s+; s− � star(v0) be the
singular points of positive and negative parity, respectively. In this situation
we have the following lemma.

Lemma 2.8 Let v0 be a valence two vertex, with star(v0) topologically a
disc. Suppose star(v0) contains vertices v1 [ v2 and singularities s+ [ s− .
Then, after an isotopy of K involving only exchange moves, destabilizations
and braid isotopies, we can locally eliminate vertices v0 and v1 (or v0 and v2 )
and singularities s+ and s− in the foliation of T� , as illustrated in the right
sketch in Figure 6. Moreover, away from star(v0) the foliation of T� remains
unchanged.

Proof By Theorem 2.2 of [1], we know that if K \ star(v0) = ; then it is
possible to perform an exchange move on K such that the foliation of T�
remains unchanged (except for a change in the cyclic ordering of the vertices
along A). After the exchange move, the b{arcs of star(v0) will be outermost,
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ie, for b{arc b � star(v0), if b � H� 2 H then b splits o� a sub-disc � � H�

such that int(�) \K = ;. Furthermore, if K \ star(v0) = ; then T� can be
isotopied along �, eliminating v0 and, say, v2 , and the two singularities, s+

and s− . The foliation away from star(v0) remains unchanged, but globally it
has two fewer vertices and two fewer singularities.

How might we eliminate v0 if K\star(v0) 6= ;? As with the change of foliation,
we consider an arc � � K \ star(v0). Since K is transverse to the foliation of
T� we know that � is transverse to all of the b{arcs in star(v0) and does not
intersect the singular points and vertices of star(v0). We list the possibilities
for a component � � K \ star(v0):

(1) The arc � splits the disc star(v0) into two discs, one containing the two
singularities and two of the three vertices, and the other containing only
one vertex. (See Figure 6.)

(2) The arc � splits the disc star(v0) into two discs, one containing v0 and a
single singularity (say s+ ), and the other containing v1 , v2 and s− . (See
Figure 6.)

To deal with case 1, we must in fact consider two situations: there exists b{arcs
of star(v0) that do not intersect K ; and K intersects every b{arc of star(v0).
If some b{arc of star(v0) is not intersected by K then after the exchange move
there will necessarily be b{arcs that are inessential. The situation where K
intersects every b{arc of star(v0) requires a little more work.

Notice that if K intersects every b{arc of star(v0), there is necessarily an arc
γ � @(star(v0)) contained in a singular leaf and having endpoints v1; v2 which
K must intersect incoherently. The topology of T� , thus, forces the existence of
a sub-arc γ0 � γ , a path � � K , and a sub-disc � � T� such that: �\γ = γ0 ;
and � \ K = �. Since � � T� , � inherits a foliation that basically mimics
that of a Seifert disc for the unknot. Theorem 4.3 of [1] allows us to isotop �
through � using exchange moves and destabilizations until K is moved o� γ
and we have an arc � � star(v0) that corresponds to case 2.

Finally, to deal with case 2, notice that the sub-disc containing v0 that � splits
o� has a foliation corresponding to that of a valence one vertex. (See Figure 6.)
This is the con�guration in Lemma 2.5. We can, thus, destabilize K to remove
a case 2 intersection arc.

Geometry & Topology, Volume 5 (2001)
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3 Proof of Theorem 1.1 in the case of a circular fo-
liation on T�

In this section we assume that K is contained in a torus T� that does not
intersect the axis A, ie, T� has a circular foliation. With this assumption our
argument for proving Theorem 1.1 is inductive and we need the following result.

Corollary 3.1 Let K be an exchange reducible knot type. Then C(K; (p; q))
is also exchange reducible.

Proof Let K(p;q) be any closed braid representative of C(K; (p; q)) and T� be
a cabling torus. By Proposition 5.1 we know that if the foliation of T� is a
tiling then through a sequence of exchange moves and destabilizations we can
replace this tiling with a mixed foliation. By Proposition 4.1 we can, through
a sequence of exchange moves and destabilizations, replace a mixed foliation
of T� with a circular foliation. The core of this circularly foliated torus is a
braid representative of the cabling knot K which we call K . By assumption K
represents an exchange reducible knot type.

Now, referring back to Figure 1, we notice that we can alter the destabilizing
move in (b) by replacing the weight of 1 with a weight of p, ie, we think of p
parallel strands instead of 1 strand. Similarly, in (a) we can replace the weight
of 1 on the strands involved in the exchange move isotopy with a weight of
p. Thus, a destabilization of K results in p destabilizations of K(p;q) , and an
exchange move on K results in an exchange move on K(p;q)|the peripheral
torus of K is the cabling torus circularly foliated. By a classical result in [12]
(cf Satz 23.2), once K is of minimal braid index, we will have K(p;q) achieving
its minimal braid index when the cabling torus is circularly foliated.

Now, let U be the unknot. By Theorem 1 of [2], U is exchange reducible.
Then, by Corollary 3.1 C(U; (p1; q1)) is exchange reducible.

Inductively, suppose that

C(� � �C(C(C0; (p1; q1)); (p2; q2)) � � � ; (pi−1; qi−1))

is exchange reducible. Then, again, by Theorem 1 of [2]

C(C(� � �C(C(C0; (p1; q1)); (p2; q2)) � � � ; (pi−1; qi−1)); (pi; qi))

is exchange reducible. Thus, K(P;Q) is exchange reducible and Theorem 1.1 is
established for this special case of the foliation of T� .
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axis

tiled torus containing
braid representative

of the (3,5)−torus knot
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Figure 7

Remark 3.2 The ease with which we are able to prove Theorem 1.1 for this
special case is due to the fact that the core of V� can be canonically chosen as a
closed braid in the complement of A, ie, C � V� can be taken as the union of the
\centers" of the sub-discs in the disc �bers of H that are bounded by c{circle.
The di�culty with the remaining two cases|mixed and tiled foliations|is that
there is no similar canonical choice for the core of V� . In Figure 7, we give an
example of a tiled T� containing the (3; 5){torus knot K(3;5) . This T� can be
seen as the peripheral torus of an unknot that is represented by the union of four
arcs that have their endpoints on A and are contained in disc �bers of H. The
insert in Figure 7 depicts this representation of the unknot|a core of V� . Since
this core intersects A at four points, T� will necessarily intersect A in eight
points, ie four times two. Because of Euler characteristic considerations, the
tiling of T� will then have eight b tiles. Notice that there are several possible
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ways we can �{push this unknotted core o� A so that resulting C is transverse
to H. In particular, it is possible to produce a transverse C such that any b{arc
b � T� \Ht � Ht with b \K(3;5) = ; splits the set C \Ht in Ht , for Ht 2 H.
That is, all of the b{arcs of T� are essential in the complement of C tK(3;5) .
Using an exchange move or destabilization isotopy of C to induce an isotopy
of T� then becomes unworkable. Thus, the key strategy in the remaining two
cases will be to �nd inessential b{arcs on T� in the knot complement that will
enable us to simplify T� .

4 Replacing mixed foliations with circular foliations

In this section we assume that we are given the braid{torus pair (K;T�), and
that the induced foliation on T� satis�es the conclusions of Lemmas 2.1, 2.2
and 2.3. Moreover, we assume that the foliation of T� contains c{circles. Our
goal is to reduce this case to the special case when the foliation contains only
c{circles.

Proposition 4.1 Let T� have a mixed foliation. Then after a sequence of
exchange moves and destabilizations of K and isotopies of T� the foliation of
T� may be assumed to be circular.

Proof Following the discussion in Section 3 of [4], we observe that a singularity
between a b{arc and a c{circle foliates a bc{annulus. Moreover, since a c{
circle must have a bc{singularity both in the forward and backward direction,
these bc{annuli occur in pairs.

If we adjoin two bc{annuli along their common c{circle we will produce an
annular region, W , that has each boundary curve the union of two b{arcs and,
thus, contains two vertices. See Figure 8.

We can cut W open along two new disjoint edges, e and e0 , each having its
endpoints at vertices which are on distinct components of @W , as in the bottom
of Figure 8. We see that W is the union of two be{tiles where the boundary of
a be{tile has two b{arcs and two of the new e{arcs. The number of be{tiles
constructed in a mixed foliation is exactly equal to the number of bc{annuli.
The vertices in the be{tiling still correspond to the points of A \ T� .

The cellular decomposition of T� coming from the be{tiling yields an \Euler
characteristic" formula (equation (1) of [4]). Namely, let V (�; �) be the number
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e’e

b−arcs

b−arcs

W
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of vertices in the be{tiling of T� that is adjacent to � b{arcs and � e{arcs.
Then we have:

2V (2; 0) + 2V (1; 1) + V (2; 1) + V (3; 0) =
1X
i=5

iX
�=[i=2]

(i− 4)V (�; i− �) (1)

where both the left hand side and the right hand side are non-negative.

Referring to the discussion in [4] we recall that V (1; 1) = V (2; 1) = 0, since
both a be{vertex (respectively, bbe{vertex) cannot be geometrically realized.
A be{vertex (respectively, bbe{vertex) is one that is cyclically adjacent to
b{arcs and then e{arcs (respectively, b{arcs and then, after a singularity, to
b{arcs and then e{arcs ). This vertex notation generalizes in the obvious
manner. If V (3; 0) 6= 0 then we have a bbb{vertex. Such a vertex, v , must
be adjacent to singular leaves of both positive and negative parity (cf Lemma
3.1, [1]). Thus, since v is of odd valence, star(v) will contain a sub-disc region
satisfying the assumptions of Lemma 2.7. We can then perform the change of
foliation decreasing the valence of v so that it becomes a bb{vertex.

If V (2; 0) 6= 0 then there exists a vertex, v , that is a bb{vertex. star(v) will
satisfy the assumption of Lemma 2.8. After possibly some sequence of exchange
moves and destabilizations, we can simplify the tiling of T� so that V (2; 0) = 0.

Since we can now assume the left side of equation (1) is zero, we can assume
that the only possible vertices in the tiling of T� are bebe{vertices. Figure 9
illustrates the foliation of the annular neighborhood around such valence four
vertices. Notice that the c{circles must be intersected coherently ph{times
by K . If K does intersect all of the b{arcs of this local foliation then there
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will exist a sub-disc satisfying the assumptions of Lemma 2.5. We can then
destabilize K so that, as in Figure 9, there will be b{arcs that K does not
intersect. An innermost such annulus (one having consecutive vertices on A)
will then have an inessential b{arc. We may eliminate it by an isotopy of
T� .

destabilization

K K

∆

Figure 9: K enters into the foliated region and intersects a singular leaf twice. This
allows for a destabilization of K . The shaded region � corresponds to the � of Lemma
2.5.

5 Replacing tilings with mixed foliations

As in the previous section, we start by assuming that we are given the braid{
torus pair (K;T�) such that the induced foliation on T� satis�es the conclusions
of Lemmas 2.1, 2.2 and 2.3. But, in this section, we assume that the foliation
of T� contains no c{circles. Our goal in this section is to prove that after
a sequence of exchange moves, braid isotopies and destabilizations of K , and
isotopies of T� , we may assume that the foliation of T� can be assumed to be
mixed.

Recall m � T� is a meridian curve and �m � V� is a meridian disc. Since �m

is a spanning surface having a closed braid boundary, the induced foliation on
the disc �m satis�es the conclusion of Theorem 1.1, part (i), of [1]. We review
the most important features of this foliation, all of which are developed in detail
in [1]. If we consider �m \H� � H� , where H� is a generic disc �ber, we see
that this intersection contains two types of arcs: the �rst, called a{arcs, have
one endpoint on A and one endpoint on m; the second, called b{arcs, have
both endpoints on A. The singularities are of three types: aa{singularities
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(saddle-point singularities formed by two a{arcs); ab{singularities (saddle-
point singularities formed by an a{arc and a b{arc); and bb{singularities
(saddle-point singularities formed by two b{arcs). Note that the orientation
on m induces an orientation on �m , and that this allows us to assign parities
to the vertices (points in �m\A) and singularities in the foliation in the same
manner as we did in Section 2 for T� .

The argument in this section will involve \simplifying", �rst, the pair (K;T�)
then, second, the triple (K;T�;m) and, �nally, the quadruple (K;T�;m;�m).
Our goal is to prove the following proposition.

Proposition 5.1 Let (K;T�) be a knot{torus pair such that the foliation of
T� is a tiling. Then, after a sequence of exchange moves and destabilizations
of K , the foliation of T� may be assumed to be mixed.

5.1 The knot{torus pair

In this subsection we de�ne the complexity of (K;T�) to be �(K;T�)=(n1; n2),
where n1 is the braid index of K and n2 is the number of vertices in the
foliation of T� . We use lexicographical ordering on the 2{tuples (n1; n2) to
give an ordering on �(K;T�).

Following the discussion in Section 2 of [4], we recall that the foliation of T�
(absent of c{circles) yields a tiling of T� by bb{tiles. This tiling in turn gives
us a cellular decomposition of T� and, thus, an \Euler characteristic" formula
(compare with equation (1) of [4]). Let V (�) be the number of vertices in the
bb{tiling of T� that are adjacent to � b{arcs. We have:

2V (2) + V (3) = V (5) + 2V (6) + 3V (7) + � � � (2)

where both the left hand side and the right hand side are non-negative.

If V (3) 6= 0 then we have (as in [4]) a bbb{vertex, v . Since star(v) must
contain both positive and negative singularities (see Lemma 3.1 of [1]), it must
contain a sub-disc region satisfying the assumptions of Lemma 2.7. After a
change of foliation we can assume that the valence of v is two. We can then
apply the procedure in Lemma 2.8 to reduce n2 and, thus, �(K;T�).

If V (2) 6= 0 then we can apply the procedure in Lemma 2.8 straight away to
reduce �(K;T�). After some number of changes of these two types we may
assume that the LHS of Equation (2) is zero. But then the RHS is too. We
can conclude that the only possibility is that V (4) is non-zero. Moreover, if
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v � T� is a bbbb{vertex then the four singular leaves which intersect at v
are +;−;+;− in that cyclic order. (Otherwise, a change of foliation could be
performed to reduce the valence of v to three.) The salient features of this
standard tiling are: all vertices of T� are valence four; the parity pattern on the
tiling is a \checkerboard" pattern; and all b{arcs are essential. The following
proposition summarizes the above discussion.

Proposition 5.2 Let (K;T�) be a knot{torus pair where the foliation of T�
is a tiling. If the tiling of T� is non-standard then, through the use of exchange
moves, we may replace the knot{torus pair with (K 0;T 0�) such that T 0� has
a foliation that is either a standard tiling or a mixed foliation. Moreover,
�(K 0;T 0�) < �(K;T�).

Next, we de�ne four graphs, G+;+ , G+;− , G−;+ and G−;− in T� . The vertices
of G�;� are the vertices of T� having parity � and the edges of G�;� are sub-
arcs of singular leaves which join the two � vertices in the bb{tiles having a
singularity of parity �. Notice that the de�nition of these graphs forces G+;+

(G+;−) to be disjoint from G−;− (respectively, G−;+). Moreover, the parity
checkerboard pattern to the standard tiling implies that each vertex of any of
the four graphs is adjacent to exactly two graph edges. Thus, each component
of G�;� is a simple closed curve (scc) on T� which, by Lemma 3.8(i) of [1], is
also homotopically non-trivial on T� . (For a more complete analysis of G�;� ,
see Section 3 of [1].)

Lemma 5.3 Let C � T� be a curve such that C 2 fK;mg. Then we can apply
either a destabilization or an exchange move to C in the following situations.

(a) Suppose that as C is traversed, a sub-arc � � C has the following se-
quential intersections with our four graphs: G�;�!G−�;−�!G�;−�!G−�;−�
!G�;� . Then we can destabilize C along �.

(b) Suppose that as C is traversed, a sub-arc � � C has the following se-
quential intersections with our four graphs: G�;�!G−�;−�!G�;−�!G−�;� .
Then C admits an exchange move along �.

Proof Referring to Figure 10(a), we see that a sequential intersection pat-
tern G�;�!G−�;−�!G�;−�!G−�;−�!G�;� implies the existence of a sub-disc in
T� − C satisfying the assumptions in Lemma 2.5. Conclusion (a) follows.

Referring again to Figure 10(b), we observe that a sequential intersection pat-
tern G�;�!G−�;−�!G�;−�!G−�;� implies the existence of a sub-disc in T� − C
satisfying the assumptions in Lemma 2.6. Conclusion (b) follows.
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Figure 10: In (a) the intersection pattern is G−;−!G+;+!G−;+!G+;+!G−;− . In
(b), the intersection pattern is G−;−!G+;+!G+;−!G−;+ .

Lemma 5.4 Let C � T� be a curve such that C 2 fK;mg. If C intersects a
component of G�;� incoherently then, after a sequence of exchange moves, we
can reduce the braid index of C using a destabilization.

Proof Suppose that C intersects G+;+ incoherently. Then there exists sub-
arcs γ � G+;+ and � � C and a sub-disc � � T� such that @� = γ [ �.
Without loss of generality, we can assume that int(�) \ C = ;. Now, notice
that the standard tiling of T� forces the existence of a sub-arc �0 � � which
satis�es the sequential intersection pattern (a) or (b) of Lemma 5.3. Moreover,
it can be assumed that the existence of the type (a) or (ab) vertex from the
proofs of Lemmas 2.5 and 2.6 (which the intersection sequences of Lemma 5.3
invoke) are contained in �.

If the sequence in Lemma 5.3(a) occurs then we immediately have the conclusion
of our lemma. If the sequence in Lemma 5.3(b) occurs then, after performing the
exchange move on �0 , we will again have sub-arcs γ and �. But, they now bound
a sub-disc �0 that has fewer vertices in its induced foliation than �. Iterating
this procedure we conclude that at some point � must have an intersection
sequence with the graphs that corresponds to the sequence in Lemma 5.3(a).
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We now focus on understanding how K is contained in the foliation of T� .
Speci�cally, we have the following application of Lemma 5.4.

Proposition 5.5 Let (K;T�) be a knot{torus pair where T� has a standard
tiling. Then there exists a knot K 0 � T� that is transverse to the foliation
of T� and is obtained from K through a sequence of exchange moves and
destabilizations, with �(K 0;T�) � �(K;T�) at every change, such that K 0

coherently intersects components of the graphs G�;� and G�;� .

Proof If K does not intersect graph components coherently then, after re-
peated application of Lemma 5.4, we can assume that K has been replaced by
K 0 satisfying the conclusion of the proposition. If any of the b{arcs of T� are
now inessential, we perform the necessary isotopy of T� to remove them. The
new foliation of T� will have fewer vertices and singularities. We then repeat
the applications of Lemmas 2.7 and 2.8, emulating the argument at the begin
of this section, so that V (2) and V (3) of equation (2) are again zero and the
tiling of T� is checkerboard by the singularity parity values. All operations on
K and the tiling of T� are non-increasing on the complexity measure.

For a scc C � T� transverse to the foliation of T� , let SC � T� be the closure
of the union of all the b{arcs that C intersects in the foliation of T� . We call
SC the b{support of C . The de�nition of b{support implies a useful fact about
the \width" of SK : If γ � SK is properly embedded (that is, (int(γ); @γ) �
(int(SK); @Sk), which is the union of b{arcs) then γ is in fact a single b{arc
which is non-parallel to the boundary of SK . We will refer to this fact as (?).

Next, we de�ne two modi�cations of the b{support of C .

Exchange move with type-I support Let v�; v−� � @SK be two vertices
such that if b � SK is a b{arc having vo as an endpoint then vi is also an
endpoint of b. More descriptively, these conditions correspond to having vo
as an outside corner and vi is an inside corner of @SK . For each point of
K \ b we can �nd an arc neighborhood b � γ � K such that γ has the
sequential intersection pattern of G−�;−�!G�;�!G�;−�!G−�;� as depicted in
Figure 10(b). The alteration in the b{support that results from performing
the exchange move in Figure 11 to each γ arc intersecting b is referred to as
an exchange move with type-I support.

Exchange move with type-II support Let vt�; v
1
−�; v

2
−�; v

3
−� � @SK be four

vertices such that if b � SK is a b{arc having vt� as an endpoint then its other
b endpoint is contained in fv1

−�; v
2
−�; v

3
−�g. Let b1; b2; b3 � @SK be three b{arcs
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Figure 11: The alteration in SK from left to right corresponds to an exchange move
with type-I support. The vertex labeled vo is an outside vertex and the vertex labeled
vi is an inside vertex. The shaded region is a portion of SK .

such that vi−� is an endpoint of bi , 1 � i � 3. Assume the i superscript is
in correspondence with the angular order of the b{arcs around the vertex vt� .
Descriptively, the vertex vt� is at a tee vertex of SK . The singular leaf that is
common to vertices vt�; v

1
−�; v

2
−� has its singular point on @SK . This singular

point, st , is a tee singularity of SK . For any point of K \ b2 we can �nd an
arc neighborhood b � γ � K such that either (path 1) γ intersects in order
b1; b2; b3 , or (path 2) γ intersects in order b1; b2; b0 where b0 is a b{arc having
v2
−� as an endpoint but not v� . If only path 1 occurs then v2

−� is a type of corner
vertex of @SK and we have the situation described in the exchange move with
type-I support. So assume that both path 1 and path 2 γ{arcs occur. Since the
sequential intersection pattern for path 1 γ{arcs corresponds to that of Figure
10(b), we can perform a sequence of exchange moves to K until v� no longer
exists as a tee of SK . Figure 12 shows the alternation to SK due to such a
sequence of exchange moves. We refer to this alteration as an exchange move
with type-II support.

A few �nal remarks about exchange moves with types I and II support will
be useful. First, the four possible states of a �xed vertex on @SK are: inside
corner; outside corner; tee; and null, ie neither corner nor tee. Second, suppose
as we transverse a boundary component c � @SK we encounter sequentially
vertices v1; v2; v3 . Assume v2 is an outside corner. If v1 (or v3 ) has a null
state then after an exchange move with type-I support at v2 , we will have v1

(or v3 ) being an outside corner. If v1 (or v3 ) is an inside corner then after
an exchange move with type-I support at v2 it has a null state. If v1 (or v3 )
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Figure 12: The alteration in SK from left to right corresponds to an exchange move
with type-II support. The vertex labeled vt� is a tee vertex and the singularity labeled
st is a tee singularity. The shaded region indicates a portion of SK .

is a tee then after an exchange move with type-I support at v2 it has a null
state. Notice if K is coherent with respect to G�;� neither v1 nor v3 may be
an outside corner. Now, assume v2 is a tee vertex. If v1 and v3 states are null
then after an exchange move with type-II support at v2 , one vertex, say v1 ,
will be a tee vertex and the other vertex, v3 , will be an inside corner vertex. If
v1 is an outside corner vertex then after an exchange move with type-II support
at v2 , v1 state will be null. If there is a tee singularity being v1 and v2 then
after an exchange move with type-II support at v2 , v1 will become a tee vertex.
Notice by the assumption that K is coherent with respect to G�;� we cannot
have either v1 or v3 being an inside corner or tee vertex.

We now consider the possible subsurface types the b{support might assume.

Lemma 5.6 Let (K;T�) be a knot{torus pair where T� has a standard tiling.
Assume that K intersects all components of the graphs G�;� and G�;� co-
herently and that the b{support of K is an annulus in T� . If @Sk contains a
corner then there exists a (K 0;T 0�) that is obtained from (K;T�) by a sequence
of exchange moves such that �(K 0;T 0�) < �(K;T�).

Proof First, notice that if v � @SK is an outside or inside corner and the
unique b{arc in SK that has v as its endpoint is an outermost essential arc,
then, after an exchange move with type-I support at v , this b{arc will become
inessential.
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Second, suppose that as we transverse a boundary component c � @SK we
encounter sequentially vertices v1; v2; � � � ; vl , where vl is the only corner vertex
in our list. Furthermore, suppose that v1 is adjacent to an outermost essential
b{arc, b � SK . We can then \walk" the corner at vl up to v1 : perform an
exchange move with type-I support which will result in vl−1 being a corner;
and iterate this process along c until v1 is a corner. Finally, we perform an
exchange move with type-I support at v1 to make b inessential.

Removing the inessential b{arc will produce a new knot{torus pair having
decreased complexity.

Lemma 5.7 Let (K;T�) be a knot{torus pair where T� has a standard tiling.
Assume that K intersects all components of the graphs G�;� and G�;� co-
herently and that c � @SK is a scc which bounds a disc �c � T� − int(SK).
If j�cjv is the number of vertices in the interior of �c then there exists an
exchange move with special support that will reduce j�cjv .

Proof Since c is the union of edge-paths in the graphs G�;� and since the
tiling of T� is standard (speci�cally, all vertices are valence four), we know
that c must contain either an inside corner or a tee vertex. If c contains an
inside corner then after an exchange move with type-I support, the number of
vertices contained in the interior of �c will decrease. If c contains a tee vertex
then after an exchange move with type-II support, again, the number of vertices
contained in the interior of �c will decrease.

Proposition 5.8 Let (K;T�) be a knot{torus pair where T� has a standard
tiling and assume that K coherently intersects all components of the graphs
G�;� and G�;� . Then there exists a knot K 0 � T� that is transverse to the
foliation of T� and is obtained from K through a sequence of exchange moves,
with �(K 0;T 0�) = �(K;T�), such that either:

(i) SK 0 is an annulus with @SK 0 = c1 [ c2 where c1 is a component of G�;�
and c2 is a component of G−�;−� ;

(ii) SK 0 is a torus-minus-a-disc with @SK 0 = �1 [ �1 [�2 [ �2 where �1 and
�2 are arcs in G�;� and �1 and �2 are arcs in G�;−� . In particular, @SK
does not contain any corner vertices.

Proof Since SK � T� and T�−K is an annulus, we can distinguish the cases
for SK topologically as being either an annulus, an annulus minus discs, or a
torus minus discs.
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(i-a) If SK is an annulus then, by Lemma 5.6 we have the annulus in (i).

(i-b) If SK is an annulus minus discs let c � @SK be a component that bounds
a disc �c � T� − int(SK). By Lemma 5.7 we can reduce the number of
vertices contained in int(�c) iteratively until we eliminate a component
of @SK . Thus, an annulus minus discs can be reduced to an annulus.
Appealing to Lemma 5.6 again, we reduce to the annulus in (i).

(ii) If SK is a torus minus discs, we can apply the argument above to re-
duce the number of components of @SK to one component. If this single
boundary component contains a corner then, as in the proof of Lemma
5.6, we can \walk" that corner past any outermost essential b{arc in SK .
So SK will be a torus minus a disc as described in (ii).

5.2 The knot, torus, meridian triple

We now consider the triple (K;T�;m) where m � T� is a meridian curve that
intersects K coherently ph{times. We expand our measure of complexity to be
the 3{tuple �(K;T�;m) = (n1; n2; n3) where n3 is the braid index of m and,
as before, n1 is the braid index of K and n2 is the number of vertices in the
foliation of T� .

Proposition 5.9 Let (K;T�;m) be a knot{torus{meridian triple where the
pair (K;T�) satis�es the conclusion of Proposition 5.5. Then there exists a
meridian curve m0 � T� that is transverse to the foliation of T� and is obtained
from m through a sequence of exchange moves and destabilization such that m0

intersects all components of the graphs G�;� and G�;� coherently . Moreover,
�(K;T�;m0) � �(K;T�;m).

Proof We model our proof on the proof of Proposition 5.5. If m does not in-
tersect graph components coherently then, after repeated application of Lemma
5.4, we can assume that m has been replaced by m0 satisfying the conclusion
of the proposition. Notice that if m is destabilized using the isotopy in Figure
10, this isotopy will occur away from K . Moreover, if m is isotopied through a
Figure 10 exchange move then m will still intersect K ph{times. All operations
on m are non-increasing on the complexity measure.

Let v+ and v− be two vertices in the foliation of T� which are endpoints of a
common b{arc. Consider the rectangular region in T� that is the closure of
the union of all the b{arcs that have v+ and v− as their endpoints. We shall
call such a region a b{rectangle.
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We introduce the notation of a parallel push-o� of a meridian curve m. Specif-
ically, we can choose a scc m0 � T� such that: there exists an annulus A � T�
with @A = m [m0 ; the induced foliation on A has only aa{singularities; and
each vertex in the foliation of A is adjacent to two singular leaves. See Figure
13. The oriented arc m is isotopic on T� to the oppositely oriented arc m0 .
We use the notation Sm for the b{support of the meridian curve m.
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− − − A−annulus

m

m’

Figure 13: The shaded region between m and m0 is A. Notice that the induced
foliation of A has only aa{singularities.

Proposition 5.10 Let (K;T�;m) be a knot{torus{meridian triple satisfying
the conclusions of Propositions 5.5, 5.8 and 5.9. Then we can assume that
SK \ Sm is a union of disjoint b{rectangles.

Proof By Lemma 5.6, we know that SK is either an annulus or a torus minus
a disc. Moreover, we also know by the same lemma that @SK has no corners.

Using the same argument that was used in the proof of Lemma 5.6, we can
assume that each boundary component of Sm has at most one outside (inside)
corner.

If SK is an annulus of the type-(ii) in Proposition 5.8 and @Sm has no corners
then we immediately have the conclusion of the proposition. If @Sm has any
corners then we can \walk" these corners (as in the proof of Lemma 5.6) so that
the corners of @Sm are away from SK \Sm . After this repositioning, SK \Sm
will be disjoint b{rectangles.

It is easily seen that if SK [ Sm is not a disjoint union of b{rectangles then
SK[Sm0 will be a disjoint union of b{rectangles where m0 is a parallel push-o�
of m.
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5.3 The knot, torus, meridian and meridian-disc

We now consider the quadruple (K;T�;m;�m) where �m is a meridian disc
which m bounds inside the solid torus V� which T� bounds. Recall that the
�bration H induces a foliation on �m . Again, we expand our measure of
complexity to be the 4{tuple �(K;T�;m;�m) = (n1; n2; n3; n4) where n4 =
jA \�mj and n1 , n2 and n3 are as before. If n4 = 0 then the foliation of T�
contains c{circles and we can appeal to the arguments in Section 4.

Before we proceed further it will be useful to review the induced foliation on
�m . Again, a comprehensive reference is [1]. When n4 = 1, �m is radially
foliated by a{arcs adjacent to the unique vertex. When n4 > 1, the singular
foliation of � contains the vertices �m \A and saddle singularities of three
possible types|aa{, ab{ and bb{singularities. Thus, �m is tiled by aa, ab
and bb tiles. Since m induces on �m an orientation, we can assign a parity to
each vertex and singularity using the same assignment scheme employed in the
foliation of T� . Having a parity assignment on vertices and singularities allows
us to de�ne graphs G�;� and G�;� as before with the proviso that we treat m
as if it were a negative vertex. (This implies that G−;− and G−;+ will contain
edges having endpoints on m.)

Now consider how the foliations of �m and �m0 are related to one another,
when m0 is a parallel push-o� of m. Let A � T� be the annulus in Figure
13 that has m and m0 as its boundary curves. Notice that the core circle
in A that is contained in a union of all of the singular leaves in the induced
foliation of A is a union of sub-arcs of the graphs G�;� � T� . Similar in flavor
to the arguments in Proposition 5.8, we can produce a sequence of exchange
moves by applying Lemma 5.3 so that either @Sm contains no corners, or each
component of @Sm contains exactly one inside corner and one outside corner.
If @Sm contains no corners then the foliation of A will have singularities all of
the same parity. If each component of @Sm has exactly one inside and outside
corner then the core circle in A is the union of an arc in G�;+ and an arc in
G�;− .

Now the foliation of �m0 is simply the foliation of �m [m A. Speci�cally, for
each singularity in s 2 A � T� there is a singularity t 2 G+;� � �m0 (coming
from the \A portion" of �m) that is in a regular neighborhood of s on the
negative side of the oriented T� . It is easily checked by appealing to the Ht{
sequence of T� [�m � H that if s is a positive (negative) singularity then t
is the singularity that occurs immediately before (after) s. (See Figure 14.) If
@Sm contains no corners then the G�;� of �m0 contains a loop|the core circle
coming from A. But by Lemma 3.8 of [1] such a loop cannot exist. So we
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Figure 14: In (a) we have the foliation of �m illustrated in the special case where
l contains two negative and six positive singularities, and there is a single negative
vertex. In (b) we have the corresponding path m in a standard tiling of T� . The
arrowheads are identi�ed to form a scc. The labels ft1; � � � ; �8g of the singularities
in (a) show the sequential correspondence to the singularities in (b) with the labels
fs1; � � � ; s8g .

are left having �m0 containing a loop (which is the core circle of A � �m0 )
that is the union of an arc in the graph G+;+ � �m0 and an arc in the graph
G−;− � �m0 . This loop contains all of the positive vertices of �m0 . As noted
above, a singularity s 2 @Sm will in H sequentially correspond to a singularity
t 2 l . An application of the argument in Lemma 3.8 (ii) allows us to conclude
this discussion of the foliation of �m0 with the following summarizing result.

Lemma 5.11 Let (K;T�;m;�m) be a quadruple where the triple (K;T�;m)

Geometry & Topology, Volume 5 (2001)



On iterated torus knots and transversal knots 679

satis�es the conclusions of Propositions 5.5, 5.8, 5.9 and 5.10. We can assume
that the initial foliation of �m satis�es the following conditions.

(a) There are only ab{singularities.

(b) There exists a closed loop l that is the union of an arc in G+;+ � �m

and an arc in G+;− � �m .

(c) When n4 = 3, there is a single negative vertex v− . When n4 > 3, there
is a negative vertex v− adjacent to two singularities of common parity
that are consecutive on l .

Moreover, the singularities contained in each component of @Sm are in one-to-
one correspondence with, and in H sequentially correspond to, the singularities
contained in l . (See Figure 14.)

We now use this initial tiling of �m to reduce the complexity of the quadruple
(K;T�;m;�m). Notice that the number of singularities in the loop l � �m

is naturally two or greater. The next lemma shows us that when l contains
exactly two singularities the foliation of a tiled T� must have an inessential
b{arc.

Lemma 5.12 Let (K;T�;m;�m) be a quadruple, where the triple (K;T�;m)
satis�es the conclusions of Propositions 5.5, 5.8, 5.9, 5.10 and 5.11. If n4 = 3
then the foliation of T� has an inessential b{arc.

Proof If n4 = 3 then l must have contained one positive and one negative
singularity. Thus, referring to the terminology of [4], T� must be a type k
torus. A type k torus embedding has the property that a meridian curve on
T� can be represented by the union of two b{arcs, each being outermost in a
disc �ber of H. Since K can only intersect one of these two b{arcs, T� must
contain an inessential b{arc. (Refer back to Remark 3.2 and Figure 7 for an
example of a type k torus.)

We next deal with the case where l contains more than two singularities.

Lemma 5.13 Let (K;T�;m;�m) be a quadruple where the triple (K;T�;m)
satis�es the conclusions of Propositions 5.5, 5.8, 5.9, 5.10 and 5.11. If n4 > 3
then there exists an isotopy of T� such that n2 is reduced.
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Proof If n4 > 3 then we employ the negative vertex v− in condition (c) of
Lemma 5.11. Figure 15(a) illustrates this situation when the parity of these two
singularities is positive. In Figure 15(a) these singularities are labeled ti and
ti+1 . The common positive vertex that is adjacent to both of their associated
singular leaves is v+ . A regular neighborhood of the portion of m that contains
endpoints of a{arcs adjacent to v+ is labeled γ . If we look at the image of γ in
the foliation of T� we see that γ intersects a positive singular leaf containing
the singular point si associated to ti ; then a negative singular leaf; then another
positive singular leaf containing the singular point si+1 associated to ti+1 . In
the Ht{sequence of �m[T� we know by the discussion in the proof of Lemma
5.11 that ti occurs immediately before si and ti+1 occurs immediately before
si+1 .

By Proposition 5.10, there are now three possibilities for the arc γ : (1) γ\K =
;; (2) γ intersects the singular leaf belonging to si �rst, then the negative
singular leaf and then K ; or (3) γ intersects the singular leaf belonging to si
�rst, then intersects K some number of times, and then intersects the negative
singular leaf.

If (3) occurs we replace m with m0 , altering �m0 so that its foliation again
satis�es the initial condition foliation of Lemma 5.11. This produces a new γ
which corresponds to possibility (2). Now notice in the situation of (2) we can
isotopy K in T� so that K intersects m between the time m crosses the ti+1

singular leaf and the time it crosses the si+1 singular leaf. Thus, we can assume
that γ \K = ;.
Since ti and ti+1 are of the same parity and adjacent to the unique negative
vertex v− in �m , we can perform a change of foliation. (This is an application
to the foliation of �m of the alteration in Figure 5.) Figure 16(a) show how
this change of foliation results in a type (a) vertex, v+ � �m , which locally
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has the same foliation as that in Figure 3. The boundary of this valence 1
vertex contains γ0 � m. (See Figure 16(a).) We now destabilize �m through
this valence 1 vertex and, since γ0 \ K = ;, we can drag T� along through
this destabilization of m without altering the embedding of K . Figure 16(b)
illustrates how the foliation of T� is altered by this destabilization of m. Notice
that two new vertices are introduced into the foliation of T� , one positive and
one negative, and that both of these new vertices are valence 2. We can now
appeal to Figure 6 to eliminate four vertices of T� . This reduces n2 and, thus,
the complexity of our quadruple.

Finally, it should be noted that we have made a choice of the parity of
fti; ti+1; si; si+1g for reasons having to do with the clarity of the expository.
This does not reduce the generality of the argument.

We have proved Proposition 5.1 and, thus, Theorem 1.1.
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