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Abstract
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many boundary slopes. Moreover, we will show that only �nitely many Dehn
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1 Introduction

A closed irreducible 3{manifold is called Haken if it contains a two-sided in-
compressible surface. Waldhausen has proved topological rigidity for Haken
3{manifolds [30], ie, if two Haken 3{manifolds are homotopically equivalent,
then they are homeomorphic. However, a theorem of Hatcher [15] implies that,
in a certain sense, most 3{manifolds are not Haken. Immersed �1{injective sur-
faces are a natural generalization of incompressible surfaces, and conjecturally,
3{manifolds that contain �1{injective surfaces have the same topological and
geometric properties as Haken 3{manifolds. Another related major conjecture
in 3{manifold topology is that any 3{manifold with in�nite fundamental group
contains a �1{injective surface.

Hass and Scott [14] have generalized Waldhausen’s theorem by proving topolog-
ical rigidity for 3{manifolds that contain �1{injective surfaces with the 4{plane
and 1{line properties. A surface in a 3{manifold is said to have the n{plane
property if its preimage in the universal cover of the 3-manifold is a union of
planes, and among any collection of n planes, there is a disjoint pair. The
n{plane property is a good way to measure the combinatorial complexity of
an immersed surface. It has been shown [28] that any immersed �1{injective
surface in a hyperbolic 3{manifold satis�es the n{plane property for some n.

In this paper, we use immersed branched surfaces to study surfaces with the
4{plane property. Branched surfaces have been used e�ectively in the studies
of incompressible surfaces and laminations [9, 11]. Many results in 3{manifold
topology (eg Hatcher’s theorem [15]) are based on the theory of branched sur-
faces. We de�ne an immersed branched surface in a 3{manifold M to be a
local embedding to M from a branched surface that can be embedded in some
3{manifold (see de�nition 2.4). Immersed branched surfaces are also used in
[21]. Using lamination techniques and immersed branched surfaces, we show:

Theorem 1 Let M be a closed, irreducible and non-Haken 3{manifold. Then
there is a �nite collection of immersed branched surfaces such that any surface in
M with the 4{plane property is fully carried by an immersed branched surface
in this collection.

This theorem generalizes a fundamental result of Floyd and Oertel [9] in the
theory of embedded branched surfaces. One important application of the the-
orem of Floyd and Oertel is the proof of a theorem of Hatcher [15], which says
that incompressible surfaces in an orientable and irreducible 3{manifold with
torus boundary can realize only �nitely many slopes. A slope is the isotopy
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class of a nontrivial simple closed curve in a torus. We say that a surface in a
3{manifold with torus boundary can realize a slope s if the boundary of this
surface consists of simple closed curves with slope s in the boundary torus of
the 3{manifold. If an immersed surface can realize a slope s, then it extends to
a closed surface in the closed manifold obtained by Dehn �lling along the slope
s. However, Hatcher’s theorem is not true for immersed �1{injective surfaces
in general, since there are many 3{manifolds [2, 26, 3, 22] in which �1{injective
surfaces can realize in�nitely many slopes, and in some cases, can realize every
slope. Using Theorem 1, we will show that surfaces with the 4{plane property
are, in a sense, like incompressible surfaces. Note that many 3{manifolds sat-
isfy the hypotheses in Theorems 2 and 3, such as hyperbolic punctured-torus
bundles [7, 8] and hyperbolic 2{bridge knot complements [16].

Theorem 2 Let M be an orientable and irreducible 3{manifold whose bound-
ary is an incompressible torus, and let H be the set of injective surfaces that
are embedded along their boundaries and satisfy the 4{plane property. Suppose
that M does not contain any nonperipheral closed (embedded) incompressible
surfaces. Then the surfaces in H can realize only �nitely many slopes.

Aitchison and Rubinstein have shown that if a 3{manifold has a nonpositive
cubing, then it contains a surface with the 4{plane and 1{line properties [1],
and hence topological rigidity holds for such 3{manifolds. Nonpositive cub-
ings, which were �rst introduced by Gromov [12], are an important example of
CAT(0) structure. A 3{manifold is said to admit a nonpositive cubing if it is
obtained by gluing cubes together along their square faces under the following
conditions: (1) For each edge, there are at least four cubes sharing this edge;
(2) for each vertex, in its link sphere, any simple 1{cycle consisting of no more
than three edges must consist of exactly three edges, and must bound a triangle.
Mosher [23] has shown that if a 3{manifold has a nonpositive cubing, then it
satis�es the weak hyperbolization conjecture, ie, either it is negatively curved
in the sense of Gromov or its fundamental group has a Z� Z subgroup.

Nonpositively cubed 3{manifolds have very nice topological and geometric prop-
erties. A natural question, then, is how large the class of such 3{manifolds is.
Aitchison and Rubinstein have constructed many examples of such 3{manifolds,
and only trivial examples, such as manifolds with �nite fundamental groups,
were known not to admit such cubings. At one time, some people believed that
every hyperbolic 3{manifold admits a nonpositive cubing. In this paper, we
give the �rst nontrivial examples of 3{manifolds, in particular, the �rst exam-
ples of hyperbolic 3{manifolds that cannot admit any nonpositive cubings. In
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fact, Theorem 3 says that, in a certain sense, most 3{manifolds do not have
such a cubing.

Theorem 3 Let M be an orientable and irreducible 3{manifold whose bound-
ary is an incompressible torus. Suppose that M does not contain any closed
nonperipheral (embedded) incompressible surfaces. Then only �nitely many
Dehn �llings on M can yield 3{manifolds that admit nonpositive cubings.

Acknowledgments This paper is a part of my thesis. I would like to thank
my advisor Dave Gabai, who introduced this subject to me, for many very
helpful conversations. I am also very grateful to Yanglim Choi for a series of
meetings about his thesis and for his work on immersed branched surfaces.

2 Hatcher’s trick

A branched surface in a 3{manifold is a closed subset locally di�eomorphic to
the model in Figure 2.1 (a). A branched surface is said to carry a surface (or
lamination) S if, after homotopies, S lies in a �bered regular neighborhood of
B (as shown in Figure 2.1 (b)), which we denote by N(B), and is transverse
to the interval �bers of N(B). We say that S is fully carried by a branched
surface B if it meets every interval �ber of N(B). A branched surface B
is said to be incompressible if it satis�es the following conditions: (1) The
horizontal boundary of N(B), which we denote by @hN(B), is incompressible
in the complement of N(B), and @hN(B) has no sphere component; (2) B
does not contain a disk of contact; (3) there is no monogon (see [9] for details).

(a) (b)

@hN(B)@vN(B)

Figure 2.1

Theorem 2.1 (Floyd{Oertel) Let M be a compact irreducible 3{manifold
with incompressible boundary. Then there are �nitely many incompressible
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branched surfaces such that every incompressible and @{incompressible sur-
face is fully carried by one of these branched surfaces. Moreover, any surface
fully carried by an incompressible branched surface is incompressible and @{
incompressible.

Using this theorem and a simple trick, Hatcher has shown [15] that given a com-
pact, irreducible and orientable 3{manifold M whose boundary is an incom-
pressible torus, incompressible and @{incompressible surfaces in M can realize
only �nitely many boundary slopes. An immediate consequence of Hatcher’s
theorem is that if M contains no closed nonperipheral incompressible surfaces,
then all but �nitely many Dehn �llings on M yield irreducible and non-Haken
3{manifolds. To prove Hatcher’s theorem, we need the following lemma [15].

Lemma 2.2 (Hatcher) Let T be a torus and � be a train track in T that
fully carries a union of disjoint and nontrivial simple closed curves. Suppose
that � does not bound a monogon. Then � is transversely orientable.

In Theorem 2.1, if @M is a torus, the boundaries of those incompressible
branched surfaces are train tracks that satisfy the hypotheses in Lemma 2.2.
This lemma together with a trick of Hatcher prove the following.

Theorem 2.3 (Hatcher) Let M be a compact, orientable and irreducible 3{
manifold whose boundary is an incompressible torus. Suppose that (B; @B) �
(M;@M) is an incompressible branched surface. If S1 and S2 are two embedded
surfaces fully carried by B , then @S1 and @S2 have the same slope in the torus
@M . Moreover, the incompressible and @{incompressible surfaces in M can
realize only �nitely many slopes.

Proof Since M is orientable, the normal direction of @M and the transverse
orientation of @B uniquely determine an orientation for every curve carried by
@B . Since Si is fully carried by B , every component of @Si (i = 1 or 2) with
this induced orientation represents the same element in H1(@M). If @S1 and
@S2 have di�erent slopes, they must have a nonzero intersection number. There
are two possible con�gurations for the induced orientations of @S1 and @S2 at
endpoints of an arc � of S1\S2 , as shown in Figure 2.2. In either case, the two
ends of � give points of @S1 \ @S2 with opposite intersection numbers. Thus,
the intersection number @S1 �@S2 = 0. So, they must have the same slope. The
last assertion of the theorem follows from the theorem of Floyd and Oertel.
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S1

S2

S1

S2

Figure 2.2

In order to apply the trick of intersection numbers in the proof of Hatcher’s
theorem, we do not need the surfaces S1 and S2 to be embedded. In fact, if
S1 and S2 are immersed �1{injective surfaces that are embedded along their
boundaries and transversely intersect the interval �bers of N(B), then @S1

and @S2 must have the same slope by the same argument. This is the starting
point of this paper. In fact, even the branched surface B can be immersed.
An obstruction to applying Hatcher’s trick is the existence of a local picture
as in Figure 2.3 in B . Next, we will give our de�nition of immersed branched
surfaces so that we can apply Hatcher’s trick to immersed surfaces.

Figure 2.3

De�nition 2.4 Let B be a branched surface properly embedded in some com-
pact 3{manifold, ie, the local picture of B in this manifold is as in Figure 2.1 (a).
Let i : B ! M (respectively i : N(B) ! M ) be a map from B (respectively
N(B)) to a 3{manifold M . We call i(B) an immersed branched surface in M
if the map i is a local embedding. An immersed surface j : S !M (or simply
S ) is said to be carried by i(B) (or B ) if, after some homotopy in M , j = i�h,
where h : S ! N(B) is an embedding and h(S) is transverse to the interval
�bers of N(B). We say that it is fully carried by i(B) if h(S) transversely
intersects every I {�ber of N(B).

If i : B ! M is an immersed branched surface, then i(B) contains no local
picture as in Figure 2.3 by de�nition. The following proposition is an extension
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of Hatcher’s theorem, and its proof is simply an application of Hatcher’s trick
to immersed branched surfaces.

Proposition 2.5 Let M be a compact, orientable and irreducible 3{manifold
whose boundary is an incompressible torus. Let S1 and S2 be immersed �1{
injective surfaces fully carried by an immersed branched surface i : B ! M .
Suppose that ij@B is an embedding and i(@B) does not bound a monogon.
Then @S1 and @S2 have the same slope.

3 Cross disks

We have seen in section 2 that Hatcher’s trick can be applied to immersed
branched surfaces. However, we also need �niteness of the number of branched
surfaces, as in the theorem of Floyd and Oertel, to get interesting results. This
is impossible in general because there are many examples of 3{manifolds in
which immersed �1{injective surfaces can realize in�nitely many slopes. In this
section, we will show that one can generalize the theorem of Floyd and Oertel
to immersed surfaces with a certain property and such immersed surfaces can
realize only �nitely many slopes.

Using normal surface theory, it is very easy to get �niteness (of the number of
branched surfaces) in the case of embedded incompressible surfaces. For any
triangulation of a 3{manifold, an incompressible surface can be put in Kneser{
Haken normal form [20, 13]. There are 7 types of normal disks in a tetrahedron,
4 triangular types and 3 quadrilateral types. By identifying all the normal disks
(in the intersection of the surface with a tetrahedron) of the same type to a
branch sector, we can naturally construct a branched surface fully carrying this
embedded normal surface, and the �niteness follows from the compactness of
the 3{manifold (see [9] for details). However, in the case of immersed surfaces,
we cannot do this, although immersed �1{injective surfaces can also be put in
normal form. If we simply use the construction in [9] and identify all the normal
disks (in an immersed surface) of the same type to a branch sector, we may get
a local picture like that in Figure 2.3, which makes Hatcher’s argument fail.

Suppose that S is a �1{injective surface in a 3{manifold M with a triangulation
T . Using normal surface theory, we can put S in normal form. Let fM be the
universal cover of M , � : fM ! M be the covering map, eS = �−1(S), andeT be the induced triangulation of fM . For any arc � in M (or fM ) whose
interior does not intersect the 1{skeleton T (1) , we de�ne the length of � to
be jint(�) \ T (2)j, where int(E) denotes the interior of E and jEj denotes
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the number of connected components of E . Moreover, we de�ne the distance
between points x and y , d(x; y), to be the minimal length of all such arcs
connecting x to y . In this paper, we will always assume our curves do not
intersect the 1{skeleton of the triangulation, and we always use the distance
de�ned above unless speci�ed.

Let f : F ! M be an immersed surface. We de�ne the weight of f(F ) to be
jf−1(T (1))j. A normal (immersed) surface f : F ! M is said to have least
weight if jf−1(T (1))j is minimal in the homotopy class of f . Let f : (F; @F )!
(M;@M) (F 6= S2 or P 2 ) be a �1{injective map, and MF be the cover of M
such that �1(MF ) equals f�(�1(F )). We will suppose that the lift of f into MF

is an embedding (note that this is automatic if f is least area in the smooth or
PL sense [14, 18]). Thus, the preimage of f(F ) in fM consists of an embedded
simply connected surface � which covers F in MF and the translates of �
by �1(M). We say f has the n{plane property if, given any collection of n
translates of �, there is always a disjoint pair. We say that � above has least
weight if every disk in � has least weight among all the disks in fM with the
same boundary. It follows from Theorem 5 of [18] or Theorem 3.4 of [10] that
f can be chosen so that � has least weight, and hence any translate of � has
least weight. By Theorem 8 of [18] (or Theorem 6.3 of [10]), if there is a map g
in the homotopy class of f having the n{plane property, then we can choose f
so that f is a normal surface with least weight, � has least weight, and f also
has the n{plane property. Note that F may be a surface with boundary and
� may not be a plane R2 , but since the interior of � is a plane, to simplify
notation, we will call each translate of � a plane in the preimage of f(F ) (infM ) throughout this paper.

A normal homotopy is de�ned to be a smooth map H : F � [0; 1]!M so that
for each t 2 [0; 1], the surface Ft given by HjF�ftg is a normal surface. Note
that the weight of Ft is �xed in a normal homotopy.

In this paper, we will assume that our 3{manifolds are compact and irreducible,
and our immersed surfaces, when restricted to the boundary, are embedded. We
will also assume that our injective surfaces are normal and have least weight,
and any plane in their preimages in the universal cover of the 3{manifold also
has least weight. To simplify notation, we will not distinguish f : F ! M , F
and f(F ) unless necessary, and we will always denote the preimage of f(F ) in
the universal cover fM by eF throughout this paper.

De�nition 3.1 Let f : F ! M be a �1{injective and least weight normal
surface, and � be a plane in the preimage of f(F ) in fM as above. Each plane
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in the preimage of f(F ) in fM is a translate of � by an element in �1(M).
Let F1 and F2 be two such planes in fM . Suppose that D1 and D2 are two
embedded subsurfaces in F1 and F2 respectively. We say that D1 and D2 are
parallel if there is a normal homotopy H : D�I ! fM such that H(D; 0) = D1 ,
H(D; 1) = D2 , HjD�ftg is an embedding for each t 2 I , and H �xes the 2{
skeleton, ie, if H(x; y) 2 eT (i) then H(x; I) � eT (i) (i = 1; 2). We call D1 [D2

a cross disk if D1 and D2 are parallel disks, F1 6= F2 , and F1 \ F2 6= ;. We
call Di (i = 1; 2) a component of the cross disk D1[D2 . Let H be the normal
homotopy above. We call H(p; 0) [H(p; 1) a pair of points (respectively arcs,
disks) in the cross disk, for any point (respectively arc, disk) p in D . A cross
disk D1 [D2 (or the disk D1 ) is said to have size at least R if there exists a
point x 2 D1 such that length(�) � R for any normal arc � � D1 connecting
x to @D1−@fM , and we call the normal disk of T \D1 that contains x a center
of the cross disk, where T is a tetrahedron in the triangulation. To simplify
notation, we also call �(D1 [ D2) a cross disk and call the image (under the
map �) of a pair of points (respectively arcs, disks) in D1 [D2 a pair of points
(respectively arcs, disks) in the cross disk, where � : fM ! M is the covering
map.

We denote by F the set of �1{injective, @{injective and least weight surfaces
in M whose boundaries are embedded in @M . Let FR = fF 2 F : there are no
cross disks of size R in eFg, where eF is the preimage of F in fM . The following
lemma is due to Choi [5].

Lemma 3.2 There is a �nite collection of immersed branched surfaces such
that every surface in FR is fully carried by an immersed branched surface in
this collection.

Proof Let T be a tetrahedron in the triangulation T of M and di � F \ T
be a normal disk (i = 1; 2; 3), where F 2 FR . Suppose that eT is a lift of
T in fM , edi is a lift of di in eT , and Fi is the plane in eF that contains edi
(i = 1; 2; 3), where eF is the preimage of F in fM . We call DN (di) = fx 2 Fi :
d(x; p) � N; where p 2 edig a surface of radius N with center edi . Note that,
topologically, DN (di) may not be a disk under this discrete metric.

Next, we will de�ne an equivalence relation. We say that d1 is equivalent to d2

if DkR(d1) is parallel to DkR(d2) and F1 \ F2 = ; (or F1 = F2 ), where k is
�xed. We assume that k is so large that DkR(di) contains a subdisk of size R
whose center is edi (i = 1; 2). Note that, since M is compact and every plane ineF has least weight, k can be chosen to be independent of the choices of F 2 FR
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and the normal disk di � F , ie, k depends only on R and the triangulation of
M . Suppose that there are three normal disks d1 , d2 and d3 in F \ T so that
d1 is equivalent to d2 and d2 is equivalent to d3 . Then DkR(d1) is parallel to
DkR(d3) by de�nition. If F1 6= F3 and F1 \ F3 6= ;, by the assumption on k ,
there is a cross disk of size R that consists of two disks from F1 and F3 . This
contradicts the hypothesis that F 2 FR . Thus d1 is equivalent to d3 , and the
equivalence relation is well-de�ned.

Since M is compact, for any normal disk d in fM , the number of nonparallel
(embedded) normal surfaces of radius kR (with center d) is bounded by a
constant C that depends only on kR and the triangulation of M . As there are
no cross disks of size R, if DkR(d1) is parallel to DkR(d2), then d1 and d2 must
be equivalent. Thus, there are at most C equivalence classes among the normal
disks of F \ T with the same disk type, and hence we can divide the disks in
F \T for each T into at most 7C equivalence classes, since there are 7 di�erent
types of normal disks in a tetrahedron. For any tetrahedron T , suppose there
are CT (CT � 7C ) equivalence classes in F \ T . We put CT products Di � I
(i = 1; : : : ; CT ) in T such that Di � ftg is a normal disk and the normal disks
of F \ T in the same equivalence class lie in the same product Di � I . Along
T (2) , we can glue these products Di� I ’s together according to the equivalence
classes, as in the construction of embedded branched surfaces in [9]. In fact, we
can abstractly construct a branched surface B and a map f : N(B)!M such
that, for any tetrahedron T , f(@vN(B)) � T (2) and f(N(B)− p−1(L)) \ T is
exactly the union of the products int(Di) � I ’s in T , where L is the branch
locus of B , p : N(B) ! B is the map that collapses every interval �ber of
N(B) to a point, and int(Di) denotes the interior of Di . By our construction,
B does not contain a local picture like that in Figure 2.3, and hence it can be
embedded in some 3{manifold [6]. Since the number of equivalence classes is
bounded by a constant, there are only �nitely many such immersed branched
surfaces that fully carry surfaces in FR .

Corollary 3.3 Suppose M is a compact, orientable, irreducible 3{manifold
whose boundary is an incompressible torus. Then the surfaces in FR can realize
only �nitely many slopes.

Proof Suppose that F1; F2 2 FR are fully carried by the same immersed
branched surface f : B ! M . To simplify notation, we will also denote by
f the corresponding map from N(B) to M . Since the surfaces in FR are
embedded along their boundaries, after some normal homotopy if necessary,
we can assume that f j@B is an embedding. Since the surfaces in FR are �1{
injective, the horizontal boundary of f(N(B))\@M does not contain any trivial
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circle component. Because of Lemma 3.2 and Proposition 2.5, we only need to
show that f(@B) does not bound a monogon in @M . We will show next that the
existence of a monogon in @M contradicts our assumption that our immersed
surfaces have least weight. The proof is essentially the same as an argument in
[9] for embedded branched surfaces.

Since f j@B is an embedding, to simplify notation, we do not distinguish @B and
f(@B), and denote f(N(@B)) by N(@B), where N(@B) is a �bered neighbor-
hood of the train track @B . By our de�nition of immersed branched surface,
we can assume that F1 � f(N(B)) and f−1(F1) is an embedded surface fully
carried by N(B).

Suppose that D � @M is a monogon, ie, @D = �[� , where � is a vertical arc of
@vN(@B) and � � @hN(@B). The component of f(@vN(B)) that contains � is
a rectangle E whose boundary consists of two vertical arcs �;�0 in @M and two
arcs γ; γ0 in f(@vN(B)\@hN(B)). Since F1 is fully carried by f : B !M , after
some normal homotopy, we may assume that E is embedded, @hN(@B) � @F1 ,
and γ [ γ0 � F1 . Then � = � [ γ [ γ0 is an arc in F1 with @� � @F1 � @M ,
and � can be homotoped rel @� into @M . Since F1 is @{injective, � must
be @{parallel in F1 . So, there is an arc �0 � @F1 such that � [ �0 is a closed
trivial curve in F1 . Suppose � [ �0 bounds a disk � in F1 , which may not be
embedded. Moreover, �0[�0 also bounds a disk D0 in @M , since �0[�0 forms a
homotopically trivial curve in M . So, D[E[�[D0 forms an immersed sphere
in M . Since �2(M) is trivial, we can homotope the sphere D [ E [ � [ D0
(�xing E ) into E . After this homotopy, we get an immersed surface in the
same homotopy class as F1 with less weight. This contradicts our least weight
assumption on the surface F1 .

So, @B does not bound any monogon. By Proposition 2.5, @F1 and @F2 must
have the same slope, and the corollary follows from Lemma 3.2.

4 Limits of cross disks

Let H be the set of injective and least weight surfaces with the 4{plane property
in M . If there is a number R 2 R such that H � FR , by Corollary 3.3, the
surfaces in H can realize only �nitely many slopes. Suppose no such a number
R exists. Then there must be a sequence of surfaces F1; F2; : : : ; Fn; � � � 2 H
such that, in the preimage of Fi in fM (denoted by eFi ), there is a cross disk
Di = D0i[D00i of size at least i, where i 2 N. Since M is compact, after passing
to a subsequence if necessary, we can assume that D0i is parallel to a subdisk
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�i of D0i+1 and d(@�i − @fM;@D0i+1 − @fM ) � 1, where d(x; y) denotes the
distance. We also assume that @D0i lies in the 2{skeleton.

Proposition 4.1 The intersection of �(Di) with any tetrahedron does not

contain two quadrilateral normal disks of di�erent types, where � : fM !M is
the covering map.

Proof We know that any two quadrilateral normal disks of di�erent types must
intersect each other. Suppose that the intersection of �(Di) with a tetrahedron
contains two di�erent types of quadrilateral normal disks. Let T be a lift of
this tetrahedron in fM . Then, in each of the two quadrilateral disk types, there
is a pair of parallel normal disks in eFi \ T that belong to di�erent components
of a cross disk. By the de�nition of cross disk, the two planes in eFi that contain
the two parallel quadrilateral normal disks must intersect each other. Hence,
the two di�erent quadrilateral disk types give rise to 4 planes in eFi intersecting
each other. Note that, these 4 planes are di�erent planes in eFi , since each
plane is embedded in fM by our assumptions. This contradicts the 4{plane
property.

Thus, as in [9], we can construct an embedded branched surface Bi in M such
that �(Di) lies in N(Bi) transversely intersecting every interval �ber of N(Bi).
In fact, for each normal disk type of �(Di) \ T , we construct a product � � I ,
where T is a tetrahedron and ��ftg is a normal disk of this disk type (t 2 I ).
Then, by Proposition 4.1, we can glue these products along T (2) naturally to
get a �bered neighborhood of an embedded branched surface Bi , and �(Di) can
be isotoped into N(Bi) transversely intersecting every interval �ber of N(Bi).
Note that Bi may have nontrivial boundary. After some isotopy, we can assume
that @vN(Bi)\T (1) = ; and N(Bi)\T (2) is a union of interval �bers of N(Bi).
By the de�nition of cross disk, we can also assume that every pair of points in
the cross disk lies in the same I {�ber of N(Bi).

Proposition 4.2 N(Bi) can be split into an I {bundle over a compact surface
such that, after normal homotopies, �(Di) lies in this I {bundle, transversely
intersects its I {�bers, and every pair of points in the cross disk �(Di) lies in
the same I {�ber of this I {bundle.

Proof By our construction above, N(Bi)\T (2) , when restricted to a 2{simplex
in T (2) , is a �bered neighborhood of a union of train tracks. Suppose that
@vN(Bi) transversely intersects T (2) . First, we split N(Bi) near N(Bi) \ T (2)

to eliminate @vN(Bi) \ T (2) .
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Let � be a 2{simplex in T (2) , � be a component of @vN(Bi) \ � and N(�)
be the component of N(Bi) \ � that contains � . We associate every such
component � of @vN(Bi) \� with a direction (in �) that is orthogonal to �
and points into the interior of N(Bi) \�. Let V be the union of the interval
�bers of N(�) that contain some component of @vN(Bi)\�. After performing
some isotopies, we can assume that every interval �ber in V contains only
one component of @vN(Bi) \�. We give every interval �ber in V a direction
induced from the direction of @vN(Bi) \� de�ned above. Now N(�)− V is a
union of rectangles with two horizontal edges from @hN(Bi) and two vertical
edges from V or T (1) . Every vertical edge from V has an induced direction.

Case 1 For any rectangle of N(�) − V , the direction of at most one vertical
edge points inwards.

In this case, there is no ambiguity about the splitting near the rectangle. We
split N(�) as shown in Figure 4.1, pushing a component of @vN(B) across an
edge of �. During the splitting we may also push some double curves of Fi
across this edge. The e�ect of the splitting on �(Di) is just an isotopy. Thus,
we can assume that any pair of points in the cross disk lies in the same interval
�ber of the �bered neighborhood of the branched surface after this splitting.

�

2{skeleton
splitting

Figure 4.1

Case 2 There is a rectangle in N(�) − V such that the directions of both
vertical edges point inwards.

The local picture of such a rectangle must be as in Figure 4.2 (a), and there
are (locally) three di�erent splittings as shown in Figure 4.2 (b). We denote
the rectangle by R and the part of N(�) as in Figure 4.2 (a) by N(�)R . Then
N(�)R−R consists of 4 components, and we call them UL (upper left) end, LL
(lower left) end, UR (upper right) end and LR (lower right) end, as shown in
Figure 4.2 (a). The intersection of N(�)R and the cross disk, ie, �(Di)\N(�)R ,
consists of arcs connecting the ends on the left side to the ends on the right
side. An arc in �(Di) \N(�)R is called a diagonal arc if it connects an upper
end to a lower end.
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(a) (b)

(1)

(2)

(3)

UL end UR end

LL end LR end

Figure 4.2

Claim �(Di)\N(�)R does not contain two diagonal arcs, say � and � , such
that � connects the UL end to the LR end, and � connects the LL end to the
UR end.

Proof of the claim Suppose that it contains such arcs � and � . Then there
is another arc �0 (respectively �0 ) such that � [ �0 (respectively � [ �0 ) is a
pair of arcs in the cross disk. So, �0 (respectively �0 ) also connects the UL end
to the LR end (respectively the LL end to the UR end). Note that � (or �0 )
and � (or �0 ) must have nontrivial intersection in N(�)R . Next we consider
a lift of N(�)R in fM and still use the same notation. By the de�nition of
cross disk, the 4 planes in eFi that contain �, �0 , � and �0 respectively must
intersect each other in fM . Since every plane in eFi is embedded in fM , each is a
di�erent plane in eFi . This contradicts the assumption that Fi has the 4{plane
property.

Now we split N(Bi) near N(�)R as follows. If there are no diagonal arcs
in �(Di) \ N(�)R , we split N(Bi) in a small neighborhood of N(�)R as the
splitting (1) in Figure 4.2. If there are diagonal arcs, we split it as the splitting
(2) or (3) in Figure 4.2 according to the type of the diagonal arcs. Note that by
the claim, diagonal arcs of di�erent types cannot appear in N(�)R at the same
time. As in case 1, we can assume that any pair of points of the cross disk lies
in the same I {�ber after the splitting. To simplify the notation, we will also
denote the branched surface after the splitting by Bi . Since Di is compact, after
�nitely many such splittings, @vN(Bi) \ T (2) = ;. Now @vN(Bi) is contained
in the interior of the 3{simplices, in other words, in a collection of disjoint open
3{balls. So, every component of @vN(Bi) bounds a disk of contact. After we
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cut N(Bi) along these disks of contact, as in [9], @vN(Bi) = ; and N(Bi)
becomes an I {bundle over a compact surface. As before, we can assume that,
after isotopies if necessary, every pair of points in the cross disk lies in the same
I {�ber.

In the splittings above, we can preserve the intersection pattern of eFi . For any
arc γ � Fi \�, since every arc in Fi \� is a normal arc in the triangle �, we
can assume that if an arc in Fi \� does not intersect γ before the splitting, it
does not intersect γ after the splitting. Moreover, since the intersection of Fi
with any tetrahedron is a union of normal disks, we can assume that cutting
the disks of contact does not destroy the 4{plane property. The e�ect of the
splitting on Fi is just a normal homotopy pushing some double curves out of
the cross disk. So, after the splitting, Fi still satis�es the 4{plane property and
has least weight. Therefore, we can assume for each i, �(Di) lies in such an
I {bundle over a compact surface and is transverse to the I {�bers. We will still
denote this I {bundle by N(Bi).

After collapsing every I {�ber of N(Bi) to a point, we get a piece of embedded
normal surface, which we denote by Si , in M . Furthermore, D0i is parallel to
a subsurface of a component of eSi , where eSi is the preimage of Si in fM .

There are only �nitely many possible embedded normal surfaces (up to normal
isotopy) in M that are images (under the covering map �) of normal disks that
are parallel to D0i . So, after passing to a subsequence and doing some isotopies
if necessary, we can assume that Si is a subsurface of Si+1 . By our assumption
d(@Di−@fM;@Di+1−@fM) � 1, we can consider the direct limit of the sequence
fSig as a (possibly noncompact) surface in M whose boundary lies in @M , and
its closure is a lamination in M . We can also consider this lamination as the
inverse limit of a sequence of branched surfaces that carry Si (see [24] for
details). We denote this lamination by �. Since � is constructed using least
weight disks, it is well known to experts that � is an essential lamination. We
provide a proof below for completeness. Before we proceed, we will prove a
useful lemma, which says that a monogon with a long (or large) \tail" does not
exist.

Lemma 4.3 Let F0 be a �1{injective, @{injective least weight normal surface
in a 3{manifold M and F be a plane in the preimage of F0 in fM . Suppose that
F has least weight and there are two parallel disks D1 and D2 embedded in F .
Suppose that there is a monogon, ie, an embedded disk D with @D = � [ � ,
where � = D \ (F − int(D1 [D2)), � \D1 and � \D2 are the two endpoints
of �, and � is an arc lying in a 2{simplex. Then, weight(D1) � weight(D).
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Proof As D1 and D2 are parallel, there is an embedded region D2 � [1; 2] infM , where D2 � ftg is parallel to D1 for any t 2 [1; 2] and D2 � fig = Di for
i = 1; 2. Moreover, by our hypothesis on �, we can assume that � = fpg�[1; 2],
where p 2 @D2 . After some isotopy, we can assume that (@D2� [1; 2])\ eT (1) =
;, and hence the weight of @D2 � [1; 2] is zero.

We take a parallel copy of the monogon D , say D0 . Let @D0 = �0 [ �0 and
�0 = fp0g� [1; 2] (p0 2 @D2 ), where �0 and �0 are parallel and close to � and �
respectively. Then @D2−p[p0 consists of two arcs γ and � . By choosing D0 to
be close to D , we can assume that � is the shorter one. The four arcs � , �0 and
��f1; 2g form a circle that bounds a disk � in F . We can assume that D0 is so
close to D that the weight of � is zero. D1[D2[� is a disk in F whose boundary
is � [�0[ (γ�f1; 2g). The circle � [�0 [ (γ�f1; 2g) also bounds another disk
D [D0 [ (γ � [1; 2]) in fM . Since F has least weight, weight(D1 [D2 [ �) =
2weight(D1) � weight(D[D0[γ�[1; 2]) = 2weight(D)+weight(γ�[1; 2]). By
our assumption weight(γ � [1; 2]) = 0, we have weight(D1) � weight(D).

We call a disk as the disk D in the lemma above a monogon.

Lemma 4.4 The lamination � is an essential lamination.

Proof First we will show that every leaf of � is �1{injective. Otherwise, there
is a compressing disk D embedded in fM−e� and @D lies in a leaf l , where e� is
the preimage of � in the universal cover fM . By our construction of �, there is,
for any K > 0, a cross disk DK = D0K [D00K of size at least K that is parallel
to a subsurface of l . Since FK is �1{injective and has least weight, and since
@D is an essential curve in l , if K is large, D0K does not contain a closed curve
that is parallel to @D . By choosing K su�ciently large, we may assume that
D0K winds around @D (in a small neighborhood of D) many times, as shown
in Figure 4.3 (a). Let N(D) be an embedded disk in fM that contains D in its
interior, and F be the plane in eFK that contains D0K . Since F is embedded infM , the component of F \N(D) that contains the spiral arc in Figure 4.3 (a)
must form a monogon with a long \tail" that consists of two parallel spiral arcs
winding around @D many times, as shown in Figure 4.3 (b). The weight of the
monogon is at most weight(D). If K is large enough, the length of each spiral
arc in the \tail" of the monogon is very large and, in a neighborhood of the
\tail", we can choose two parallel disks with weight greater than weight(D).
This contradicts Lemma 4.3.

Next, we will show that every leaf of � is @{injective. Otherwise, there is a
@{compressing disk D0 whose boundary consists of two arcs � and � , where
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D

N(D)

(a) (b)

Figure 4.3

� � @M and � is an essential arc in a leaf l . By our construction of �, there is a
cross disk Dn = D0n[D00n of size at least n such that there are arcs �n � @M and
�n � �(D0n) (@�n = @�n ) that are parallel and close to � and � respectively.
The two arcs �n and �n bound a disk dn that is parallel and close to D0 . Since
the surface Fn is @{injective, there must be an arc γn � @Fn such that γn[�n
bounds an immersed disk �n in Fn . Since � is an essential arc in l , by choosing
n su�ciently large, we can assume weight(�n) > weight(D0) = weight(dn).
Note that γn [ �n must bound a disk �n in @M and that dn [�n [ �n is an
immersed 2{sphere in M . Since �2(M) is trivial, we can homotope �n [ �n
to dn �xing dn and get another immersed surface F 0n that is homotopic to Fn .
Moreover, weight(F 0n) − weight(Fn) = weight(dn) − weight(�n) < 0, which
contradicts the assumption that Fn has least weight.

It is easy to see from our construction that no leaf is a sphere or a disk, since
the surfaces in the universal cover are embedded and are not spheres or disks.
Also, if � is not end-incompressible, there must be a monogon with a long \tail",
which contradicts Lemma 4.3 by the same argument as above. Therefore, � is
an essential lamination.

5 Measured sublaminations

In this section, we will show that any minimal sublamination of � (constructed
in section 4) has a transverse measure. A minimal lamination is a lamination
that does not contain any proper sublamination. Using this result, we will prove
Theorem 1, which can be viewed as a generalization of a theorem of Floyd and
Oertel [9].
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Let � be a lamination in M and i : I � I ! M be an immersion that is
transverse to �, where I = [0; 1]. We will call fpg � I a vertical arc, for any
p 2 I , and call i(I�I) a transverse rectangle if i(I�@I) � � and i−1(�) = I�C
for some closed set C in I .

Lemma 5.1 Let � be a minimal lamination. If � has nontrivial holonomy,
then there is a transverse rectangle R : I � I ! M such that R(f1g � I) �
R(f0g � int(I)), where int(I) = (0; 1).

Proof Since � has nontrivial holonomy, there must be a map g : S1�I !M ,
which is transverse to �, such that g(S1 � f0g) � L � � (L is a leaf) and
g−1(�) consists of a collection of spirals and one circle S1 � f0g that is the
limit circle of these spirals. Moreover, for any spiral leaf l of g−1(�), there is
an embedding i : [0;1) � I ! S1 � I such that i−1(l) = [0;1) � f1=2g and
i([0;1)�ftg) is a spiral with limit circle S1�f0g for each t 2 I (see the shaded
region in Figure 5.1 (a)). Since S1 � f0g is the limit circle of l , for any arc
fpg�[0; �] � S1�I , there exists a number N , such that i(fNg�I) � fpg�(0; �).

Since � is a minimal lamination, every leaf is dense in �. Thus, there is a path
� : I ! L such that �(0) = g(p; 0), where p 2 S1 , and �(1) 2 g�i(f0g�int(I)).
Moreover, if � is small enough, there is a transverse rectangle r : I � I ! M
such that rjI�f0g = �, r(f0g� I) = g(fpg� [0; �]), and r(f1g� I) = g � i(f0g�
[�1; �2]), where [�1; �2] � I . The concatenation of the transverse rectangle r
and g � i([0;N ] � [�1; �2]), ie, R : I � I ! M where R([0; 1=2] � I) = r(I � I)
and R([1=2; 1] � I) = g � i([0;N ] � [�1; �2]), is a transverse rectangle we want,
where N is a number that i(fNg � I) � fpg � (0; �) � S1 � I .

(a) (b)

limit circles

h(I � I)

Figure 5.1
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Remarks 5.2

(1) The kind of construction in Lemma 5.1 was also used in [17].

(2) After connecting two copies of such transverse rectangles if necessary, we
can assume that R(f1g�I) � R(f0g�int(I)) in Lemma 5.1 preserves the
orientation of the I {�bers. In other words, we may assume that there is
a map f : A!M transverse to �, where A = S1� I , and an embedding
(except for @I � I ) h : I � I ! A, as shown in Figure 5.1 (b), such that
R = f � h and f(A) lies in a small neighborhood of R(I � I).

(3) Let f , h, and R be the maps above. Suppose that L0 and L1 are leaves in
� containing R(I�f0g) and R(I�f1g) respectively. Then f−1(L0[L1)
contains two spirals of di�erent directions whose limit circles are meridian
circles of A (see Figure 5.1 (b)). Note that L0 and L1 may be the same
leaf and the two spirals may have the same limit circle.

(4) If � is carried by a branched surface B , we can also assume that R(fqg�I)
is a subarc of an interval �ber of N(B) for any q 2 I .

Lemma 5.3 Let � be the lamination constructed in section 4 and � be any
minimal sublamination of �. Then � has trivial holonomy.

Proof Suppose that � has nontrivial holonomy. Since � is a minimal lamina-
tion, by Remarks 5.2 above, there is an annulus g : A = S1� I !M such that
g−1(�) contains two di�erent kinds of spiral leaves, as shown in Figure 5.1 (b).
From our construction of �, there is a cross disk DN = D0N [ D00N such that
g−1(�(D0N )) (respectively g−1(�(D00N ))) contains two arcs parallel and close to
the two spirals respectively. We denote these two arcs by �00 and �01 (respec-
tively �000 and �001 ), as shown in Figure 5.2 (a). Now we consider g−1(FN ),
where FN is the corresponding least weight immersed surface with the 4{plane
property. Since FN is compact, g−1(FN ) is compact. Denote the component
of g−1(FN ) that contains �0i (respectively �00i ) by c0i (respectively c00i ), where
i = 0; 1. Since FN is a normal surface, by Remarks 5.2 (4), we can assume that
g−1(FN ) is transverse to each vertical arc fpg � I in A.

If c01\S1�f0g = ;, then c01 is either a closed curve, as shown in Figure 5.2 (c), or
an arc with both endpoints in S1�f1g, as shown in Figure 5.2 (b). Note that, by
the Reeb stability theorem, any closed curve in a leaf with nontrivial holonomy
must be an essential curve in this leaf. Since � is an essential lamination, g(S1�
f0g) must be an essential curve in M , and we have the following commutative
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(a) (b)

(c) (d)

c01

c01

�00
�000

�01�001

Figure 5.2

diagram, where q is a covering map.

R� I g̃−−−−! fM
q

??y �

??y
A = S1 � I g−−−−! M

The pictures of q−1(c01) � eg−1( eFN ) are shown in Figure 5.3 (a) or (b) depending
on whether c01 is an arc with both endpoints in S1 � f1g or a closed curve. If
N is so large that �01 winds around A more than four times, then there are
four curves in q−1(c01) intersecting each other, as shown in Figure 5.3 (a) and
(b), which contradicts the assumption that FN has the 4{plane property.

Thus, by the argument above, c01 , c001 , c00 and c000 must be arcs with endpoints in
di�erent components of @A, as shown in Figure 5.2 (d). In this case, q−1(c00 [
c01[ c000 [ c001) must contain 4 arcs d00; d

00
0 ; d
0
1; d
00
1 as shown in Figure 5.3 (c), whereeg(d0i [ d00i ) is the union of two arcs in di�erent components of a cross disk
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(a)

(b)

(c)

Figure 5.3

(i = 0; 1). By the de�nition of cross disk, the 4 planes in eFN that containeg(d00), eg(d000), eg(d01) and eg(d001) respectively must intersect each other, as shown
in Figure 5.3 (c), which contradicts the assumption that FN has the 4{plane
property.

The next theorem is a generalization of a theorem of Floyd and Oertel [9].

Theorem 1 Let M be a closed, irreducible and non-Haken 3{manifold. Then
there is a �nite collection of immersed branched surfaces such that any surface in
M with the 4{plane property is fully carried by an immersed branched surface
in this collection.

Proof If the set of immersed surfaces with the 4{plane property is a subset
of FR for some number R (see section 3 for the de�nition of FR ), then the
theorem follows from by Lemma 3.2.

If there is no such a number R, by section 4, there are a sequence of cross disks
that give rise to an essential lamination �. Let � be a minimal sublamination
of �. Since � is also an essential lamination, by [11], � is fully carried by
an embedded incompressible branched surface B . By Lemma 5.3, � has no
holonomy. A theorem of Candel [4] says that if a lamination has no holonomy
then it has a transverse measure. So, � has a transverse measure, and hence the
system of the branch equations of B (see [27]) has a positive solution. Since each
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branch equation is a linear homogeneous equation with integer coe�cients, the
system of branch equations of B must have a positive integer solution. Every
positive integer solution corresponds to an embedded surface fully carried by
B . But, by a theorem of Floyd and Oertel [9], any surface fully carried by an
incompressible branched surface must be incompressible. This contradicts the
hypothesis that M is non-Haken.

6 Boundary curves

Let M be an irreducible 3{manifold whose boundary is an incompressible torus,
� be the lamination constructed in section 4 and � be a minimal sublamination
of �. Let fDi = D0i[D00i g be the sequence of cross disks used in the construction
of the lamination � in section 4 and let Fi be the least weight immersed surface
that contains �(Di). We denote the preimage of Fi in fM by eFi . Suppose
that M does not contain any nonperipheral closed embedded incompressible
surfaces.

Lemma 6.1 � \ @M 6= ;

Proof Suppose that �\@M = ;. Then � is fully carried by an incompressible
branched surface B and B \ @M = ;. As in the proof of Theorem 1 (see
section 5), the linear system of branch equations must have integer solutions
that correspond to incompressible surfaces. Since B\@M = ; and M does not
contain any nonperipheral closed incompressible surfaces, those incompressible
surfaces corresponding to the integer solutions must be @{parallel tori.

Let N(B) be a �bered neighborhood of B , C be the component of M −
N(B) that contains @M , and T1; T2; : : : ; Tn be a collection of @{parallel tori
whose union corresponds to a positive integer solution of the system of branch
equations. After isotopies, we can assume that every Ti is transverse to the
interval �bers of N(B) and @hN(B) � [ni=1Ti . Let A be a component of
@hN(B) that lies in the closure of C .

Claim The surface A must be a torus.

Proof of the claim We �rst show that A is not a disk. Suppose A is a
disk. Let � be the component of @vN(B) that contains @A. Then @� − @A
is a circle in the boundary of a component D of @hN(B). Since @hN(B) is
incompressible and A is a disk, D must be a disk. So A[ � [D is a 2{sphere.
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Since M is irreducible, A [ � [D must bound a 3{ball that contains [ni=1Ti ,
which contradicts the assumption that Ti is incompressible.

If @A = ;, since @hN(B) � [ni=1Ti , A is a @{parallel torus.

Suppose @A 6= ; and A � T1 . If there is a component of @A that is a trivial
circle in T1 then , since A is not a disk, there must be a trivial circle in @A
that bounds a disk in T1 −A. We can isotope this disk by �xing its boundary
and pushing its interior into the interior of N(B) so that it is still transverse
to the I {�bers of N(B), and we get a disk transverse to the I {�bers of N(B)
with its boundary in @vN(B). By de�nition, this is a disk of contact [9], which
contradicts the assumption that B is an incompressible branched surface. So,
every circle of @A must be an essential curve in T1 , and hence A must be an
annulus.

Let c be a component of @A, � 0 be a component of @vN(B) that contains
c, and c0 = @� 0 − c be the other boundary component of � 0 . We denote the
component of @hN(B) containing c0 by A0 . By the argument above, A0 must
also be an annulus. If A and A0 belong to di�erent tori, then � 0 is a vertical
annulus in the product region T 2�I bounded by the two tori. This contradicts
the assumptions that those tori are @{parallel and @M � C . Thus, A and A0

must belong to the same torus T1 . Then, � 0 must be an annulus in the T 2 � I
region bounded by T1 and @M , and @� 0 � T1 . So, the vertical arcs of � 0 can be
homotoped rel @� 0 into T1 . This gives rise to a monogon and hence contradicts
the assumption that B is an incompressible branched surface [9]. Therefore,
@A = ; and A must be a torus.

By the claim and our assumptions, C must be a product region T 2 � I where
T 2�f1g = @M and T 2�f0g = A � @hN(B). Since � is fully carried by B , we
can assume that A � � is a leaf. After choosing a sub cross disk if necessary,
we can assume that there is a cross disk DK = D0K [ D00K of size at least K
such that �(D0K) lies in a small neighborhood of A that we denote by T 2 � J ,
where J = [−�; �] and A = T 2 � f0g. By choosing � small enough, we can
assume T 2�ftg is a normal surface for any t 2 J . Let E be the component of
FK \ (T 2 � J) that contains �(D0K) and E0 be a component of the preimage
of E in fM . Let F 0 be the plane in eFK that contains E0 . So E0 is embedded
in a region R2 � J in fM , @E0 � R2 � f��g. By choosing � small enough and
isotoping FK , we can assume that E0 is transverse to the J {�bers of R2 � J .

If E0 is a compact disk, then @E0 must be a circle in R2�f��g and DK must
be in the region bounded by @E0 � J . So, if K is large, the disk in R2 � f��g
bounded by @E0 is large. However, if the disk bounded by @E0 is large enough,
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the 4 circles gk(@E0) (k = 0; 1; 2; 3) must intersect each other, where g is some
element in �1(@M) that acts on fM and �xes R2�J . This violates the 4{plane
property, and hence E0 cannot be a compact disk.

Suppose that eFK \ (R2 � f��g) contains circular components. Let e be an
innermost such circle and Fe be the plane in eFK that contains e. Then e
bounds a disk D in R2 � f��g and bounds another disk D0 in Fe . We can
assume that D0 \ �−1(T 2 � f��g) = @D0 ; otherwise, we can choose e to be
a circle in D0 \ �−1(T 2 � f��g) that is innermost in D0 . So, D [D0 bounds
a 3{ball in fM and �(D0 − @D0) \ (T 2 � J) = ;. Then, we can homotope
�(D0) to �(D) �xing �(e). We denote by F 0K the surface after this homotopy
and denote by F 0e the plane in eF 0K (the preimage of F 0K in fM ) that contains
e. Let e0 be another component of �−1(�(e)) and Fe0 (respectively F 0e0 ) be
the plane in eFK (respectively eF 0K ) that contains e0 . Since D is innermost, if
Fe \ Fe0 = ;, then F 0e \ F 0e0 = ;. Hence, F 0K is a surface homotopic to FK
and F 0K also has the 4{plane property. Note that since FK has least weight
and � is the \limit" of least weight cross disks, both D and D0 have least
weight and weight(D) = weight(D0). Thus, F 0K also has least weight and
F 0K \ T 2 � f��g has fewer trivial circles after a small homotopy. So, we can
assume that eFK \R2�f��g contains no trivial circles. Note that since E0 can
never be a compact disk by the argument above, this homotopy will not push
the entire E0 out of R2�J . Therefore, we can assume that E0 is a noncompact
and simply connected surface.

If @E0 \ R2 � f�g has more than one component, then since we have assumed
that E0 is transverse to the J {�bers of R2 � J , @E0 \ R2 � f�g bounds a
(noncompact) region Q in R2 � f�g, D0K � Q � J , and @Q contains more
than one line. Moreover, since E0 is transverse to the J {�bers, it is easy to see
that, for any element g 2 �1(@M) that acts on fM �xing R2 � J , if Q 6= g(Q)
and Q \ g(Q) 6= ; in R2 � f�g, then E0 \ g(E0) 6= ;. If K is large, the
distance between any two lines in @Q must be large. Thus, by assuming D0K
to be large, we can always �nd a nontrivial element g in �1(@M) such that the
gk(Q)’s (k = 0; 1; 2; 3), and hence the gk(E0)’s (k = 0; 1; 2; 3) intersect each
other, which contradicts the 4{plane property.

Therefore, @E0 \ R2 � f�g must be a single line, and hence E must be an
immersed annulus in T 2�J with one boundary component in T 2�f�g and the
other boundary component in T 2 � f−�g. By our construction, weight(E) is
large if K is large. We can always �nd an immersed annulus AE � T 2�J with
@AE = @E and weight(AE) relatively small. So, the surface (FK − E) [ AE
is homotopic to FK and has less weight. The homotopy is like a Dehn twist
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unwrapping E to get AE . This contradicts the assumption that FK has least
weight in its homotopy class. So, � \ @M cannot be empty.

Lemma 6.2 @� is a lamination by circles.

Proof Since � is a measured lamination and @M is a torus, @� is either a
lamination by circles or a lamination by lines with an irrational slope. Suppose
� is fully carried by an incompressible branched surface B . Let S be the
solution space of the system of branch equations of B . Since the coe�cients
of the branch equations are integers, there are �nitely many positive integer
solutions that generate S , ie, any point (solution) in S can be written as a linear
combination of these integer solutions. Every such integer solution gives rise
to an incompressible surface fully carried by B . By Hatcher’s theorem, these
surfaces have the same boundary slope. The boundary slope of any measured
lamination � fully carried by B is equal to the measure of a longitude of
@M divided by the measure of a meridian. Hence, the boundary slope can be
expressed as a fraction with both numerator and denominator homogeneous
linear functions of the weights of the branch sectors. Note that, similar to the
proof of Hatcher’s theorem, we can choose a transverse orientation for @B and
assume the homogeneous linear functions above are �xed in the calculation of
the boundary slopes of any surfaces or measured laminations fully carried by
B . Since the solution in S that corresponds to � is a linear combination of
those integer solutions, and since the boundary slopes of those integer solutions
(plugging into the fraction described above) are the same, @� must have the
same slope as the boundary slope of these incompressible surfaces. Therefore,
the boundary of any measured lamination fully carried by B is a lamination by
circles with the same slope.

Lemma 6.3 Let fDi = D0i [D00i g be the sequence of cross disks used in the
construction of an essential lamination in section 4, and Fi be the immersed
surface with the 4{plane property that contains �(Di). Then, fFig contains a
subsequence of surfaces with the same boundary slope.

Proof Let � be the essential lamination constructed using fDig as in sec-
tion 4, and � be a minimal sublamination of �. Then, by Lemma 6.2, @� is a
lamination by circles. Let B be an incompressible branched surface that fully
carries �. Since @� is a union of parallel circles, we can assume that @B is a
union of circles. Let N(B) be a �bered neighborhood of B , eB = �−1(B) and
N( eB) = �−1(N(B)). We can assume that each cross disk Di lies in N( eB),

Geometry & Topology, Volume 6 (2002)



634 Tao Li

otherwise, we can choose a large sub cross disk of Di that lies in N( eB) for each
i, and the proof is the same.

Suppose the lemma is not true, then we can choose fFig to be a sequence of
surfaces no two of which have the same boundary slopes. We can also assume
that @Fk has a di�erent slope from @� for each k . Then �(Dk) is a piece of
immersed surface in N(B) transverse to every I {�ber, and �(Dk) \ @M is a
union of spirals in N(B)\ @M . We give each component of @B an orientation
so that they represent the same element in H1(@M). This orientation of @B
determines an orientation for each I {�ber of N(B) \ @M . As in the proof of
Hatcher’s theorem, the orientation of the I {�bers and a normal direction of
@M uniquely determine an orientation for every curve in N(B) \ @M that is
transverse to the I {�bers of N(B).

Claim 1 If k is su�ciently large, we can assume that each circle in @Fk admits
a direction along the curve that agrees with the induced orientation of every
arc in @Fk \N(B) described above.

Proof of claim 1 Suppose there is a circle in @Fk that does not admit such
an orientation. Then there must be a subarc C of the circle outside N(B)\@M
connecting two spirals that are either in the same component of N(B) \ @M ,
as shown in Figure 6.1 (a), or in di�erent components of N(B) \ @M with
incompatible induced orientations, as shown in Figure 6.1 (b). We will show
that both cases contradict our assumption that Fk is of least weight in its
homotopy class. After assuming the size of the cross disk to be large, we can
rule out the �rst possibility, ie, Figure 6.1 (a), by Lemma 4.3. To eliminate the
second possibility, ie, Figure 6.1 (b), we use a certain triangulation of M as
follows.

By [19], there is a one-vertex triangulation T of M and this vertex is in @M .
Since @M = T 2 , the induced triangulation of @M must consist of two triangles
as shown in Figure 6.2 (a). Now we glue a product region T 2 � I (I = [0; 1])
to M with T 2 � f0g = @M . Hence, (T (1) \ @M) � I gives a cellulation of
T 2 � I that consists of a pair of triangular prisms. Then, we add a diagonal
to each rectangular face of the prisms, which gives a triangulation of T 2 � I .
Figure 6.2 (b) is a picture of the induced triangulation of a fundamental domain
in the universal cover of T 2�I . Since M [ (T 2�I) is homeomorphic to M , we
can assume that M has a triangulation as that of M[(T 2�I) described above.
To simplify notation, we still use T to denote this new triangulation of M . Now,
T (0) \ @M is a single vertex v and the intersection of its link hemisphere H
and T (1) consists of 10 points of which 6 points lie in @H � @M .
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(a) (b)

C

Figure 6.1

(a) (b)

Figure 6.2

We assume that our immersed surfaces are normal and have least weight with
respect to the triangulation above. Suppose the second case, ie, Figure 6.1 (b),
occurs. Let A be the annular component of @M −N(B) that contains the arc
C . Then we isotope Fk by pushing C along A to \unwrap" the spirals in a
small neighborhood of @M , as shown in Figure 6.3 (a) and (b). If the vertex v
is not in A, then after this isotopy, j@Fk\T (1)j decreases and j(Fk−@Fk)\T (1)j
does not change. This contradicts the assumption that Fk has least weight. So
v 2 A. If every edge of T (1) \ @M intersects @A nontrivially, then after C
passes through the vertex v during the isotopy, j@Fk \T (1)j decreases by 6 and
j(Fk − @Fk) \ T (1)j increases by 4. Hence, the total weight of Fk decreases,
which also gives a contradiction. Therefore, there is an edge e of T (1) \ @M
lying inside A, as shown in Figure 6.3 (a). Then by our construction of the
triangulation, e forms a meridian circle of the annulus A and there is at most
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one such edge. After C passes through v in the isotopy above, j@Fk \ T (1)j
decreases by 4, j(Fk − @Fk) \ T (1)j increases by 4, and the total weight does
not change.

(a)

(b)

v

v v

e homotopy

homotopy

C
C@M @M

Figure 6.3

Now, we will see exactly what happens in a tetrahedron. Let T be a tetrahedron
with a face � in @M . There is a normal arc � in C\� that cuts o� a subtriangle
(in � \ A) that contains the vertex v . The normal disk of Fk \ T containing
� is either a triangle or a quadrilateral. If we do the isotopy as in Figure 6.3
(b) by pushing C across v , then the e�ect of this isotopy on the normal disk
that contains � is either as in Figure 6.4 (a), in which case the normal disk is a
triangle, or as in Figure 6.4 (b), in which case the normal disk is a quadrilateral.
In the �rst case, as shown in Figure 6.4 (a), the disk is no longer a normal disk
after the isotopy. So, we can perform another homotopy to make Fk (after the
�rst isotopy) a normal surface. This homotopy reduces jFk \ T (1)j by at least
2 as we push the disk in Figure 6.4 (a) across the edge, which contradicts the
assumption that Fk has least weight. Thus, every normal disk that contains
such an arc � is a quadrilateral. Since there are only two triangles in @M ,
and since the edge e lies inside A, there must be two arcs �1 and �2 in C
that cut o� two corners of the same triangle (in the induced triangulation of
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@M ). By the argument above, the two normal disks that contain �1 and �2

respectively must be two quadrilaterals of di�erent normal disk types in the
same tetrahedron. Note that, during the isotopy as in Figure 6.3, we push
parts of @Fk from N(B) \ @M into the annulus A, and by unwrapping every
such spiral, we can assume that any two parallel normal disks in Fk remain
parallel after the isotopies. We keep unwrapping the spirals by isotopies as in
Figure 6.3. Either the weight of Fk can be reduced at a certain stage, or we
can eventually push parts of �(Dk) \ @M into the annulus A. In particular,
after unwrapping the spirals enough times, we can assume that the �1 and
�2 above lie in the cross disk. Then, we can assume that there is a pair of
normal disks in the cross disk for each of the two quadrilateral normal disk
types that correspond to the �1 and �2 . Since any two quadrilateral normal
disks of di�erent types must intersect each other, those 4 quadrilaterals give
rise to 4 planes in eFk intersecting each other (as in Proposition 4.1), which
contradicts the hypothesis that Fk has the 4{plane property. So, if k is large
enough, we can reduce the weight of Fk at a certain stage of the isotopy above.
Therefore, Figure 6.1 (b) cannot occur and claim 1 holds.

The branched surface that fully carries � also fully carries a compact surface,
and by Lemma 6.2, the slope of @� is the same as the boundary slope of an
incompressible and @{incompressible surface. By Hatcher’s theorem, there are
only �nitely many possible slopes for @�. If the lamination � is constructed
using cross disks from the sequence of surfaces fFkg, then the arcs in @Fk
must wind around @� many times (if k is large). Therefore, by Corollary 3.3,
our construction of � and Claim 1 above, it is easy to see that there must be
in�nitely many slopes that cannot be the boundary slopes of surfaces with the
4{plane property, and Dehn �llings along these slopes yield 3{manifolds that
cannot admit any nonpositive cubings (see the proof of Theorem 3 at the end
of this paper). This can be viewed as a weaker version of Theorems 2 and 3. To
prove Theorem 2 to the full extent, which says that only �nitely many slopes
can be the boundary slopes of surfaces with the 4{plane property, we need to
study the local pictures of the limit lamination and surfaces with the 4{plane
property in detail.

We �rst consider the case that � is a compact orientable surface. The proof
for the case that � contains a noncompact leaf is similar. Let � � I � M
(I = [0; 1]) be a small neighborhood of � in M , and e� � I be a component
of the preimage of � � I in fM with the induced �ber structure. Since � is
a compact embedded essential surface in M , e� � I can be considered as the
universal cover of � � I , and we can assume �1(�) acts on fM �xing e� � I .
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(a)

(b)

v v

v v

homotopy

homotopy

�

�

� �

� �

Figure 6.4

Suppose k is large. By our construction of the lamination, there is always a
large sub cross disk of Dk = D0k [D00k lying in e�� I . To simplify notation, we
assume that Dk � e�� I ; otherwise we use a large sub cross disk of Dk and the
proof is the same.

Let F 0k be the plane in eFk that contains D0k , H 0 = F 0k \ (e� � I), H = �(H 0).
Since we can give every component of @Fk an orientation that agrees with the
induced orientation of @Fk \ (�� I) in claim 1, we can assume the sign of every
intersection point of @Fk \ @S is always the same, where S = �� ftg (t 2 I ).
Then, H cannot be transverse to every I {�ber of �� I , because otherwise, by
the argument in the proof of Hatcher’s theorem, @Fk and @S would have the
same slope, which contradicts our assumptions. Figure 6.5 gives a local picture
of H where it is not transverse to an I {�ber of �� I .

In fact, it is not hard to see that, in some tetrahedron T , there must be two
di�erent types of quadrilateral normal disks in T \ S and T \ Fk respectively.
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Otherwise, by an argument in [9], H and S lie in N(BT ) and are transverse
to the I {�bers of N(BT ), where N(BT ) is a �bered neighborhood of an em-
bedded normal branched surface BT . Hence, by the arguments in the proof of
Hatcher’s theorem, Fk and S have the same boundary slope (although Fk is
not embedded), which contradicts our assumption.

Since all these surfaces are normal, after a small homotopy, we can assume that
each I {�ber of �� I either transversely intersects H or entirely lies in H , in
which case the local picture of this �ber is as shown in Figure 6.5, and we call
such �bers puncturing �bers. We can assume @Fk\(@��I) is a union of spirals,
and by claim 1, the intersection points in @Fk \ @S (S = �� ftg) all have the
same sign. Then, by our assumption on H\(��I) and the argument above on
Hatcher’s trick, any arc of Fk \ S with endpoints in @M must pass through a
puncturing �ber. Since there is a large cross disk wrapping around the compact
surface � many times, such a puncturing �ber must puncture a cross disk, and
we immediately get three planes (in the universal cover) intersecting each other.
Moreover, any relatively short (compared with the size of the cross disk) arc
with endpoints in di�erent components of � � @I also punctures a cross disk.
Furthermore, if we can �nd two such short arcs that are not far away from each
other, then they puncture the same cross disk. If, in addition, the two planes
that contain the two short arcs intersect each other, we get a contradiction to
the 4{plane property. This is the basic idea of our proof. After perturbing Fk
a little, we can assume that Fk \ (�� I) is transverse to the I {�bers of �� I
except at puncturing �bers and there are only �nitely many puncturing �bers
in Fk \ (�� I).

puncturing �ber

Figure 6.5

The following observation, which summarizes the argument above, is important
to the remainder of the proof of Lemma 6.3.
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Observation 6.4 Let �i (i = 1; 2) be an arc in eFk\(e��I) with two endpoints
lying in di�erent components of e�� @I . Suppose length(�1), length(�2), and
the distance between �1 and �2 are bounded by a �xed number. Then, if k is
large, �1 and �2 must puncture the same cross disk. Let F (i) denote the plane
in eFk that contains �i (i = 1; 2). If F (1) \ F (2) 6= ; and F (1) 6= F (2) , F (1) ,
F (2) and the two planes containing the two components of the cross disk are 4
planes in eFk intersecting each other, which contradicts the 4{plane property.

We denote the puncturing �bers of Fk\(��I) by γ1; : : : ; γn . Let q : ��I ! �
be the projection map. Hence, q(γ1); : : : ; q(γn) are points in �. Then, we can
connect q(γ1); : : : ; q(γn) buy simple arcs �1; : : : ; �k to form a 1{complex Γ in
which the q(γi)’s are the 0{cells and the �i ’s are the 1{cells. Moreover, we can
assume that � − Γ is a union of disks and annular neighborhoods of @�. We
denote the closure of the annular components of � − Γ by A1; : : : ; Am , where
m is the number boundary components of �. Thus, for each i, one component
of @Ai is a boundary circle of � and the other component of @Ai lies in Γ. We
denote q−1(Γ) and q−1(�i) by Γ � I and �i � I respectively, and denote the
preimage of Γ� I in e�� I by eΓ� I .

Let S = �� ftg and eS = e�� ftg (t 2 I ). We assume S is transverse to Fk .
As before, any double arc in Fk \S or eFk \ eS must pass through a puncturing
�ber. Let � be a subarc of a double arc of eFk \ eS in fM with one endpoint Z0

in @ eS \ @ eFk and the other endpoint in a puncturing �ber. We can assume the
interior of � does not intersect any puncturing �ber. We denote the closure of
the component of e��I−eΓ�I containing Z0 by eA1�I , and suppose �( eA1�I)
is A1 � I in �� I de�ned above, where � : fM !M is the covering map.

Let D[k=2] = D0[k=2] [D00[k=2] be a sub cross disk of Dk = D0k [D00k of size [k=2]
and with the same center. By choosing an appropriate t 2 I , we can assume
that Z0 lies in D0[k=2] . Moreover, after some isotopy on Fk\(��I) (or choosing
an appropriate Γ), we can assume that there is a subarc of � , which we denote
by �0 , properly embedded in eA1 � I such that Z0 2 @�0 and �0 � D0[k=2] . We

denote the two lines in @ eA1 by l1 and l2 , and suppose Z0 2 l1 � I . Let Z1 be
the other endpoint of �0 . Hence, Z1 2 l2 � I � e� � I . By choosing k to be
large, we can assume the length of the curve in eFk \ (l2 � I) that contains Z1

is large, since Z1 lies in the sub cross disk D[k=2] .

We can assume that the interior of � is transverse to eΓ� I . Note that int(�)
does not intersect any puncturing �ber in eΓ � I . We denote the points in
� \ (eΓ � I) by Z1; : : : ; Zs , where Z1 is as above and Zs = @� − Z0 lies in a

Geometry & Topology, Volume 6 (2002)



Boundary curves of surfaces with the 4{plane property 641

puncturing �ber. These Zi ’s divide � into s subarcs �0; �1; : : : ; �s−1 , where
@�i = Zi [ Zi+1 and �0 is as above.

We regard eΓ as a 1{complex in e� with 0{simplices corresponding to the punc-
turing �bers. Let � be any 1{simplex in eΓ. So, � � I � eΓ � I is a vertical
rectangle in e� � I . We call an arc in eFk \ (� � I) a @{parallel arc if the two
endpoints of this arc lie in the same component of int(�) � @I , where int(�)
denotes the interior of �. We can perform some normal homotopy on Fk to
push all the @{parallel arcs out of �(� � I), where � : fM ! M is the cover-
ing map, so that if two arcs in eFk \ (� � I) do not intersect each other, then
after this homotopy, they do not intersect each other either. Hence, this nor-
mal homotopy preserve the 4{plane property. Therefore, we can assume thateFk \ (� � I) contains no @{parallel arcs for any 1{simplex �. Moreover, if k
is large, any @{parallel arc does not lie in the sub cross disk D[k=2] , and hence
this homotopy does not a�ect the previous assumptions on �0 � D[k=2] .

Let � be an arc in eFk \ (�� I). Since there is no @{parallel arc in eFk \ (�� I),
either the two endpoints of � lie in di�erent components of int(�)� @I , or one
endpoint of � lies in a puncturing �ber γ � @� � I in which case we denote
the two planes in eFk containing � and γ by F� and Fγ respectively. So, if the
second case happens, either F� 6= Fγ and F� \ Fγ 6= ; or F� = Fγ . We call
� a puncturing arc if either the two endpoints of � lie in di�erent components
of int(�) � @I , or F� = Fγ . Thus, if � is a puncturing arc, there must be
a relatively short arc in F� containing � and with two endpoints in di�erent
components of e� � @I . The role of a puncturing arc is the same as the role
of a puncturing �ber, see Observation 6.4. Moreover, if � is not a puncturing
arc, then one of the two puncturing �bers in @� � I intersects the plane F�
nontrivially.

Claim 2 Each Zi 2 � (1 � i � s− 1) lies in a puncturing arc.

Proof of Claim 2 We �rst show that Zs−1 lies in a puncturing arc, and then
we inductively prove it for each Zi . Suppose Zs−1 lies in � � I , where � is a
1{simplex of eΓ, and we denote the arc in eFk \ (�� I) containing Zs−1 by �s−1 .

Let A�I � e��I be the closure of the component of e��I−eΓ�I that contains
�s−1 . So, �s−1 is an properly embedded arc in A � I with @�s−1 � @A � I .
Since �−Γ consists of disks and annular neighborhoods of circles in @�, either
A is a disk, or A is of the form [0; 1] � R which can be considered as the
universal cover of an annular neighborhood of a boundary circle of �.

If A is a disk, since �s−1 is properly embedded in A�I , after some isotopy on Fk
if necessary, we can assume length(�s−1) is bounded by a number that depends
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only on A. If �s−1 is not a puncturing arc in � � I , since we have assumed
that eFk \ (� � I) does not contain any @{parallel arc, �s−1 must intersect at
least one of the two puncturing �bers in @� � I . Let γ be a puncturing �ber
in @� � I that intersects �s−1 . By our de�nition of puncturing arc, the two
planes in eFk containing γ and �s−1 intersect each other. By our construction
above, Zs 2 @�s−1 lies in another puncturing �ber, say γs . Since A is a disk,
the distance between the two puncturing �bers γ and γs is bounded by the
diameter of the disk A. So, γ and γs puncture the same cross disk. Moreover,
the plane containing γs , �s−1 and �s−1 and the plane containing γ intersect
each other, which contradicts the 4{plane property as in Observation 6.4.

So, we only need to consider the case that A is of the form [0; 1]�R. We denote
the two boundary lines of A by li = fig�R (i = 0; 1). Suppose l0 � @e�. Hence,
�(l0) is a boundary circle of �, where � : fM ! M is the covering map. This
circle �(l0) represents a nontrivial element g 2 �1(�) � �1(M), and g acts onfM �xing A � I . By our construction, unless s = 1, �s−1 is an arc properly
embedded in A� ftg with both endpoints in l1 � ftg.

If the length of the subarc of l1�ftg between Zs and Zs−1 is large, then g(Zs)
(or g−1(Zs)) lies between Zs and Zs−1 in l1�ftg, and hence �s−1 nontrivially
intersects g(�s−1) (or g−1(�s−1)). Note that Zs and g(Zs) lie in puncturing
�bers. Since g 2 �1(�) is �xed, the distance between the two puncturing
�bers containing Zs and g(Zs) is relatively small (compared with k), and
hence they puncture the same cross disk. Moreover, since �s−1 nontrivially
intersects g(�s−1) (or g−1(�s−1)), the two planes containing Zs and g(Zs) (or
g−1(Zs)) intersect each other, which contradicts the 4{plane property as in
Observation 6.4.

Thus, we can assume length of the subarc of l1 � ftg between Zs and Zs−1 is
relatively small. Hence, the distance between Zs and the two puncturing �bers
@�� I is relatively small, where � is a 1{simplex of eΓ and Zs−1 2 �� I . As in
Observation 6.4, the plane in eFk containing Zs[�s−1 and a plane containing a
puncturing �ber in @�� I cannot intersect each other. So, as in the case that
A is a disk, the arc �s−1 , which is the arc in eFk\ (��I) containing Zs−1 , must
be a puncturing arc in �� I . Therefore, in any case, Zs−1 lies in a puncturing
arc.

Then, we apply the argument above to �s−2 (s > 2). Now, @�s−2 = Zs−1 [
Zs−2 . Note that in this case Zs−1 lies in a puncturing arc (Zs lies in a punctur-
ing �ber in the case above), but this does not make any di�erence when using
Observation 6.4. Hence, Zs−2 lies in a puncturing arc, and inductively, each
Zi 2 � (1 � i � s− 1) lies in a puncturing arc.
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By our assumption before, Z1 lies in the sub cross disk D[k=2] . We can choose
k large enough so that there is no short arc containing Z1 and with endpoints
in di�erent components of e��@I . This contradicts Claim 2. Thus, Lemma 6.3
holds in the case that � is a compact orientable surface.

If � is a compact nonorientable surface, since M is orientable, we can apply
Hatcher’s trick to the horizontal boundary of a twisted I {bundle over �, and
the proof is the same.

Suppose � contains a noncompact leaf. Let B be a branched surface fully
carries �, L be the branch locus of B , and p : N(B) ! B be the map that
collapses every I {�ber of N(B) to a point. We can assume @B is a union of
circles in @M . By previous arguments, any such branched surface always fully
carries a compact surface with the same boundary slope as @�. Let S be a
compact surface fully carried by B . By Claim 1 and Hatcher’s trick, as in the
case that � is a compact surface, Fk is not transverse to the I {�bers of N(B)
along any arc of Fk \ S . As before, in some tetrahedron T , there must be two
di�erent types of quadrilateral normal disks in T \ S and T \ Fk respectively.
Thus, after a small homotopy, we can assume that each I {�ber of N(B) either
transversely intersects Fk or entirely lies in Fk , in which case the local picture
of this �ber is as shown in Figure 6.5 and we also call such �bers puncturing
�bers. We can assume there are only �nitely many puncturing �bers for each
Fk .

N(B) can be viewed as the gluing of a collection of I {bundles over compact
surfaces along p−1(L). Now, we use the puncturing �bers to decompose N(B)
into a similar structure. We say � � I � N(B) is vertical if fpg � I is a
subarc of an I {�ber of N(B) for each p 2 � and (� � I) \ � = � � C for
some closed set C � I . We start with the puncturing �bers of Fk . Since every
leaf of � is dense, we can add �nitely many vertical rectangles �i � I � N(B)
(i = 1; : : : ; n) such that @�i�I is a pair of subarcs of puncturing �bers for each
i and �−[ni=1�i�I consists of disks and annular neighborhoods of circles in @�.
Moreover, we can assume that there is a union of products di� I (i = 1; : : : ; s)
and Ai � I (i = 1; : : : ; t) that are glued along [ni=1�i � I , such that:

(1) each di is a disk and @di � I lies in [ni=1�i � I for each i;
(2) each Ai is an annulus, one component of @Ai � I lies in @M and the

other component of @Ai � I lies in [ni=1�i � I ;
(3) fpg � I is a subarc of an I {�ber of N(B) for each p in di or Ai ;
(4) � lies in the union of these products �i � I ’s, di � I ’s and Ai � I ’s;
(5) � \ (di � I) = di �Ci and � \ (Ai � I) = Ai � C 0i , where Ci and C 0i are

closed sets in int(I).
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Furthermore, we can assume the diameter of di and the length of @Ai are
bounded by a number independent of the puncturing �bers, since � is �xed.
In fact, after a small perturbation, we can view the union of these products
�i � I ’s, di � I ’s and Ai � I ’s as a �bered neighborhood N(B0) of another
branched surface B0 that also fully carries �. We can also view [ni=1�i � I as
p−1(L0), where L0 is the branch locus of B0 and p : N(B0) ! B0 is the map
collapsing every I {�ber to a point.

The new branched surface B0 also fully carries a compact surface, say S . We
can suppose S lies in N(B0) and S does not intersect di � @I or Ai � @I . By
claim 1, we can assume each point in @S \ @Fk has the same sign. Since the
size of each di is bounded by a number independent of the puncturing �bers,
if k is large, there is a cross disk from Fk cutting through di � I for each i.
Moreover, we can choose an appropriate surface S so that at least one point
of @S \ @Fk belongs to a sub cross disk D[k=2] as before. By our construction,
@di � I and @Ai � I contain subarcs of puncturing �bers which puncture a
cross disk. After some homotopy as in the case that � is a compact surface,
we can also assume that any @{parallel arc of Fk in @di � I or @Ai � I does
not intersect S . Then, we can de�ne puncturing arcs using the di � I ’s and
Ai � I ’s similar to the case that � is a compact surface, and the proof is the
same.

Theorem 2, which is a generalization of Hatcher’s theorem, now follows easily
from Corollary 3.3 and Lemmas 6.1 and 6.3.

Theorem 2 Let M be an orientable and irreducible 3{manifold whose bound-
ary is an incompressible torus, and let H be the set of injective surfaces that
are embedded along their boundaries and satisfy the 4{plane property. Suppose
that M does not contain any nonperipheral closed (embedded) incompressible
surfaces. Then the surfaces in H can realize only �nitely many slopes.

Proof Suppose that the surfaces can realize in�nitely many slopes. Let fFng
be a sequence of surfaces in H no two of which have the same boundary slopes.
Since they have di�erent boundary slopes, by Corollary 3.3, the surfaces in
fFng cannot be fully carried by �nitely many immersed branched surfaces.
Then, by the argument in section 4, there exist a sequence of cross disks from
fFng that gives rise to an essential lamination. However, Lemma 6.3 imply that
the sequence fFng contains a subsequence of surfaces with the same boundary
slope, which contradicts our assumption that the surfaces in fFng all have
di�erent boundary slopes.

Geometry & Topology, Volume 6 (2002)



Boundary curves of surfaces with the 4{plane property 645

As an application of Theorem 2, we prove Theorem 3, which gives the �rst
nontrivial examples of 3{manifolds that do not admit any nonpositive cubings.
Before we proceed, we prove the following lemma.

Lemma 6.5 Let M be a closed and irreducible 3{manifold, S be a closed
least weight surface in M with the 4{plane property, and C be a homotopically
nontrivial simple closed curve that intersects S nontrivially. Then S − C is a
surface with the 4{plane property in M − C .

Proof Let fM be the universal cover of M and eC be the preimage of C infM . So, fM − eC is a cover of M −C . Let eS be the preimage of S in fM . Then,eS − eC is a collection of embedded surfaces in fM − eC . Since S has the 4{plane
property, among any 4 embedded surfaces in eS − eC , there is a disjoint pair.
Moreover, as each surface in eS − eC is embedded, among any 4 planes in the
preimage of eS − eC in the universal cover of fM − eC (ie the universal cover of
M−C ), there is a disjoint pair. Therefore, S−C satis�es the 4{plane property
in M − C .

Theorem 3 Let M be an orientable and irreducible 3{manifold whose bound-
ary is an incompressible torus. Suppose that M does not contain any closed
nonperipheral (embedded) incompressible surfaces. Then only �nitely many
Dehn �llings on M can yield 3{manifolds that admit nonpositive cubings.

Proof Let M(s) be the closed 3{manifold after doing Dehn �lling along slope
s, and Cs be the core of the solid torus glued to M during the Dehn �lling.
Then, except for �nitely many slopes, Cs is a homotopically nontrivial curve
in M(s). Suppose that M(s) admits a nonpositive cubing. For each cube in
the cubing, there are 3 disks parallel to the square faces and that intersect the
edges of the cube in their mid-points. These mid-disks from all the cubes in the
cubing match up and yield a union of immersed surfaces, which we denote by
S . The complement of S is a union of 3{balls. Aitchison and Rubinstein have
shown that these surfaces (and their double covers in M(s) if they are one-sided)
satisfy the 4{plane property [1]. Since Cs is nontrivial and the complement of
S is a union of 3{balls, Cs must nontrivially intersect at least one immersed
surface in S . Let N(Cs) be a small tubular neighborhood of Cs . Note that
S − int(N(Cs)) may not be @{injective in M and we need to perform some
homotopy on the surfaces in S . Similar to the case of embedded incompressible
surfaces [29], we push the (immersed) @{compressing disk across N(Cs) and
get less intersection circles. Since S is immersed, this homotopy changes the
intersection patterns of S in M(s), but by choosing innermost @{compressing
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disks if necessary, we can require that the disjoint planes in the preimage of S
in the universal cover of M(s) remain disjoint after this homotopy, and hence
this homotopy preserves the 4{plane property of S .

The nonpositive cubing gives M(s) a singular nonpositive metric and S con-
sists of totally geodesic surfaces in this singular metric [1]. The geodesic that
represents Cs must intersect some (totally geodesic) surface in S . Since the
singular metric is nonpositive, after the homotopy above, Cs must still inter-
sect some immersed surface in S . Hence, by Lemma 6.5, there is an injective
surface in M that satis�es the 4{plane property and has boundary slope s. By
Theorem 2, there are only �nitely many such slopes. Therefore, the theorem
holds.

References

[1] I R Aitchison, J H Rubinstein, An introduction to polyhedral metrics of non-
positive curvature on 3{manifolds, from: \Geometry of low-dimensional mani-
folds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge
Univ. Press, Cambridge (1990) 127{161

[2] M Baker, On boundary slopes of immersed incompressible surfaces, Ann. Inst.
Fourier (Grenoble) 46 (1996) 1443{1449

[3] M Baker, D Cooper, Immersed, Virtually-Embedded, Boundary Slopes,
Topology Appl. 102 (2000) 239{252

[4] A Candel, Laminations with transverse structure, Topology 38 (1999) 141{165

[5] Y Choi, (3,1) surfaces via branched surfaces, Thesis, Caltech (1998)

[6] J Christy, Immersing branched surfaces in dimension three, Proc. Amer. Math.
Soc. 115 (1992) 853{861

[7] M Culler, W Jaco, H Rubinstein, Incompressible surfaces in once-punctured
torus bundles, Proc. London Math. Soc. 45 (1982) 385{419

[8] W Floyd, A Hatcher, Incompressible surfaces in punctured-torus bundles,
Topology Appl. 13 (1982) 263{282

[9] W Floyd, U Oertel, Incompressible surfaces via branched surfaces, Topology
23 (1984) 117{125

[10] M Freedman, J Hass, P Scott, Least area incompressible surfaces in 3{
manifolds, Invent. Math. 71 (1983) 609{642

[11] D Gabai, U Oertel, Essential laminations in 3{manifolds, Ann. of Math. (2)
130 (1989) 41{73

[12] M Gromov, Hyperbolic groups, Essays in group theory, MSRI Pubs. 8, 75{264

[13] W Haken, Theorie der Normal Flachen, Acta. Math. 105 (1961) 245{357

Geometry & Topology, Volume 6 (2002)



Boundary curves of surfaces with the 4{plane property 647

[14] J Hass, P Scott, Homotopy equivalence and homeomorphism of 3{manifolds,
Topology 31 (1992) 493{517

[15] A Hatcher, On the boundary curves of incompressible surfaces, Paci�c J. Math.
99 (1982) 373{377

[16] A Hatcher, W Thurston, Incompressible surfaces in 2{bridge knot comple-
ments, Invent. Math. 79 (1985) 225{246

[17] H Imanishi, On the theorem of Denjoy{Sacksteder for codimension one folia-
tions without holonomy, J. Math. Kyoto Univ. 14 (1974) 607{634

[18] W Jaco, H Rubinstein, PL minimal surfaces in 3{manifolds, J. Di�erential
Geom. 27 (1988) 493{524

[19] W Jaco, H Rubinstein, 0-e�cient triangulations of 3{manifolds, preprint

[20] H Kneser, Geschlossene Flachen in Dreidimensionalen Mannigfaltigkeiten,
Jahres. der Deut. Math. Verein. 38 (1929) 248{260

[21] T Li, An algorithm to �nd vertical tori in small Seifert �ber spaces, e-print:
arXiv:math.GT/0209107

[22] J Maher, Virtually embedded boundary slopes, Topology Appl. 95 (1999) 63{74

[23] L Mosher, Geometry of cubulated 3{manifolds, Topology 34 (1995) 789{814

[24] L Mosher, U Oertel, Spaces which are not negatively curved, Comm. Anal.
Geom. 6 (1998) 67{140

[25] U Oertel, Incompressible branched surfaces, Invent. Math. 76 (1984) 385{410

[26] U Oertel, Boundaries of injective surfaces, Topology Appl. 78 (1997) 215{234

[27] U Oertel, Measured laminations in 3{manifolds, Trans. Amer. Math. Soc. 305
(1988) 531{573

[28] H Rubinstein, M Sageev, Intersection patterns of essential surfaces in 3{
manifolds, Topology 38 (1999) 1281{1291

[29] W Thurston, The geometry and topology of three-manifolds, Lecture notes.
Princeton University (1977/78)

[30] F Waldhausen, On irreducible 3{manifolds which are su�ciently large, Ann.
of Math. 87 1968 56{88

Geometry & Topology, Volume 6 (2002)


