Geometry & Topology Volume 6 (2002) 355{360 Published: 28 June 2002

Burnside obstructions to the Montesinos{Nakanishi 3{move conjecture

Mieczyslaw K Dabkowski Jozef H Przytycki

Department of Mathematics, The George Washington University Washington, DC 20052, USA

Email: mdab@gwu.edu, przytyck@gwu.edu

Abstract

Yasutaka Nakanishi asked in 1981 whether a 3{move is an unknotting operation. In Kirby's problem list, this question is called *The Montesinos{Nakanishi 3{move conjecture.* We de ne the *n*th Burnside group of a link and use the 3rd Burnside group to answer Nakanishi's question; ie, we show that some links cannot be reduced to trivial links by 3{moves.

AMS Classi cation numbers Primary: 57M27

Secondary: 20D99

Keywords: Knot, link, tangle, 3{move, rational move, braid, Fox coloring, Burnside group, Borromean rings, Montesinos{Nakanishi conjecture, branched cover, core group, lower central series, associated graded Lie ring, skein module

Proposed: Robion Kirby Received: 5 May 2002 Seconded: Walter Neumann, Vaughan Jones Revised: 19 June 2002 One of the oldest elementary formulated problems in classical Knot Theory is the 3{move conjecture of Nakanishi. A 3{move on a link is a local change that involves replacing parallel lines by 3 half-twists (Figure 1).

Figure 1

Conjecture 1 (Montesinos{Nakanishi, Kirby's problem list; Problem 1.59(1), [4]) *Any link can be reduced to a trivial link by a sequence of 3{moves.*

The conjecture has been proved to be valid for several classes of links by Chen, Nakanishi, Przytycki and Tsukamoto (eg, closed 4{braids and 4{bridge links).

Nakanishi, in 1994, and Chen, in 1999, have presented examples of links which they were not able to reduce: L_{2BR} , the 2{parallel of the Borromean rings, and ^, the closure of the square of the center of the fth braid group, ie, = $\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}^{10}$.

Remark 2 In [6] it was noted that 3{moves preserve the rst homology of the double branched cover of a link L with Z_3 coe cients $(H_1(M_L^{(2)}; Z_3))$. Suppose that $^{\wedge}$ (respectively L_{2BR}) can be reduced by 3{moves to the trivial link T_n . Since $H_1(M_{^{\wedge}}^{(2)}; Z_3) = Z_3^4$, $H_1(M_{L_{2BR}}^{(2)}; Z_3) = Z_3^5$ and $H_1(M_{T_n}^{(2)}; Z_3) = Z_3^{n-1}$ where T_n is a trivial link of n components, it follows that n = 5 (respectively n = 6).

We show below that neither $^{\wedge}$ nor L_{2BR} can be reduced by 3{moves to trivial links.

The tool we use is a non-abelian version of Fox $n\{\text{colorings}, \text{ which we shall call the } n\text{th Burnside group of a link, } B_L(n).$

De nition 3 The *n*th Burnside group of a link is the quotient of the fundamental group of the double branched cover of S^3 with the link as the branch set divided by all relations of the form $a^n = 1$. Succinctly: $B_L(n) = {}_1(M_L^{(2)}) = (a^n)$.

Proposition 4 $B_L(3)$ is preserved by $3\{\text{moves.}\}$

Geometry & Topology, Volume 6 (2002)

Proof In the proof we use the core group interpretation of $_1(M_L^{(2)})$. Let $_D$ be a diagram of a link $_L$. We de ne (after [3, 2]) the associated core group $_D^{(2)}$ of $_D$ as follows: generators of $_D^{(2)}$ correspond to arcs of the diagram. Any crossing $_V$ yields the relation $_S = y_i y_j^{-1} y_i y_k^{-1}$ where y_i corresponds to the overcrossing and $y_j : y_k$ correspond to the undercrossings at $_V$ (see Figure 2). In this presentation of $_L^{(2)}$ one relation can be dropped since it is a consequence of others. Wada proved that $_D^{(2)} = _1(M_L^{(2)}) Z$, [10] (see [7] for an elementary proof using only Wirtinger presentation). Furthermore, if we put $y_i = 1$ for any xed generator, then $_D^{(2)}$ reduces to $_1(M_L^{(2)})$. The last part of our proof is illustrated in Figure 2.

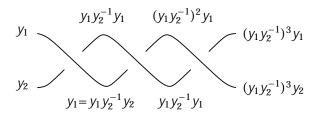


Figure 2

Lemma 5 $B_{\wedge}(3) = fx_1; x_2; x_3; x_4 j a^3$ for any word $a; P_1; P_2; P_3; P_4g$, where $P_i = x_1 x_2^{-1} x_3 x_4^{-1} x_1^{-1} x_2 x_3^{-1} x_4 x_i x_4 x_3^{-1} x_2 x_1^{-1} x_4^{-1} x_3 x_2^{-1} x_1 x_i^{-1}$:

Proof Consider the 5{braid = $\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}^{10}$ (Figure 3). If we label initial arcs of the braid by x_1 ; x_2 ; x_3 ; x_4 and x_5 , and use core relations (progressing from left to right) we obtain labels O_1 ; O_2 ; O_3 ; O_4 and O_5 on the nal arcs of the braid where

$$Q_i = X_1 X_2^{-1} X_3 X_4^{-1} X_5 X_1^{-1} X_2 X_3^{-1} X_4 X_5^{-1} X_1 X_5^{-1} X_4 X_3^{-1} X_2 X_1^{-1} X_5 X_4^{-1} X_3 X_2^{-1} X_1$$

For a group $^{(2)}_{\wedge}$, of the closed braid $^{\wedge}$, we have relations $\mathcal{Q}_i = x_i$. To obtain $_1(\mathcal{M}_{\wedge}^{(2)})$ we can put $x_5 = 1$, and delete one relation, say $\mathcal{Q}_5 x_5^{-1}$. These lead to the presentation of $\mathcal{B}_{\wedge}(3)$ described in the lemma.

Theorem 6 The links $^{\wedge}$ and L_{2BR} are not 3{move reducible to trivial links.

Geometry & Topology, Volume 6 (2002)

Figure 3

Proof Let B(n;3) denote the classical free n generator Burnside group of exponent 3. As shown by Burnside [1], B(n;3) is a nite group. Its order, jB(n;3)j, is equal to $3^{n+\binom{n}{2}+\binom{n}{3}}$. For a trivial link: $B_{T_k}(3)=B(k-1;3)$. In order to prove that $^{\wedge}$ and L_{2BR} are not 3{move reducible to trivial links, it su ces to show that $B_{^{\wedge}}(3) \neq B(4;3)$ and $B_{L_{2BR}}(3) \neq B(5;3)$ (see Remark 2). We have demonstrated these to be true both by manual computation, and by using the programs GAP, Magnus and Magma. More details in the case of $^{\wedge}$ are provided below.

For the manual calculations, one rst observes that for any i, P_i is in the third term of the lower central series of B(4/3). In particular, for $u = x_1x_2^{-1}x_3x_4^{-1}$ and $u = x_1^{-1}x_2x_3^{-1}x_4$, one has $uu \ 2 \ [B(4/3); B(4/3)]$ and $P_i = [uu; x_iu]$. It is known ([9]), that B(4/3) is of class 3 (the lower central series has 3 terms), and that the third term is isomorphic to Z_3^4 with basis: $e_1 = [[x_2/x_3]; x_4]$, $e_2 = [[x_1/x_3]; x_4]$, $e_3 = [[x_1/x_2]; x_4]$ and $e_4 = [[x_1/x_2]; x_3]$. It now takes an elementary linear algebra calculation (see Lemma 7 below) to show that $P_1/P_2/P_3/P_4$ form another basis of the third term of the lower central series of B(4/3). Thus $jB_4(3)j = 3^{10}$.

Lemma 7 P_1 ; P_2 ; P_3 , and P_4 form a basis of the third term of the lower central series of B(4;3).

Proof In the associated graded Lie ring L(4/3) of B(4/3) ([9]), the third term (denoted L_3) is isomorphic to Z_3^4 with basis $e_1/e_2/e_3/e_4$. In L(4/3), which is a linear space over Z_3 , one uses an additive notation and the bracket in the group becomes a (non-associative) product ([9]). In this notation $e_1 = x_2x_3x_4$, $e_2 = x_1x_3x_4$, $e_3 = x_1x_2x_4$ and $e_4 = x_1x_2x_3$. In the calculation expressing P_i in the basis we use the following identities in L_3 ([9]; page 89).

$$xyzt = 0$$
; $xyz = yzx = zxy = -xzy = -zyx = -yxz$; $xyy = 0$:

Now we have: $P_i = (uu)(x_iu)(uu)^{-1}(x_iu)^{-1} = [(uu)^{-1};(x_iu)^{-1}] = [uu;x_iu]$ as the last term of the lower central series is in the center of B(4;3). Furthermore, we have $uu = x_1x_2^{-1}x_3x_4^{-1}x_1^{-1}x_2x_3^{-1}x_4 = [x_2^{-1}x_3x_4^{-1};x_1^{-1}][x_3x_4^{-1};x_2][x_4^{-1};x_3^{-1}]$.

Writing P_i additively in L_3 one obtains:

$$P_i = ((-X_2 + X_3 - X_4)(-X_1) + (X_3 - X_4)X_2 + X_4X_3)(X_i - X_1 + X_2 - X_3 + X_4):$$

After simpli cations one gets:

$$P_1 = -e_1$$
; $P_2 = e_1 + e_2$; $P_3 = e_1 - e_2 - e_3$; and $P_4 = e_1 - e_2 + e_3 + e_4$:

The matrix expressing P_i 's in terms of e_i 's is the upper triangular matrix with the determinant equal to 1. Therefore the lemma follows.

A similar calculation establishes that $jB_{L_{2BR}}(3)j < jB(5;3)j$. B(5;3) is of class 3 and has 3^{25} elements. Considering L_{2BR} as a closed 6{braid we note that $B_{L_{2BR}}(3)$ is obtained from B(5;3) by adding 5 relations $R_1; ...; R_5$. Relations fR_ig are in the last term of the lower central series of B(5;3) (and of the associated graded algebra L(5;3)). Relations form a 4{dimensional subspace in $L_3 = Z_3^{10}$. Thus $jB_{L_{2BR}}(3)j = 3^{21}$.

For a computer veri cation showing that $B_{\land}(3) \neq B(4;3)$ consider any presentation of B(4;3) (eg, Magma solution by Mike Newman [5]) and add the relations P_i to obtain a presentation of $B_{\land}(3)$. Using any of the algebra programs mentioned above, one veri es that $jB_{\land}(3)j = 3^{10}$ while $jB(4;3)j = 3^{14}$.

The solution of the Nakanishi{Montesinos 3{move conjecture, presented above, is the rst instance of application of Burnside groups of links. It was motivated by the analysis of cubic skein modules of 3{manifolds. The next step is the application of Burnside groups to rational moves on links. This, in turn, should have deep implications to the theory of skein modules [7].

References

- [1] **W Burnside**, On an Unsettled Question in the Theory of Discontinuous Groups, Quart. J. Pure Appl. Math. 33 (1902) 230{238
- [2] **R Fenn**, **C Rourke**, *Racks and links in codimension two*, Journal of Knot Theory and its Rami cations, 1 (1992) 343{406
- [3] **D Joyce**, A classifying invariant of knots: the knot quandle, Jour. Pure Appl. Alg. 23 (1982) 37{65
- [4] **R Kirby**, *Problems in low-dimensional topology; Geometric Topology*, from \Proceedings of the Georgia International Topology Conference, 1993", Studies in Advanced Mathematics, Volume 2 part 2 (W Kazez, Editor) AMS/IP (1997) 35{473
- [5] M Newman, http://magma.maths.usyd.edu.au/magma/Examples/node15.html

- [6] **J H Przytycki**, *t_k* {*moves on links*, from \Braids", (J S Birman and A Libgober, Editors) Contemporary Math. Vol. 78 (1988) 615{656
- [7] **JH Przytycki**, *Skein modules of 3{manifolds*, Bull. Ac. Pol.: Math. 39 (1991) 91{100
- [8] **JH Przytycki**, *3{coloring and other elementary invariants of knots*, Banach Center Publications, Vol. 42, \Knot Theory" (1998) 275{295
- [9] M Vaughan-Lee, *The restricted Burnside problem*, second edition, London Mathematical Society Monographs no. 8, The Clarendon Press and Oxford University Press, New York (1993)
- [10] M Wada, Group invariants of links, Topology, 31 (1992) 399{406