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Abstract

The Jones{Witten theory gives rise to representations of the (extended) mapping class
group of any closed surface Y indexed by a semi-simple Lie group G and a level k . In
the case G = SU(2) these representations (denoted VA(Y )) have a particularly simple
description in terms of the Kau�man skein modules with parameter A a primitive 4rth

root of unity (r = k + 2). In each of these representations (as well as the general
G case), Dehn twists act as transformations of �nite order, so none represents the
mapping class group M(Y ) faithfully. However, taken together, the quantum SU(2)
representations are faithful on non-central elements of M(Y ). (Note that M(Y ) has
non-trivial center only if Y is a sphere with 0; 1; or 2 punctures, a torus with 0; 1; or 2
punctures, or the closed surface of genus = 2.) Speci�cally, for a non-central h 2 M(Y )
there is an r0(h) such that if r � r0(h) and A is a primitive 4rth root of unity then
h acts projectively nontrivially on VA(Y ). Jones’ [9] original representation �n of the
braid groups Bn , sometimes called the generic q{analog{SU(2){representation, is not
known to be faithful. However, we show that any braid h 6= id 2 Bn admits a cabling
c = c1; : : : ; cn so that �N (c(h)) 6= id, N = c1 + : : :+ cn .
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524 Freedman, Walker and Wang

1 Introduction

Let Y denote a compact, connected, oriented surface. The mapping class group
M(Y ) �= Di�+(Y )=Di�+

0 (Y ) is de�ned as the orientation preserving di�eomor-
phisms modulo isotopy. (We do not put base points on boundary components.)
Lickorish [13] showed that M is �nitely generated, Hatcher and Thurston [7]
showed that M is �nitely presented and explicit presentation have been written
down [15]. It is known that M is always residually �nite [6]. Bigelow [3] [4]
has shown that M is a matrix group when genus(Y ) = 0 and when Y is closed
and genus(Y ) = 2. Of course, M(T 2) �= SL(2; Z) is also a matrix group.

In this note we study the quantum SU(2) representations of M. Except when
M(Y ) is the trivial group (Y = sphere or disk), all these representations, and
in fact all quantum representations of which the authors are aware1, have kernel
because Dehn twists are carried to operators of �nite order. We prove, however,
that the direct sum of all the quantum SU(2) representations is faithful except
on central elements of M(Y ) which are never detected. It is well-known [8]
that Z(M(Y )) = feg unless Y = S1 � I; T 2; T 2 − pt; T 2 − 2 pts, T 2#T 2 in
which case the center is the group generated by the elliptic or hyper-elliptic
involution.

These quantum SU(2) representations are an outgrowth of Jones{Witten the-
ory. We use the [5] construction of these representations based on the skein
theory of the Kau�man bracket. This construction produces a projective repre-
sentation VA(Y ) of M(Y ) whenever Kau�man’s variable A is a primitive 4rth

root of unity. (When A is a primitive 2rth root of unity a quantum{SO(3)
representation is the result. All our faithfulness results are true for this family
as well. Experts will have no di�culty guessing the proof of this extension:
simply restrict the present proof to \even labels".)

First we consider surfaces Y without boundary.

Theorem 1.1 Let Y be a closed connected oriented surface and M(Y ) its
mapping class group. For every non-central h 2 M, there is an integer r0(h)
such that for any r � r0(h) and any A a primitive 4rth root of unity, the

1 Bigelow’s representation is equivalent to the BMW representation but at a generic
value. At a generic value Dehn twist has in�nite order but unfortunately, generic values
lead to in�nite dimensional { not quantized { representations except in the genus = 0
case. (To see the di�erence consider admissible labelling of trees and graphs. Even if
the label set is in�nite, if the labels on valence = 1 vertices are �xed then there are
only �nitely many admissible labellings in the tree case.)
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operator hhi : VA(Y ) ! VA(Y ) is not the identity, hhi 6= 1 2 P End(VA), the
projective endomorphisms. In particular, any in�nite direct sum of quantum
SU(2) representations faithfully represents these mapping class groups modulo
center.

Theorem 1.1 and Theorem 3.3, which treats surfaces with boundary, have a
formal corollary outside quantum topology (which was previously known [6].)

Corollary 1.2 For all compact orientable surfaces Y M(Y ) is residually �-
nite.

Proof Exploit the fact that �nitely generated matrix groups over C are resid-
ually �nite.

Within quantum topology the theorem also has an immediate corollary.

Corollary 1.3 Let Y be a closed connected compact orientable surface. Let
N be the mapping torus of a non-central h : Y −! Y . Let h iA denote the
closed 3{manifold invariant associated to (SU(2); A) ; A a primitive 4rth root
of unity. For all r � some r0(h); jhNiAj < jhS1 � Y iAj.

Proof In the case of Y {bundles over a circle S1 the gluing relations for a
TQFT imply that h iA is simply trace (monodromy) = trhhiA . If hhiA 6= id
then jtrhhiAj < j tr idVA j.

The proof of Theorem 1.1 is relatively simple. If h is a non-central element of
M(Y ), then there is an embedded curve � in Y such that � and h(�) are not
isotopic. Associated to any curve � on Y there is a operator T� : VA(Y ) !
VA(Y ), and Th(�) = hhiT�hh−1i. We show that for r su�ciently large T� is
not equal (even projectively) to Th(�) . It follows that hhi acts projectively
nontrivially on VA(Y ).

The rest of the paper is organized as follows. Section 2 reviews the facts about
the SU(2) quantum invariants we will need. Section 3 contains the proofs of
the main theorems, modulo a topological lemma which is proved in Section 4.
Section 5 contains further remarks on the original Jones braid group represen-
tation.

Geometry & Topology, Volume 6 (2002)
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2 Review of SU(2) quantum invariants

In this section we briefly review Kau�man skein modules [11] and the [5] con-
struction of the SU(2) quantum invariants. For more details, see [11] and [5].

The Kau�man skein module of a 3{manifold M is de�ned to the free vector
space generated by isotopy classes of unoriented framed links in M , modulo
the Kau�man skein relation and replacing trivial loops with a factor of d =
−A2−A−2 . (See Figure 1. Throughout this paper �gures follow the \blackboard
framing" convention.)

Figure 1: De�nition of Kau�man skein module

One can similarly de�ne the Kau�man skein module for a 3{manifold with a
�nite collection of framed points in its boundary in terms of properly embedded
framed 1{submanifolds whose boundary is the given collection of points. Note
that for M = S3 any link is equivalent to some multiple of the empty link, so
we get a C[A;A−1] valued invariant of framed links on S3 .

In what follows we specialize to the case

A = e2�i=4r:

(So the Kau�man \polynomial" of a link will actually be a complex number.)

Geometry & Topology, Volume 6 (2002)
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Fact 2.1 For each k � r− 2 there is a unique skein (�nite linear combination
of diagrams) Pk in (B3; 2k points) such that PkPk = Pk and Pk is killed by
\turn backs". (See Figure 2.)

Figure 2: Projector killed by turn-back

It follows that Pk is invariant under a 180 degree rotation (Figure 3), and that
Pk is equal to the identity tangle plus terms with turnbacks (Figure 4). Pk is
called the projector on k strands.

Figure 3: Projector invariant under rotation

Fact 2.2 For any n � 0, then identity tangle on n strands can be factored
though the sum of projectors P0; : : : ; Pr−2 . If n � r − 2, then the coe�cient
of Pn is 1 (Figure 5).

The fact than only projectors up to r − 2 are needed is a consequence of A
being a 4rth root of 1.

Fact 2.3 Let b be a braid on k strands and c(b) be the signed number of
crossings of b. Then bPk = Ac(b)Pk .

Geometry & Topology, Volume 6 (2002)
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Figure 4: Projector equal to identity plus turn-back terms

Figure 5: Identity in terms of projectors

Fact 2.3 says that up to scalars, we can absorb a braid into a projector. The
proof follows easily from the Kau�man skein relation and Fact 2.1.

Fact 2.4 Let a, b and c be non-negative integers and let X be a \trivalent
vertex" skein as shown in the left hand side of Figure 6. If (a) the three
triangle inequalities are satis�ed (a � b+ c etc.), (b) a+ b+ c is even, and (c)
a+ b+ c � 2r−4, then X is proportional to the standard diagram on the right
hand side of Figure 6. If these conditions are not satis�ed then X = 0.

Fact 2.4 follows easily from Fact 2.3 and Figure 4.

Let G �M be a trivalent ribbon graph with edges labeled by integers between
0 and r − 2, such that at each vertex the conditions of Fact 2.4 are satis�ed.
We will regard G as a shorthand notation for the linear combination of framed
links in M obtained by replacing an edge of G labeled by k with Pk , and
replacing trivalent vertices with the right hand side of Figure 6.
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Figure 6: 1{dimensional trivalent vertex space

Let dk be the value of the skein shown in Figure 7 (unknot labeled by Pk ).
Let sk = cdk , where c is a positive real number chosen so that

Pr−2
i=0 s

2
i = 1.

Figure 7: Loop value for projector

In a framed link diagram, a component labeled by ! will mean the linear
combination shown in Figure 8.

Fact 2.5 Framed links with components labeled by ! are invariant under
handle slides, balanced stabilization, and the introduction of a circumcision
pair. (See Figures 9, 10 and 11.)

Let L be a framed link in S3 . Let L! be the linear combination of labeled
framed links obtained by labelling each component of L by ! . It follows from
Fact 2.5 that the Kau�man polynomial of L! depends only on the 3{manifold
described by interpreting L as a surgery diagram, and on the signature of L.
For any closed, oriented 3{manifold M and integer n de�ne Z(M;n) to be

Geometry & Topology, Volume 6 (2002)
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Figure 8: De�nition of ! label

Figure 9: Handle slide invariance

Figure 10: Balanced stabilization invariance

Figure 11: Circumcision pair invariance

this invariant (ie, Z(M;n) is equal to the Kau�man polynomial of L! , where

Geometry & Topology, Volume 6 (2002)
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L � S3 is any surgery description of M with signature n.) It is easy to see that
Z(M;n) = Cn−mZ(M;m), where C is the value of the Kau�man polynomial
of an unknot with framing 1 (right handed twist).

(Note: n can be interpreted as an equivalence class of framings of the tangent
bundle of M , a bordism class of null-bordisms of M , or a p1{structure on M .
See [2], [16] and [5].)

Next we follow the [5] approach to construct a vector space V (Y ) for each
closed, oriented 2{manifold Y , and an invariant Z(M) 2 V (@M) for an oriented
3{manifold with boundary. These 2{manifolds and 3{manifolds with boundary
should also be equipped with extra structure (framing, null-bordism, or p1{
structure), but we will suppress mention of this since the arguments in the
remainder of the paper work even with a projective ambiguity.

Let Y be a closed, oriented 2{manifold. Let @−1Y be the set of all isomorphism
classes of pairs (M;L), where @M = Y and L is a labeled ribbon graph in the
interior of M . Let W(Y) be the free vector space generated by @−1Y . There
is a pairing W (Y ) ⊗W (−Y ) ! C given by x ⊗ y 7! Z(x [ y). De�ne V (Y )
to be the quotient of W (Y ) by the annihilator of W (−Y ) with respect to this
pairing. In other words, x � x0 if Z(x [ y) = Z(x0 [ y) for all y 2W (−Y ).

If Y is not closed choose a labelling l of the boundary components of Y by
integers 0 � lc � r − 2. Let bY be the result of capping o� each boundary
component of Y by D2 . De�ne @−1(Y; l) to be the set of isomorphism classes
of 3{manifold M with @M identi�ed with bY , and with a properly embedded
framed tangle in M which coincides with a standardly embedded copy of Pk
in a collar neighborhood of each cap disk, where k is the label assigned to that
boundary component of Y by l . We can now de�ne V (Y ; l) as above.

The extended mapping class group of Y acts on @−1Y , and thus on V (Y ).
The ordinary, non-extended mapping class group of Y has a projective action
on V (Y ).

The surgery formula for Z shows that V (Y ) is spanned by the equivalence
classes of links in any single 3{manifold M , @M = Y . For example, we could
take M to be a handlebody H (assuming Y is connected). It then follows from
Facts 2.2 and 2.4 that:

Fact 2.6 Let H be a handlebody with spine S , (ie, S is a 1{complex with
vertices at most trivalent, and H is a regular neighborhood of S .) Then V (@H)
has a basis corresponding to all labellings of the 1{cells of S by integers between
0 and r− 2, such that the parity and quantum triangle inequalities of Fact 2.4
are satis�ed at each vertex of S .
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If Y has non-empty boundary, we get a basis of V (Y; l) by letting bY bound
a handlebody H and considering spines of H which meet each cap disk of bY
once. Labellings of the spine are constrained to agree with l on 1{cells meeting
the boundary.

If Y is closed then End(V (Y )) can be identi�ed with V (Y
‘
−Y ), and so is

spanned by elements of the form Z(Y � I; L), where L is a labeled framed
link in Y � I . If Y has boundary then

L
l End(V (Y; l)) can be identi�ed with

V (D(Y )), where l runs through all labellings of @Y and D(Y ) = Y [@Y −Y
is the double of Y along its boundary. D(Y ) bounds Y � I , and as beforeL

l End(V (Y; l)) is spanned by elements of the form Z(Y � I; L), where L is
a labeled framed link in Y � I . In both cases the action of End(: : :) is given
in geometric terms by gluing (Y � I; L) onto a 3{manifold (bounded by Y )
representing an element of V (Y ) (or V (Y; l)).

3 Proof of main theorems

Let Y be a closed, oriented surface, h : Y ! Y an orientation preserving
homeomorphism, and Vh : V (Y )! V (Y ) the action of h on the TQFT vector
space.

Proposition 3.1 Suppose there exists an unoriented simple closed curve a �
Y such that h(a) is not isotopic (as a set) to a. Then Vh is a multiple of the
identity for at most �nitely many r . That is, as r increases h is eventually
detected.

Proof Let C(a) = Z(Y � I; a � f1=2g) 2 V (Y ) ⊗ V (−Y ) = End(V (Y )).
De�ne C(h(a)) similarly. It’s easy to see that C(h(a)) = VhC(a)V −1

h . It
therefore su�ces to show that C(a) 6= C(h(a)).

By Lemma 4.1 there exists a handlebody H bounded by Y such that a bounds
an embedded disk in H and h(a) is a non-trivial \graph geodesic" with respect
to a spine S of H . Let Z(H) 2 V (Y ) be the vector determined by H , and
Z(H;h(a)) 2 V (Y ) be the vector determined by the pair (H;h(a)). (We can
push h(a) into the interior or H .) Then

C(a)(Z(H)) = Z(H;a) = d � Z(H);
and C(h(a))(Z(H)) = Z(H;h(a)):

It therefore su�ces to show that Z(H;h(a)) is not a multiple of Z(H).

Geometry & Topology, Volume 6 (2002)
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For each edge e of the spine S , let we be the (unsigned) number of times h(a)
passes over e. Let m be the maximum of all we +wf +wg such that e, f and
g meet at a vertex of S . Choose r such that 2r − 4 � m.

Let bw be the basis vector of V (Y ) corresponding the labelling w . We claim
that Z(H;h(a)) = �bw + v , where � 6= 0 and v consists of \lower order" terms
{ multiples of bv , where ve � we for all edges e of S and v 6= w . This follows
from Facts 2.2, 2.4 and 2.3. Apply Fact 2.2 at each edge of S . Apply Fact 2.4
at each vertex to see that the result is a linear combination of bw and lower
order terms. Fact 2.3 and the graph geodesic property of h(a) show that the
coe�cient of bw is non-zero. On the other hand, Z(H) is the basis vector
corresponding to the zero (empty) labelling of S .

Proof of Theorem 1.1 By Lemma 4.3, non-central elements of the mapping
class group must move a simple closed curve, so Theorem 1.1 follows from
Proposition 3.1.

Next we consider the case where Y has boundary. As before, let h : Y ! Y be
an orientation preserving homeomorphism and

Vh 2
M
l;l0

Hom(V (Y; l); V (Y; l0))

be the action of h on the TQFT vector spaces.

Proposition 3.2 Suppose there exists an unoriented, homologically essential
simple closed curve a � Y such that h(a) is not isotopic to a. Then Vh is a
multiple of the identity for at most �nitely many r . That is, as r increases h
is eventually detected.

Proof De�ne operators C(a) and C(h(a)) as in the proof of Proposition 3.1.
(Note that while Vh 2

L
l;l0 Hom(V (Y; l); V (Y; l0)), C(a) and C(h(a)) lie in the

block diagonal
L

l End(V (Y; l).) As before, it su�ces to show that C(a) 6=
C(h(a)).

By Lemma 4.2, a� f1=2g can be extended to a spine of Y � I . Since h(a) is
not isotopic in Y to a, h(a) must be isotopic to a graph geodesic distinct from
a � f1=2g. It follows from Fact 2.6 that C(a) and C(h(a)) are (projectively)
distinct elements in V (@(Y � I)) =

L
l End(V (Y; l)), provided r is su�ciently

large.

We can now prove:

Geometry & Topology, Volume 6 (2002)
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Theorem 3.3 Let Y be a connected orientable surface with boundary and let
h be a non-central di�eomorphism of Y . Let Vh 2

L
l;l0 Hom(V (Y; l); V (Y; l0))

be the action of h on the TQFT vector spaces. Then Vh is a multiple of the
identity for at most �nitely many r .

Proof In light of Proposition 3.2, it su�ces to show that any di�eomorphism
of Y which �xes all homologically essential simple closed curves lies in the center
of the mapping class group. Let h be such a di�eomorphism. Then unless Y is
an annulus h cannot permute the boundary components of Y ; also h commutes
with Dehn twists along homologically essential curves and all \essential" braid
twists b (1=2 Dehn twists which permute a pair of boundary components) along
an essential scc γ which bounds a pair of pants to at least one side. Letting
M(Y ) denote the full mapping class group and N the number of boundary
components of Y we have a short exact sequence:

1!M0(Y )!M(Y )! �(N)! 1

where �(N) is the permutation group and M0(Y ) the kernel. If N = 1,
M(Y ) =M0(Y ) is generated by Dehn twists along essential sccs and if N � 3,
M(Y ) is generated by Dehn twists along essential sccs together with essential
braid twists b as above. In these cases h commutes with a generating set,
and therefore all, of M(Y ). When N = 2 we need to include some (any)
\inessential" braid twist b0 along a scc γ0 bounding a pair of pants on one side
and null bounding on the other side. Since γ0 is null homologous, special plead-
ing is now required to prove that h(γ0) � γ0 . We exploit the fact that we may
pick any γ0 we like so long as it cobounds a pair of points with @Y . Choosing
γ0 amounts to picking a simple arc � between the two components @+ and
@− of @Y (and then thickening). Choose � so that the geometric intersection
numbers are (�; �0) = 1; (�; �1) = 0; � � � ; (�; �2g) = 0, where f�0; : : : ; �2gg is a
chain a 2 genus (Y )+1 sccs in int(Y ) so that only � ’s of adjacent indices meet
and these meet transversely in a single point and so that @+ is separated from

@− by
2g

U
i=0

�i (see Figure 11). Now (h(�); �i) = (h(�); h(�i)) = (�; �i) = �(i).

It follows that h(�) is isotopic back to � (The isotopy may twist @Y .) and that
h(γ0) � γ0 . Now the proof can be �nished for N = 2, as in the case N � 3, by
taking a generating set for M(Y ) consisting of b0 = b0(γ0) together with Dehn
twists about essential sccs.

4 Some topological lemmas

For applications to closed surfaces, we need:
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Figure 12

Lemma 4.1 Let a and b be two non-trivial, non-isotopic simple closed curves
on a closed orientable surface Y . Then there exists a pants decomposition of
Y such that a is one of the decomposing curves and b is a non-trivial \graph
geodesic" with respect to the decomposition. (That is, b does not intersect any
curve of the decomposition twice in a row.)

Proof We will inductively choose a set of decomposing curves on Y , starting
with a. At each stage, let Y 0 denote Y cut along the curves we have chosen
thus far, and let b0 denote the image of b in Y 0 . b0 is a properly embedded,
possibly disconnected, 1{submanifold of Y 0 .

We say that Y 0 and b0 satisfy Condition X if for each component S of Y 0 and
each component e of S\b0 either (a) e is non-separating or (b) each component
of S n e has genus greater than zero.

Note that initially, when Y 0 is Y n a, Condition X is satis�ed (after possibly
isotoping b to remove bigons with a). If Y 0 consists only of pairs of pants
(or an annulus if Y was a torus), then Condition X implies the graph geodesic
property. Thus it su�ces to show that at each stage we can choose an additional
decomposing curve such that Condition X is preserved, until we have a pants
decomposition.

Choose a component S of Y 0 which is not a pair of pants or annulus. We will
�nd a simple closed curve (scc) c in S such that S n c still satis�es condition
X.

Geometry & Topology, Volume 6 (2002)
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If S has genus greater than zero, let �S be the closed surface obtained by
capping of the boundary of S with disks. Those components of b0 \ S which
are: (1) an arc with both endpoints on the same boundary component of S ,
or (2) a scc, determine a well-de�ned isotopy class of curves in �S . In case (1)
complete the arc to a circle by coning its endpoints in the cap; in case (2) simply
include. Choose a curve c in S whose image in �S does not lie in any of the
aforementioned isotopy classes. If the genus of S is � 2, we further require
that c is a separating curve. By pushing c across punctured bigons, we may
assume that no component of S n (c [ b0) is a punctured bigon (see Figure 13).
Thus Condition X is satis�ed.

Figure 13: Push across punctured bigon

Note that for a genus 0 surface, Condition X is satis�ed if and only if all compo-
nents of b0 are arcs which connect distinct boundary components. Assuming S
has four or more punctures, we need to �nd a scc c � S0 which is not boundary
parallel and meets each arc of b0 in at most one point. Cutting along c perpet-
uates condition X . We use a little geometry here to avoid a greater amount
of combinatorics. A well known theorem of Köebe2[10] represents the edges
of any spherical graph by disjoint geodesic arcs of length < � . Regarding the
punctures of S as vertices, represent b0 in this way, with the understanding
that parallel arcs of b0 collapse to a single edge. We call two arcs of b0 parallel
if they join the same boundary components x and y , and together with an
arc in x and an arc in y , bound a rectangle in S . Any great circle γ disjoint
from the vertices and containing at least two vertices in each complementary
hemisphere is a good choice for c. To �nd such a γ , start with the great circle
γ0 determined by any two nonantipotal vertices and perturb it suitably.

Lemma 4.2 Let Y be a connected orientable surface with boundary and let a

2Often called Andreev’s Theorem.
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be a homologically essential simple closed curve in Y . Then a can be extended
to a spine of Y .

Proof Cut Y along a and use the classi�cation of surfaces.

Lemma 4.3 Suppose Y is a compact oriented surface with or without bound-
ary. Suppose h : Y −! Y is an orientation preserving homeomorphism, not
isotopic to idY , which does not change the unparameterised isotopy class of any
scc in Y . Then Y is either an annulus, a torus, a torus with � 2 punctures,
or the closed surface of genus = 2 and h is either the elliptic or hyperelliptic
involution.

Proof If h : Y −! Y leaves all (unoriented) isotopy classes of scc’s invariant
then h will commute with all Dehn twists. Since Dehn twists generate M(Y )
[13], h 2 (Center(M(Y )) =: Z(M(Y )). It is well-known ([8], Theorem 7.5D)
that the only surfaces with Z(M(Y )) 6= feg are Y = T 2 , T 2n pt., T 2n 2 pts. ,
S1 � I , and T 2#T 2 . Furthermore the only nontrivial element of these centers
are the elliptic and hyperelliptic involutions respectively.

5 Further remarks

The Jones representation contains the Burau representation as a particular
summand. It is known that the Burau representation is not faithful for Bn
with n � 5. On the other hand, the Jones representation can be obtained by
specializing the BMW representation which is faithful for Bn . It seems hard to
decide the faithfulness of Jones representation but in this direction, we prove:

Theorem 5.1 For every braid h 6= 1 2 Bn , the n{strand (unframed) braid
group n � 2, there is a cabling (c1; : : : ; cn) of h on which the SU(2){Jones
representation is nontrivial.

Proof The Jones representation on Bn when specialized to A = e2�i=4r , t =
e2�i=r decomposes as a direct sum of singular and nonsingular pieces. The
nonsingular piece is a sum of the SU(2){quantum representations on V11:::;1n;m ,
the Hilbert space at level k = r−2. The subscripts of V are admissible labels at
�nite punctures and in�nity. Cabling produces sums of irreducibles according
to a Clebsch{Gordon formula. In particular the Jones representation on the
c1; : : : ; cn cabling contains as a summand a copy of each admissible Vc1;:::;cn;m .
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Thus it is su�cient to prove that h acts nontrivially on at least one of these.
Theorem 3.3 says that with only �nitely many exceptions h is nontrivial in
these representations, provided h is not homotopic to the identity in the n+1−
punctured sphere, that is [h] 6= 1 2 (spherical braid group)n+1 = SBn+1 .

The proof is not yet �nished since the natural morphism Bn −! SBn+1 has
kennel = center(Bn) = hfull twisti. This \full twist" is Dehn twist about
in�nity and although this twist is trivial in all End((Vc1;:::;cn;m) its action is
computed [11] to be multiplication by the unit scalar Am(m+2) . Thus each
nontrivial central element is also detected in in�nitely many V ’s.
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