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330 Henry Cohn

1 Introduction

In [4], Cohn and Elkies introduce linear programming bounds for the sphere
packing problem, and use them to prove new upper bounds on the sphere
packing density in low dimensions. These bounds are the best bounds known
in dimensions 4 through 36, and seem to be sharp in dimensions 8 and 24,
although that has not yet been proved. Here, we continue the study of these
bounds, by giving another derivation of the main theorem of [4]. We then prove
an optimality theorem of Gorbachev [8], and outline in some conjectures how
the proof techniques should apply more generally.

We continue to use the notation of [4]. See the introduction of that paper for
background and references on sphere packing.

The main theorem Cohn and Elkies prove is the following:

Theorem 1.1 Suppose f : Rn ! R is a radial, admissible function, is not
identically zero, and satis�es the following two conditions:

(1) f(x) � 0 for jxj � 1, and

(2) bf(t) � 0 for all t.

Then the center densities of n{dimensional sphere packings are bounded above
by

f(0)

2n bf(0)
:

Here, the Fourier transform is normalized by

bf(t) =
Z
Rn
f(x)e2�iht;xi dx;

and admissibility means that there is a constant " > 0 such that both jf(x)j
and j bf(x)j are bounded above by a constant times (1+ jxj)−n−" . More broadly,
we could in fact take f to be any function to which the Poisson summation
formula applies: for every lattice � � Rn and every vector v 2 Rn ,X

x2�

f(x+ v) =
1

vol(Rn=�)

X
t2��

e−2�ihv;ti bf(t):

However, the narrower de�nition of admissibility is easier to check and seem-
ingly su�ces for all natural examples.

Section 2 gives another proof of Theorem 1.1, for n > 1. This proof is not
as simple as the one in [4], but the method is of interest in its own right, as
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are some of the intermediate results. Section 3 proves Gorbachev’s theorem [8]
that certain admissible functions (those constructed in Proposition 6.1 of [4],
or independently by Gorbachev) are optimal, among functions whose Fourier
transforms have support in a certain ball. Finally, Section 4 discusses the dual
linear program, and puts the techniques of Section 3 into a broader context.
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2 Positivity of theta series coe�cients

We will prove Theorem 1.1 using the positivity of the coe�cients of the theta
series of lattices. For each lattice, the theta series of its dual must have posi-
tive coe�cients, and these coe�cients are some transformation of those for the
original lattice. This puts strong constraints on the theta series of a lattice,
which we exploit below. For simplicity, we will deal only with the case of lat-
tice packings, but everything in this section applies to all sphere packings, by
replacing the theta series of a lattice with the average theta series of a periodic
packing (see [5, page 45]). Also, for technical reasons we will deal only with the
case n > 1, which is not a serious restriction as 1{dimensional sphere packing
is trivial.

Unfortunately, carrying this program out rigorously involves dealing with a
number of technicalities. If one simply wants an idea of the overall argument,
without worrying about rigor, one can follow this plan: Ignore Lemma 2.4 and
all references to Ces�aro sums, and assume that all Laguerre series converge.
Ignore the uniformity of convergence in Lemma 2.6 (in which case the proof
becomes far simpler). Ignore the justi�cation of interchanging the sum and
integral in Lemma 2.7. Following this plan will of course not lead to a rigorous
proof, but it may make the underlying ideas clearer.
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332 Henry Cohn

Before going further, we need a lemma about Laguerre polynomials. Let L�k be
the Laguerre polynomial of degree k and parameter � > −1. These polynomials
are orthogonal with respect to the weight x�e−x dx on [0;1).

Lemma 2.1 For every non-negative integer k , � > −1, and y 2 R, we have

(−1)k

k!
dk

duk

�
u−�−1e−y=u

�
= u−�−1−ke−y=uL�k (y=u):

Proof This is easily proved by induction, using standard properties of La-
guerre polynomials (see Section 6.2 of [1], or Sections 4.17{4.24 of [10]).

Suppose � � Rn is a lattice, and de�ne a measure � on [0;1) consisting of a
point mass at x for each vector in � of norm x, where the norm of v is hv; vi.
The purpose of � is to allow us to sum over all lattice vectors without having
to index the sum in our notation; instead, we simply integrate with respect to
�. Although � depends on �, for simplicity our notation does not make that
dependence explicit.

The key positivity property of � is the following lemma:

Lemma 2.2 For all y > 0 and all non-negative integers k ,Z 1
0

L
n=2−1
k (xy)e−xy d�(x) � 0:

Proof The theta series of � is given by

��(z) =
Z 1

0
ei�xz d�(x);

and it follows from the Poisson summation formula that the theta series of the
dual lattice �� is given by

���(z) = vol(Rn=�)
�
i

z

�n=2
��

�
−1
z

�
:

(See equation (19) in [5, page 103].)

It will be more convenient for us to work with the variable y given by y = −i�z .
Let T (y) = ��(z), so that

T (y) =
Z 1

0
e−xy d�(x):

Then up to a positive factor, the theta series of �� is given by y−n=2T (�2=y).
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We know that y−n=2T (�2=y) is a positive linear combination of functions e−cy

with c � 0, because it is the theta series of a lattice (times a positive constant).
Hence, its successive derivatives with respect to y alternate in sign. We have

y−n=2T (�2=y) =
Z 1

0
y−n=2e−�

2x=y d�(x);

from which it follows using Lemma 2.1 that

(−1)k

k!
dk

dyk

�
y−n=2T (�2=y)

�
=
Z 1

0
y−n=2−ke−�

2x=yL
n=2−1
k (�2x=y) d�(x):

(Di�erentiating under the integral sign, which really denotes a sum, is justi�ed
by uniform convergence of the di�erentiated sum; see Theorem 7.17 of [13].)
Now the change of variable y $ �2=y shows us thatZ 1

0
L
n=2−1
k (xy)e−xy d�(x) � 0;

as desired.

When we use only the fact that the derivatives of y−n=2T (�2=y) alternate in
sign, we do not lose much information|by a theorem of Bernstein (see Section
12 of Chapter IV of [22]), this property characterizes functions of the formZ 1

0
e−xy d�(x)

for some measure � on [0;1). Also, it is not surprising that the inequalities in
Lemma 2.2 occur for all scalings y , because so far our setup is scale-invariant.

If the shortest non-zero vectors in � have length 1 (that is, � leads to a packing
with balls of radius 1=2), then the center density of the lattice packing given
by � equals

(4�)−n=2 lim
y!0+

yn=2T (y):

The proof is as follows. The relationship between the theta series of �� and �
is

T��(y)
2n vol(Rn=�)

= (4�)−n=2
�
�2

y

�n=2
T�

�
�2

y

�
:

As we let y ! 1, the right hand side becomes the limit above, and the left
hand side tends to 1=(2n vol(Rn=�)), which is the center density.

Using Lemma 2.2, we can bound the center density. First, we need a de�nition
and a lemma.

Geometry & Topology, Volume 6 (2002)



334 Henry Cohn

De�nition 2.3 A function f : [0;1) ! R has the �{SILP property (\scale-
invariant Laguerre positivity") if the following conditions hold:

(1) f is continuous and for some " > 0 and C > 0, we have

jf(x)j � C(1 + jxj)−�−1−"

for all x, and
(2) for every y > 0, the Laguerre seriesX

j�0

aj(y)L�j (x);

for x 7! f(x=y) has aj(y) � 0 for all j .

Condition (1) is merely a technical restriction; condition (2) is the heart of the
matter. Notice that the orthogonality of the Laguerre polynomials implies that

aj(y) =

R1
0 f(x=y)L�j (x)x�e−x dxR1

0 L�j (x)2x�e−x dx
=

R1
0 f(x=y)L�j (x)x�e−x dx

Γ(j + �+ 1)=j!
:

We make no assumption about convergence for the Laguerre series in De�ni-
tion 2.3. However, the following analogue of Fej�er’s theorem on Fourier series
holds. It is a simple consequence of results in [20]. We could also make use
of [16] to prove a marginally weaker result (which would still su�ce for our
purposes).

Lemma 2.4 Let � � 0, and let f : [0;1)! R be an �{SILP function. Then
for all k > �+ 1=2, the (C; k) Ces�aro means�

k +m

m

�−1 mX
j=0

�
k +m− j
m− j

�
aj(y)L�j (x)e−x=2

of the partial sums of the seriesX
j�0

aj(y)L�j (x)e−x=2

converge uniformly to f(x=y)e−x=2 on [0;1), as m ! 1. (Here, aj(y) is as
above.)

Proof We take y = 1 for notational simplicity; of course, the same proof holds
for each y > 0. For a function g : [0;1) ! R, let ~g(x) = g(x)e−x=2 , and let
�mg(x) denote the Ces�aro mean

�mg(x) =
�
k +m

m

�−1 mX
j=0

�
k +m− j
m− j

�
bjL

�
j (x)e−x=2;
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where g has Laguerre coe�cients bj . Theorem 6.2.1 of [20] says that there exists
a constant C such that for all m and all g such that ~g 2 L1([0;1); x� dx),

jj�mgjj1 � Cjj~gjj1;

where jj � jj1 denotes the norm on L1([0;1); x� dx).

We can then imitate the proof of Theorem 2 in [12]. Let " > 0. By Theorem 18
of [17], ~f can be uniformly approximated on [0;1) by ~g with g a polynomial.
Choose g so that ������ ~f − ~g

������
1
<

"

2 + 2C
:

Then
jj�mf − �mgjj1 <

C"

2 + 2C
:

For su�ciently large m, we have

jj�mg − ~gjj1 <
"

2
;

since g is a polynomial. It follows that�������mf − ~f
������
1
< ":

Thus, �mf tends uniformly to f as m!1.

Of course, this proof made no use of the positivity of the Laguerre coe�cients,
and in fact could be carried out with far weaker constraints on the behavior
of f at in�nity. We stated it in terms of �{SILP functions only because those
are the functions to which we will apply it. The requirement that � be non-
negative is part of the hypotheses of Theorem 6.2.1 of [20]. Perhaps one could
prove an analogue of Lemma 2.4 for � < 0, but in terms of sphere packing that
would cover only the one-dimensional case.

Theorem 2.5 Let n > 1. Suppose f has the (n=2− 1){SILP property, with
f(0) = 1 and f(x) � 0 for x � 1. Then the center density for n{dimensional
lattice packings is bounded above by

Γ(n=2)
2n�n=2

R1
0 f(x)xn=2−1 dx

:

As was pointed out above, the same bound holds for all sphere packings, not
just lattice packings. One can prove this more general result by replacing the
theta series of a lattice with the averaged theta series of a periodic packing in
Lemma 2.2, but for simplicity we restrict our attention to lattices.
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336 Henry Cohn

Proof Without loss of generality, we can assume that our lattice is scaled so
as to have packing radius 1=2 (that is, every non-zero vector has norm at least
1). De�ne �, T , ak(y), etc. as before.

We have

f(0) �
Z 1

0
f(x)e−xy d�(x);

since all contributions to the integral from x > 0 are non-positive.

Let k > (n− 1)=2, and

�mf(x) =
�
k +m

m

�−1 mX
j=0

�
k +m− j
m− j

�
aj(y)Ln=2−1

j (xy)e−xy=2:

Then Z 1
0

�mf(x)e−xy=2 d�(x) � a0(y)
Z 1

0
e−xy d�(x) = a0(y)T (y);

since by Lemma 2.2 all the terms in �mf(x) with j > 0 contribute a non-
negative amount. Since �mf(x) converges uniformly to f(x)e−xy=2 as m!1
by Lemma 2.4 (and because constant functions are integrable with respect to
e−xy=2 d�(x)), we have

lim
m!1

Z 1
0

�mf(x)e−xy=2 d�(x) =
Z 1

0
f(x)e−xy d�(x):

It follows that Z 1
0

f(x)e−xy d�(x) � a0(y)T (y);

and hence
f(0) � a0(y)T (y):

Thus, the center density is bounded above by

lim
y!0+

yn=2f(0)
(4�)n=2a0(y)

:

We can evaluate that limit, since

a0(y) =

R1
0 f(x=y)xn=2−1e−x dx

Γ(n=2)
=
yn=2

R1
0 f(u)un=2−1e−yu du

Γ(n=2)
;

and
R1

0 f(u)un=2−1e−yu du converges to
R1

0 f(u)un=2−1 du as y ! 0+, by dom-
inated convergence. Applying this formula leads to the bound in the theorem
statement.
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Theorem 2.5 amounts to essentially the same bound as Theorem 1.1, although
that is not immediately obvious. The key is Proposition 2.8, which tells us that
there is essentially only one �{SILP function for each �, in the sense that every
�{SILP function is a positive combination of scalings of this function. First,
we need two technical lemmas.

Lemma 2.6 For � > −1=2 and x 2 [0;1),

lim
k!1

k−�L�k (x=k)e−x=k = x−�=2J�(2
p
x);

and convergence is uniform over [0;1).

Note that uniform convergence is false for � = −1=2, because k−�L�k (x=k)e−x=k

tends to 0 as x ! 1 but the right side does not. Since we take � = n=2 − 1
in dimension n, the only case this rules out is the trivial 1{dimensional case,
and that is hardly a problem since it is already ruled out by Theorem 2.5 (via
Lemma 2.4).

Proof Pointwise convergence is known (see 10.12 (36) in [7, page 191]), but
the statements the author knows of in the literature omit the e−x=k factor that
makes the convergence uniform.

We consider two cases. In the �rst, x � k1+� with � > 0 �xed as k !1. Then
x−�=2J�(2

p
x) tends uniformly to 0 as k !1, and we just need to verify that

k−�L�k (x=k)e−x=k does as well. For that, we use Theorem 8.91.2 from [19]. It
implies that for a > 0

max
x�a

���e−x=2L�k (x)
��� = O(kC);

where C = max(−1=3; �=2 − 1=4). It follows that k−�L�k (x=k)e−x=k tends
uniformly to 0 as k !1 with x � k1+� .

Thus, we need only deal with the case of x � k1+� . We start with (4.19.3)
from [10] (which holds for all � > −1, not just � > 1 as inadvertently stated
in [10]), which says that

L�k (x) =
exx−�=2

k!

Z 1
0

tk+�=2J�(2
p
xt)e−t dt:

Thus,

k−�L�k (x=k)e−x=k =
x−�=2kk+1

k!

Z 1
0

t�=2J�(2
p
xt)ek(log t−t) dt

= (1 + o(1))ek
r

k

2�

Z 1
0

(t=x)�=2J�(2
p
xt)ek(log t−t) dt:
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338 Henry Cohn

The exponent log t−t is maximized at t = 1, so we can use the Laplace method
to estimate this integral (see Chapter 4 of [3]). In the following calculations,
all constants implicit in big-O terms are independent of x.

Let " > 0 be small (" will be a function of k). Our integral nearly equals that
over the interval [1−"; 1+"], since for any C < 1=2 we have log t−t < −1−C"2

outside [1− "; 1 + "] for su�ciently small ", and hence����Z 1
0

(t=x)�=2J�(2
p
xt)ek(log t−t) dt−

Z 1+"

1−"
(t=x)�=2J�(2

p
xt)ek(log t−t) dt

����
is bounded by

e−(k−1)(1+C"2)

Z 1
0

t�=2
����J�(2

p
xt)

x�=2

���� elog t−t dt = O
�
e−k(1+C"2)

�
:

Thus, we just need to estimateZ 1+"

1−"
(t=x)�=2J�(2

p
xt)ek(log t−t) dt:

We would like to approximate it with

x−�=2J�(2
p
x)
Z 1+"

1−"
ek(log t−t) dt:

The di�erence between these integrals is bounded by a constant times the
product of ", the maximum of the t{derivative of (t=x)�=2J�(2

p
xt) over t 2

[1− "; 1 + "], and Z 1+"

1−"
ek(log t−t) dt:

We have

@

@t
(t�=2J�(2

p
xt)) =

�

2
t�=2−1J�(2

p
xt)+

�
−J�+1(2

p
xt) +

�J�(2
p
xt)

2
p
xt

�
t�=2xp
xt
:

For x near 0, x−�=2@(t�=2J�(2
p
xt))=@t remains bounded; for x away from 0 it

is at most O(x1=4−�=2); which is at most O(x1=2−�) if � is small enough relative
to � (which we can assume). Because x � k1+� , we have x1=2−� � k1=2−�=2 .

Thus, Z 1+"

1−"
(t=x)�=2J�(2

p
xt)ek(log t−t) dt

equals �
x−�=2J�(2

p
x) +O

�
"k1=2−�=2

��Z 1+"

1−"
ek(log t−t) dt:
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If we expand log t− t = −1− (t− 1)2=2 +O((t− 1)3), we �nd thatZ 1+"

1−"
ek(log t−t) dt = (1 + o(1))e−k

r
2�
k
;

as long as k"2 !1, so that the interval we are integrating over is much wider
than the standard deviation of the Gaussian we are using to approximate the
integrand.

So far, we know that as long as k"2 !1, we have

k−�L�k (x=k)e−x=k = (1+o(1))x−�=2J�(2
p
x)+O

�p
ke−kC"

2
�

+O
�
"k1=2−�=2

�
:

Now if we take " = k−� with (1− �)=2 < � < 1=2, we �nd that

k−�L�k (x=k)e−x=k = x−�=2J�(2
p
x) + o(1);

as desired.

Lemma 2.7 For � > −1=2, if f : [0;1)! R is continuous and satis�es

jf(x)j � C(1 + jxj)−�−1−"

for some C > 0 and " > 0, thenX
k�0

tk
Z 1

0
f(x=y)L�k (x)x�e−x dx = (1− t)−�−1

Z 1
0

f(x=y)x�e−x=(1−t) dx

whenever jtj < 1=3.

Proof We would like to convert this sum toZ 1
0

X
k�0

f(x=y)L�k (x)x�e−xtk dx

and apply the generating functionX
k�0

L�k (x)tk = (1− t)−�−1e−xt=(1−t)

((6.2.4) from [1]). To do so, we must justify interchanging the limit with the
sum.

Let
g(t) = (1− t)−�−1e−xt=(1−t) = (1− t)−�−1exe−x=(1−t):

Then the Lagrange form of the remainder in Taylor’s theorem implies

g(t) =
m−1X
k=0

L�k (x)tk +
g(m)(s)
m!

tm
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340 Henry Cohn

for some s satisfying jsj � jtj. By Lemma 2.1,

g(m)(s)
m!

= �ex(1− s)−�−1−me−x=(1−s)L�m(x=(1 − s)):

It follows from Lemma 2.6 that���e−x=(1−s)L�m(x=(1 − s))
��� � C 0m�

for some constant C 0 > 0 (depending on �). Thus,�����(1− t)−�−1

Z 1
0

f(x=y)x�e−x=(1−t) dx−
m−1X
k=0

tk
Z 1

0
f(x=y)L�k (x)x�e−x dx

�����
is bounded above by

C 0
�Z 1

0
f(x=y)x� dx

�
(1− s)−�−1m�

�
t

1− s

�m
: (2.1)

The integral in (2.1) is �nite because of the bound on jf j in the lemma state-
ment. Because jtj < 1=3 and jsj � jtj, we have���� t

1− s

���� < 1
2
;

and hence (2.1) tends to 0 as m!1.

Proposition 2.8 Let � > −1=2, and suppose f : [0;1) ! R is continuous,
and satis�es jf(x)j � C(1+ jxj)−�−1−" for some C > 0 and " > 0. Then f has
the �{SILP property i�

f(x) =
Z 1

0
(xy)−�=2J�(2

p
xy) dg(y)

for some weakly increasing function g .

Note that one can compute directly the Laguerre coe�cients of the scalings of
x−�=2J�(2

p
x) and verify that they are positive (see Example 3 in Section 4.24

of [10]). Proposition 2.8 tells us that this function is essentially the only �{SILP
function.

Proof We know that f has the �{SILP property i� for every y > 0,X
k�0

tk
Z 1

0
f(x=y)L�k (x)x�e−x dx
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has non-negative coe�cients as a power series in t. By Lemma 2.7, we can
write this function (for small t) as

(1− t)−�−1

Z 1
0

f(x=y)x�e−x=(1−t) dx;

which is a positive constant (a power of y) times

(1− t)−�−1

Z 1
0

f(x)x�e−xy=(1−t) dx:

De�ne ~f to be the Laplace transform of x 7! x�f(x). Then f has the �{SILP
property i�

(1− t)−�−1 ~f(y=(1 − t))

has non-negative coe�cients as a power series in t. We can rescale t by a factor
of y and pull out a power of y to see that this happens i�

(1=y − t)−�−1 ~f(1=(1=y − t))

has non-negative coe�cients. That happens for all y > 0 i� the function
u 7! u−�−1 ~f(1=u) has successive derivatives alternating in sign (the function
is non-negative, its derivative non-positive, its second derivative non-negative,
etc.). By Bernstein’s theorem (Theorem 12b of Chapter IV of [22, page 161]),
this holds i� it is the Laplace transform of a positive measure.

Thus, we have shown that f has the �{SILP property i� there is a weakly
increasing function g such that for u > 0,

u−�−1

Z 1
0

f(x)x�e−x=u dx =
Z 1

0
e−yu dg(y):

To �nish proving the proposition, we can work as follows. We know thatZ 1
0

f(x)x�e−xu dx = u−�−1

Z 1
0

e−y=u dg(y):

We can now apply the following general theorem for inverting a Laplace trans-
form: if

�(u) =
Z 1

0
 (x)e−xu dx;

then

 (x) = lim
k!1

(−1)k

k!
�(k)

�
k

x

��
k

x

�k+1

wherever  is continuous. (See Corollary 6a.2 of Chapter VII in [22, page 289].)
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We can apply this to our equation, and di�erentiate under the integral sign
(justi�ed since the di�erentiated integrals converge uniformly as u ranges over
any compact subset of (0;1); see Theorem 14 of Chapter 10 in [23, page 358]).
Using Lemma 2.1, it follows that

x�f(x) = lim
k!1

Z 1
0

�
k

x

�−�
L�k

�xy
k

�
e−xy=k dg(y):

To �nish the proof, we apply Lemma 2.6, but we need to check that passage to
the limit under the integral sign is justi�ed. Because of the uniform convergence,
it is justi�ed as long as constant functions are integrable with respect to dg .
However, that is true, for the following reason. By de�nition, g satis�es

u−�−1

Z 1
0

f(x)x�e−x=u dx =
Z 1

0
e−yu dg(y);

which is equivalent toZ 1
0

f(ux)x�e−x dx =
Z 1

0
e−yu dg(y):

When we let u! 0+, the left side converges to

f(0)
Z 1

0
x�e−x dx

(by the dominated convergence theorem: recall that f is bounded and contin-
uous), so the right side converges as u ! 0+. By monotone convergence, we
see that constant functions are integrable with respect to dg , which is what we
need.

Corollary 2.9 For integers n>1, a function f : [0;1)!R has the (n=2−1){
SILP property i� the function from Rn to R given by x 7! f(jxj2) is continuous,
satis�es

jf(jxj2)j � C(1 + jxj)−n−"

for some C > 0 and " > 0, and is the Fourier transform of a non-negative
distribution.

Corollary 2.9 follows from combining Proposition 2.8 with Theorem 9.10.3 of [1]
(see Proposition 2.1 of [4]), after some changes of variables. Using Corollary 2.9,
one can check with some simple manipulations that for n > 1, Theorem 2.5
implies Theorem 1.1 for lattice packings (and, as pointed out above, the gen-
eral case can be proved similarly). It is seemingly more general, because it
does not constrain the Fourier transform at in�nity. However, the additional
generality does not seem useful, and one could likely generalize the proof in [4]
to use a version of Poisson summation with fewer hypotheses (for example, see
Theorem D.4.1 in [1]).
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Corollary 2.10 For � > −1=2, the product of two �{SILP functions is always
an �{SILP function.

Corollary 2.10 follows immediately from Corollary 2.9 when � = n=2− 1 with
n 2 Z, and can be proved for arbitrary � using Proposition 2.8 together with
13.46 (3) of [21] or (7) from Section 3 of [18]. It seems surprisingly di�cult to
prove directly from the de�nition of a SILP function: it would follow trivially
if the product of two Laguerre polynomials were a positive combination of
Laguerre polynomials, but that is not the case. In fact, the coe�cients of such
a product alternate in sign; that is, the polynomials (−1)kL�k have the property
that the set of positive combinations of them is closed under multiplication.

3 Optimality of Bessel functions

Let j� denote the �rst positive root of J� . According to Proposition 6.1 of [4],
the function f : Rn ! R de�ned by

f(x) =
Jn=2(jn=2jxj)2

(1 − jxj2)jxjn (3.1)

satis�es the hypotheses of Theorem 1.1, and leads to the upper bound

jnn=2

(n=2)!24n

for the densities of n{dimensional sphere packings. The Fourier transform bf
has support in the ball of radius jn=2=� about the origin. We will show that
among all such functions, f proves the best sphere packing bound. This is
analogous to a theorem of Sidel’nikov [15] for the case of error-correcting codes
and spherical codes. It was �rst proved in the setting of sphere packings by
Gorbachev [8]. Our proof will be based on the same identity as Gorbachev’s,
but the proof of the identity appears to be new.

For notational simplicity, we view f and bf as functions on [0;1); that is, f(r)
will denote the common value of f on all vectors of length r . Let � = n=2− 1,
and let �1 < �2 < � � � be the positive roots of J�+1(x) (equivalently, the
positive roots of −�J�(x) + xJ 0�(x); see equation (4) in Section 3.2 of [21]).
De�ne Br(x) to be the closed ball of radius r about x.

Our main technical tool is the following identity due to Ben Ghanem and Frap-
pier (the p = 0 case of Lemma 4 in [2]), who state it with weaker technical
hypotheses and a di�erent proof.
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Theorem 3.1 (Ben Ghanem and Frappier [2]) Let f : Rn ! R be a radial
Schwartz function. If supp( bf ) � Br(0), then

bf(0) =
(n=2)!2n

�n=2rn
f(0) +

1X
m=1

4�n−2
m

(n=2− 1)!�n=2rnJn=2−1(�m)2
f

�
�m
�r

�
:

We will postpone the proof of Theorem 3.1 until we have developed several
lemmas. First, however, we deduce the desired optimality:

Corollary 3.2 (Gorbachev [8]) Suppose f : Rn ! R is a radial, admissible
function, is not identically zero, and satis�es the following three conditions:

(1) f(x) � 0 for jxj � 1,

(2) bf(t) � 0 for all t, and

(3) supp( bf ) � Bjn=2=�(0).

Then
�n=2

(n=2)!2n
� f(0)bf(0)

�
jnn=2

(n=2)!24n
:

Proof of Corollary 3.2 Let r = jn=2=� . If f were a Schwartz function, then
Theorem 3.1 would imply that

bf(0) � (n=2)!2n

�n=2(jn=2=�)n
f(0);

since �m=(�r) � 1 for m � 1. For more general functions f , the series

(n=2)!2n

�n=2rn
f(0) +

1X
m=1

4�n−2
m

(n=2 − 1)!�n=2rnJn=2−1(�m)2
f

�
�m
�r

�
at least still converges, since the terms are O(m−1−") for some " > 0 (namely,
the " from the de�nition of admissibility); to verify this, note that �m grows
linearly with m, and that J�(z)2 + J�+1(z)2 � 2=(�z) (see Section 7.21 of [21,
page 200]), so J�(�m)2 � 2=(��m). However, we must verify that it converges
to bf(0).

We need to smooth bf without increasing its support. Let i� denote any non-
negative, smooth function of integral 1 with support in the ball of radius �
about the origin. Let f"(x) = f(x(1 − "))b{r"=2(x), where r = jn=2=� . This is
a Schwartz function whose Fourier transform has support in the ball of radius
r(1 − "=2), so Theorem 3.1 applies to f" . As " ! 0+, the functions f" andbf" converge pointwise to f and bf , respectively. Since jb{r"=2j � 1 everywhere,
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dominated convergence lets us interchange the limit as " ! 0+ with the sum
over m to conclude that

bf(0) =
(n=2)!2n

�n=2rn
f(0) +

1X
m=1

4�n−2
m

(n=2− 1)!�n=2rnJn=2−1(�m)2
f

�
�m
�r

�
;

and we �nish the proof as before.

Lemma 3.3 Let f : Rn ! R be a radial Schwartz function. If supp( bf ) �
Br(0), then for u 2 [0; 1),

2� bf(ru)r�+2 =
2Γ(� + 2)

(�r)�
f(0) +

1X
m=1

2(�m=(2�r))�f(�m=(2�r))
J�(�m)2

J�(�mu)
u�

:

The same holds even if bf is not smooth at radius r (but is left continuous at
radius r , and still smooth at all smaller radii), as long as the values of f in the
sum decrease faster than any power of 1=m as m!1.

Note that if f is a Schwartz function, then the condition on the decay of the
values of f automatically holds.

Proof Because supp( bf ) � Br(0), we have

x�f(x) =
Z 1

0
g(u)u�+1J�(2�rux) du;

where g(u) = 2� bf(ru)r�+2 (see Theorem 9.10.3 of [1], or Proposition 2.1 of
[4]). We begin by expanding g(u)u� into a Dini series. For a quick introduction
to Dini series, see [10, page 130]. Unfortunately, for a technical reason that
reference does not cover the case we need here (see footnote 33 on page 130). For
a more thorough reference, which covers everything we need, see Sections 18.3{
18.35 of [21]. In Watson’s notation, we are dealing with the case H+� = 0 (see
page 597 of [21]). Convergence of the Dini series to g(u)u� for u 2 (0; 1) follows
from standard results (see pages 601{602 of [21]), and at u = 0 it follows from
continuity of g at 0 and uniform convergence of the Dini series (which itself
follows from the decay of f(�m=(�r))).

The Dini series expansion of g(u)u� is

g(u)u� = 2(� + 1)u�
Z 1

0
t�+1g(t)t� dt +

1X
m=1

bmJ�(�mu);
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where

bm =
2�2

m

(�2
m − �2)J�(�m)2 + �2

mJ
0
�(�m)2

Z 1

0
tg(t)t�J�(�mt) dt

=
2�2

m(�m=(2�r))�

(�2
m − �2)J�(�m)2 + �2

mJ
0
�(�m)2

f(�m=(2�r)):

Note also that

lim
x!0

Z 1

0
g(u)u�+1J�(2�rux)=x� du =

Z 1

0
g(u)u�+1 (�ru)�

Γ(� + 1)
du;

since as x! 0,
J�(x)
x�

! 1
2�Γ(� + 1)

;

so Z 1

0
t�+1g(t)t� dt = f(0)Γ(� + 1)=(�r)� :

Furthermore, �mJ 0�(�m) = �J�(�m), so

(�2
m − �2)J�(�m)2 + �2

mJ
0
�(�m)2 = �2

mJ�(�m)2:

Thus,

g(u) =
2Γ(� + 2)

(�r)�
f(0) +

1X
m=1

2(�m=(2�r))�f(�m=(2�r))
J�(�m)2

J�(�mu)
u�

;

as desired.

Lemma 3.4 Let f be a function from [0;1) to R. The function x 7! f(jxj)
from Rn to R is the Fourier transform of a compactly support distribution i�
f extends to an even, entire function on C that satis�es

jf(z)j � C(1 + jzj)keC0j Im zj

for some C , C 0 , and k .

Proof This lemma is essentially a special case of the Paley-Wiener-Schwartz
theorem (Theorem 7.3.1 in [9]). The only di�erence is that the general theorem
is not restricted to radial functions, and characterizes Fourier transforms of
compactly supported distributions as entire functions g of n complex variables
satisfying

jg(z1; : : : ; zn)j � C
�

1 +
p
jz1j2 + � � �+ jznj2

�k
eC
0
p

(Im z1)2+���+(Im zn)2
: (3.2)
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The only subtlety in deriving the lemma from the general theorem is in showing
that if f satis�es the hypotheses above, then the function g de�ned by

g(z1; : : : ; zn) = f

�q
z2

1 + � � �+ z2
n

�
satis�es (3.2). To do that, the elementary inequality����Imqz2

1 + � � �+ z2
n

���� �p(Im z1)2 + � � � + (Im zn)2

can be used. To prove that inequality, one can use induction to reduce to the
n = 2 case, and prove that case by direct manipulation of both sides.

Now we are ready to prove Theorem 3.1. Notice that it says that to determine
the integral of f , we need only half as many values as we need to reconstruct
the whole function via Lemma 3.3. This phenomenon is analogous to Gauss-
Jacobi quadrature (see Theorem 14.2.1 of [6]). The proof given below is in fact
modeled after the proof of Gauss-Jacobi quadrature, although carrying it out
rigorously is more involved.

Proof of Theorem 3.1 Let " > 0, and de�ne ~h : [−1; 1]! R by

~h(u) =
2Γ(� + 2)

(�(r=2 + "))�
f(0) +

1X
m=1

2
�

�m
2�(r=2+")

��
f
�

�m
2�(r=2+")

�
J�(�m)2

J�(�mu)
u�

:

(The functions J�(�mu)=u� are even, so this is no di�erent from de�ning ~h
on [0; 1].) Since f is a Schwartz function, the values of f in the series above
decrease quickly enough that it de�nes a C1 function on (−1; 1). De�ne bh by

2�bh((r=2 + ")u)(r=2 + ")�+2 =

(
~h(u) if juj � 1, and
0 otherwise,

and de�ne h to be the Fourier transform of bh. Then supp(bh) � Br=2+"(0).
By Lemma 3.3, combined with uniqueness for Dini series (which follows from
orthogonality), we have

h

�
�m

2�(r=2 + ")

�
= f

�
�m

2�(r=2 + ")

�
for all m, and h(0) = f(0). (Note that bh may not be smooth at radius r=2+",
but that does not violate the hypotheses of Lemma 3.3.)
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Now let �R denote the characteristic function of a ball of radius R about the
origin, so that b�R(x) = Jn=2(2�Rjxj)(R=jxj)n=2:

The entire function f −h has roots wherever b�r=2+" does, and b�r=2+" has only
single roots, so the quotient g = (f − h)=b�r=2+" is entire.

We would like to conclude that g is the Fourier transform of a compactly
supported distribution. By Lemma 3.4, this requires bounds for g , and it is not
obvious that dividing by a Bessel function does not ruin the bounds. We prove
this in two steps. First, Lemma 1 of [11] implies (after rescaling variables) that

jJn=2(z)=zn=2j � c1e
c2j Im zj

(1 + jzj)c3

whenever j Im zj � c4 , for some constants c1; c2; c3; c4 , with c1 > 0 of course.
That means that dividing by it does not mess up our bounds when the absolute
value of the imaginary part is at least c4 . The second step is to deal with
points near the real axis. Consider a box with sides on the lines with imaginary
part �c4 and real part �(k� + (�n + 1)=4), where k is a positive integer. By
the maximum principle, the maximum of g over the interior of the box must
occur on the sides. We know that g satis�es the bound we want on the top and
bottom, and g is even, so we only need to estimate g on the right side.

For z in the right half-plane, we have

Jn=2(z) =

r
2
�z

�
cos
�
z − �n+ 1

4

�
(1 +O(1=z2))

+ sin
�
z − �n+ 1

4

�
(O(1=z))

�
(see (1) in Section 7.21 of [21]). When z has real part k� , we have cos(z) =
(−1)k cosh(Im z), which has absolute value at least 1. Thus, on the right side
of the box, the cosine factor is always at least 1. The sine factor is bounded,
because Im z is bounded, so we see that on the right side of the box Jn=2(z)=zn=2

is never smaller than a power of 1=jzj.

When we combine these estimates, it follows from Lemma 3.4 that g is the
Fourier transform of a distribution with compact support. Furthermore, the
Titchmarsh-Lions theorem (see Theorem 4.3.3 in [9]) implies that the convex
hull of the support of f−h equals the Minkowski sum of those of bg and �r=2+" ,
so supp(bg) � Br=2−"(0).
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Let i� denote any non-negative, smooth function of integral 1 with support in
the ball of radius � about the origin. We have

fb{� − hb{� = (b�r=2+"b{�)g:
Now both sides are integrable functions (note that this is not obviously true of
either h or gb�r=2+" , which is why we had to multiply by b{� ), and we �nd that

( bf � i�)(0) − (bh � i�)(0) =
Z

(�r=2+" � i�)bg:
Because supp(bg) � Br=2−"(0), if we take � < " we haveZ

(�r=2+" � i�)bg =
Z bg = g(0) = 0;

where g(0) = 0 because f(0) = h(0). Thus.

( bf � i�)(0) = (bh � i�)(0):

If we let � ! 0+, we �nd that bf(0) = bh(0), because both bf and bh are contin-
uous near 0. It follows from the way bh was de�ned that bf(0) equals

(n=2)!2n

�n=2(r + 2")n
f(0) +

1X
m=1

4�n−2
m

(n=2− 1)!�n=2(r + 2")nJn=2−1(�m)2
f

�
�m

�(r + 2")

�
:

Now sending "! 0+ proves the desired result, by dominated convergence.

4 The dual program

It is natural to view choosing the optimal function f in Theorem 1.1 as solving
an in�nite-dimensional linear programming problem: if we �x bf(0) = 1, then
we are trying to minimize the linear functional f(0) of f , subject to linear
inequalities on f . The technicalities are slightly subtle; for example, it is not
immediately clear what the right space of functions to consider is (admissibility
might be too ad hoc). It seems likely that Schwartz functions su�ce. One
can come arbitrarily close to the optimum with functions f such that f andbf are smooth and rapidly decreasing, where we say g : Rn ! R is rapidly
decreasing if g(x) = O((1 + jxj)−k) for every k > 0: given any f that satis�es
the hypotheses of Theorem 1.1, let

f"(x) = ((f � i" � i")b{"2)((1 + 2")x);
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where i" is any non-negative, smooth function of integral 1 with support in
B"(0). Then f" has the desired properties, still obeys the required inequalities,
and satis�es

lim
"!0

f"(0)bf"(0)
=
f(0)bf(0)

:

Presumably Schwartz functions also come arbitrarily close, but one would have
to worry about making the derivatives rapidly decreasing as well. Despite the
fact that rapidly decreasing functions come close to the optimal bounds, it is
not clear whether they reach them. For example, even for n = 1, where one
can write down several explicit functions that solve the sphere packing problem
(see Sections 3 and 5 of [4]), these functions are not rapidly decreasing.

In this context, it is natural to study the dual linear program, to prove bounds
on how good the sphere packing bounds produced by Theorem 1.1 can be. The
results of Section 3 amount to doing exactly this, for a restricted linear program
in which we limit the support of bf . Unfortunately, in the unrestricted case the
dual program seems no easier to solve in general than the primal program is.
However, it leads to several intriguing open problems.

One formulation of the dual program is as follows: �nd the largest c such that
there is a tempered distribution g on Rn satisfying

(1) g = � + h with h � 0,

(2) supp(h) � fx : jxj � 1g, and

(3) bg � c� .

Here � is a delta function at the origin, and inequalities between distributions
mean that applying both sides to non-negative functions preserves this inequal-
ity. For g satisfying (1){(3) above, and any radial function f satisfying the
hypotheses of Theorem 1.1 such that f and bf are rapidly decreasing, we have

f(0) �
Z
Rn
fg =

Z
Rn
bf bg � c bf(0):

Here, we use the fact that one can apply a non-negative tempered distribution
to any rapidly decreasing function, because non-negative tempered distributions
are exactly measures � such thatZ

Rn

d�(x)
(1 + jxj)k <1

for some k (see Theorem VII in Chapter 7, Section 4 of [14, page 242]). Thus
f(0)= bf(0) � c. The duality theorem of linear programming suggests that there
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is no gap between the smallest f(0)= bf(0) and largest c, but it is not clear how
to prove it in this in�nite-dimensional setting.

Given any lattice � with minimum non-zero vector length 1, summing over
� de�nes a tempered distribution that clearly satis�es properties (1) and (2),
and Poisson summation implies that it has property (3) as well. As is the
case for the functions f , we can rotationally symmetrize g , so that g and bg
are positive linear combinations of spherical delta functions, where we de�ne
a spherical delta function �r on Rn to be a distribution with support on the
sphere of radius r about the origin, such that integrating any function times
�r gives the average of that function over the sphere. One would expect that
the optimal radial g should always be a linear combination of spherical delta
functions, but it is not clear how to prove it. Aside from the origin, g and bg
should be supported on the zeros of the optimal f and bf , respectively, but why
must these zeros even occur at a discrete set of radii?

Open Question 4.1 Consider tempered distributions g such that g and bg
are linear combinations of spherical delta functions. Is every such distribution
in the span of the rotationally symmetrized Poisson summation distributions?

It seems very unlikely that the answer to Question 4.1 is yes. Any counterexam-
ple would be of interest, since the optimal distributions g in most dimensions
(not 1, 2, 8, or 24) are probably counterexamples.

One interesting case is 72 dimensions. It is an open question whether there
exists an \extremal lattice of Type II" in R72 , in other words, an even unimod-
ular lattice in R72 with minimal non-zero norm at least 8 (see [5, page 194]
for more details). Such a lattice might be as extraordinary as E8 or the Leech
lattice. Unfortunately, it seems unlikely that one exists. However, its existence
cannot be ruled out by Theorem 1.1. The simplest way to see that is in light of
Section 2. A proof that the lattice did not exist would amount to a proof that
its theta series could not exist. However, although the extremal lattice may
not exist, there is a modular form that would be its theta series if it did exist
(see [5, page 195]). In fact, the modular form comes from a distribution g as
above, because it is a polynomial in the theta series of E8 and the Leech lattice,
and therefore comes from a g that is the corresponding linear combination of
Poisson summation for direct sums of E8 and the Leech lattice. If �n denotes
the theta series of E8 , the Leech lattice, and the hypothetical 72{dimensional
lattice for n = 8; 24; 72, respectively, then

�72 =
79

1080
�3

24 +
1183
720

�2
24�3

8 −
91
180

�24�6
8 −

91
432

�9
8:
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Despite the minus signs, all the coe�cients of �72 are non-negative.

The most elegant form of the dual program comes from a rescaling analogous to
that in Theorem 3.2 of [4]. De�ne a relaxed lattice to be a tempered distribution
g such that g and bg are of the formX

i�0

ai�ri

with ai � 0 for all i (not all 0), and 0 = r0 < r1 < r2 < � � � . Call a relaxed
lattice g self-dual if bg = g . How large can r1 be?

Conjecture 4.2 In every dimension, the largest possible value of r1 in a self-
dual relaxed lattice equals the smallest value of r possible in Theorem 3.2 of
[4].

One might imagine that the self-duality in Conjecture 4.2 would follow from
some sort of symmetry of the linear programming problem, but that is not
clear. If this conjecture is true, it would explain the otherwise remarkable fact
that the minimal values of r in Proposition 7.1 and Theorem 3.2 of [4] always
seem to agree (see Conjecture 7.2 in that paper).
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