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Abstract

We de�ne a laminar branched surface to be a branched surface satisfying the
following conditions: (1) Its horizontal boundary is incompressible; (2) there is
no monogon; (3) there is no Reeb component; (4) there is no sink disk (after
eliminating trivial bubbles in the branched surface). The �rst three conditions
are standard in the theory of branched surfaces, and a sink disk is a disk branch
of the branched surface with all branch directions of its boundary arcs pointing
inwards. We will show in this paper that every laminar branched surface carries
an essential lamination, and any essential lamination that is not a lamination by
planes is carried by a laminar branched surface. This implies that a 3{manifold
contains an essential lamination if and only if it contains a laminar branched
surface.
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154 Tao Li

0 Introduction

It has been a long tradition in 3{manifold topology to obtain topological in-
formation using codimension one objects. Almost all important topological
information has been known for 3{manifolds that contain incompressible sur-
faces, eg, [21, 20]; other codimension one objects, such as Reebless foliations
and immersed surfaces, have also been proved fruitful [3, 4, 5, 11, 17]. In
[9], essential laminations were introduced as a generalization of incompressible
surfaces and Reebless foliations and it was proved in [9] that if a closed and ori-
entable 3{manifold contains an essential lamination, then its universal cover is
R3 . More recently, Gabai and Kazez proved that if an orientable and atoroidal
3{manifold contains a genuine lamination, ie, an essential lamination that can
not be trivially extended to a foliation, then its fundamental group is negatively
curved in the sense of Gromov.

Ever since the invention of essential laminations, branched surfaces have been
a practical tool to study them [9]. Gabai and Oertel have shown that some
splitting of any essential lamination is fully carried by a branched surface satis-
fying some natural conditions (see Proposition 1.1) and any lamination carried
by such a branched surface is an essential lamination. However, these condi-
tions do not guarantee the existence of essential laminations. In fact, it was
shown [9] that even S3 contains branched surfaces satisfying those conditions.
One of the most important problems in the theory of essential laminations is to
�nd su�cient conditions for a branched surface to carry an essential lamination
(see Gabai’s problem list [7]). In this paper we will show that those standard
conditions in [9] plus one more, which is that the branched surface does not
contain sink disks, are su�cient and (except for a single 3{manifold) necessary
conditions, see section 1 for de�nition of sink disk. We call a branched surface
satisfying these conditions a laminar branched surface.

Theorem 1 Suppose M is a closed and orientable 3{manifold. Then:

(a) Every laminar branched surface in M fully carries an essential lamination.

(b) Any essential lamination in M that is not a lamination by planes is fully
carried by a laminar branched surface.

Furthermore, if � � M is a lamination by planes (hence M = T 3 ), then any
branched surface carrying � is not a laminar branched surface.

Since T 3 = S1�S1�S1 is Haken, and incompressible surfaces are very special
cases of essential laminations, we have:
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Theorem 2 A 3{manifold contains an essential lamination if and only if it
contains a laminar branched surface.

In many situations, it is easier to construct a branched surface than to con-
struct an essential lamination. Theorem 1 gives a criterion to tell whether a
branched surface carries an essential lamination. It is a very useful theorem.
For example, Delman and Wu [1, 22] have shown that many 3{manifolds con-
tain essential laminations by constructing branched surfaces in certain classes
of knot complements and showing that they carry essential laminations. The-
orem 1 can simplify, to some extent, their proofs. It is also easy to see that
Hatcher’s branched surfaces [13] satisfy our conditions. Moreover, after split-
ting the branched surfaces near the boundary torus such that the train tracks
(ie, Hatcher’s branched surfaces restricted to the boundary) become circles, the
branched surfaces also satisfy our conditions (after capping the circles o�). This
implies that they are laminar branched surfaces in the manifolds after the Dehn
�llings along these circles. Hence Hatcher’s branched surfaces carry more lam-
inations than what was shown in [13] and Theorem 1 gives a simpler proof of a
theorem of Naimi [16]. More recently, Roberts has constructed taut foliations
in many manifolds using this theorem [19].

Another interesting question that arose when the concept of essential lamina-
tion was introduced is whether there is a lamination-free theory for branched
surfaces. In a subsequent paper [15], we will discuss this question by proving the
following theorem and some interesting properties of laminar branched surfaces
without using lamination techniques. Theorem 3 is just the branched surface
version of the theorems of Gabai{Oertel [9] and Gabai{Kazez [10], and it is an
immediate corollary of Theorem 1.

Theorem 3 Let M be a closed and orientable 3{manifold that contains a
laminar branched surface B . Then:

(i) The universal cover of M is R3 .

(ii) If, in addition, the 3{manifold is atoroidal and at least one component of
M − B is not an I {bundle, then the fundamental group of M is word
hyperbolic.

We organize the paper as follows: in section 1, we list some basic de�nitions and
results about essential laminations and give the de�nition of laminar branched
surfaces; in section 2, we prove some topological lemmas that we need in the
construction of essential laminations; in sections 3 and 4, we show that every
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laminar branched surface carries an essential lamination; in section 5, we prove
part (b) of Theorem 1.

Acknowledgments I would like to thank Dave Gabai and Ian Agol for many
very helpful conversations. I would also like to thank the referee for many
corrections and suggestions.

1 Preliminaries

A (codimension one) lamination � in a 3{manifold M is a foliated, closed
subset of M , ie, � is covered by a collection of open sets of the form R2 � R
such that, for any open set U , � \ U = R2 � C , where C is a closed set in
R, and the transition maps preserve the product structures. The coordinate
neighborhoods of leaves are of the form R2 � x (x 2 C ).

Unless speci�ed, our laminations in this paper are always assumed to be codi-
mension one laminations in closed and orientable 3{manifolds. Similar results
hold for laminations (with boundary) in 3{manifolds whose boundary is incom-
pressible. Let � be a lamination in M , and M� be the metric completion of
the manifold M − � with the path metric inherited from a Riemannian metric
on M .

De�nition 1.1 [9] � is an essential lamination in M if it satis�es the fol-
lowing conditions.

(1) The inclusion of leaves of the lamination into M induces an injection on
�1 .

(2) M� is irreducible.

(3) � has no sphere leaves.

(4) � is end-incompressible.

De�nition 1.2 A branched surface B in M is a union of �nitely many com-
pact smooth surfaces gluing together to form a compact subspace (of M ) locally
modeled on Figure 1.1.

Notation Throughout this paper, we denote the interior of X by int(X), and
denote the number of components of X by jXj, for any X .
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Figure 1.1

Given a branched surface B embedded in a 3{manifold M , we denote by N(B)
a regular neighborhood of B , as shown in Figure 1.2. One can regard N(B) as
an interval bundle over B . We denote by � : N(B) ! B the projection that
collapses every interval �ber to a point. The branch locus of B is L = fb 2 B :
b does not have a neighborhood homeomorphic to R2g. So, L can be considered
as a union of smoothly immersed curves in B , and we call a point in L a double
point of L if any small neighborhood of this point is modeled on the third
picture of Figure 1.1.

Let D0 be a component of B − L, and D be the closure of D0 in the path
metric (of B−L). Then, int(D) = D0 , @D � L, and those non-smooth points
in @D are double points of L. Note that int(D) = D0 is embedded in B , but
@D may not be embedded in B (there may be two boundary arcs of D that
are glued to the same arc in L). We call D a branch of B .

The boundary of N(B) is a union of two compact surfaces @hN(B) and @vN(B).
An interval �ber of N(B) meets @hN(B) transversely, and intersects @vN(B)
(if at all) in one or two closed intervals in the interior of this �ber. Note that
@vN(B) is a union of annuli, and �(@vN(B)) is exactly the branch locus of
B (see Figure 1.2). We call @hN(B) the horizontal boundary of N(B) and
@vN(B) the vertical boundary of N(B).

(a) (b)

@vN(B) @hN(B)

Figure 1.2

We say a lamination � is carried by B if, after some splitting, � can be isotoped
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into int(N(B)) so that it intersects the interval �bers transversely, and we say
� is fully carried by B if � intersects every �ber of N(B).

Gabai and Oertel [9] found the �rst relation between essential laminations and
the branched surfaces that carry them.

Proposition 1.1 (Gabai and Oertel) (a) Every essential lamination is fully
carried by a branched surface with the following properties.

(1) @hN(B) is incompressible in M − int(N(B)), no component of @hN(B)
is a sphere, and M −B is irreducible.

(2) There is no monogon in M − int(N(B)), ie, no disk D �M − int(N(B))
with @D = D \N(B) = �[ � , where � � @vN(B) is in an interval �ber
of @vN(B) and � � @hN(B).

(3) There is no Reeb component, ie, B does not carry a torus that bounds a
solid torus in M .

(4) B has no disk of contact, ie, no disk D � N(B) such that D is transverse
to the I {�bers of N(B) and @D � @vN(B), see Figure 1.3 (a) for an
example.

(b) If a branched surface with properties above fully carries a lamination, then
it is an essential lamination.

(a) (b)

Figure 1.3

However, such branched surfaces may not carry any laminations and they do
not give much information about the 3{manifolds.

Geometry & Topology, Volume 6 (2002)
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Proposition 1.2 (Gabai and Oertel) S3 contains a branched surface satis-
fying all the conditions in Proposition 1.1.

It has also been pointed out in [9] that a twisted disk of contact is an obvi-
ous obstruction for a branched surface to carry a lamination, because it forces
non-trivial holonomy along trivial curves, which contradicts the Reeb stability
theorem (see Figure 1.3 (b)).

Let L be the branch locus of B . L is a collection of smooth immersed curves
in B . Let X be the union of double points of L. We associate with every
component of L −X a vector (in B ) pointing in the direction of the cusp, as
shown in Figure 1.4. We call it the branch direction of this arc.

(a) (b)

Figure 1.4

We call a disk branch of B a sink disk if the branch direction of every smooth
arc (or curve) in its boundary points into the disk. The standard pictures of
disks of contact (Figure 1.3 (a)) and twisted disks of contact (Figure 1.3 (b))
are all sink disks by our de�nition. Moreover, the disk in Figure 1.4 (b) is also
a sink disk. Note that a disk of contact can be much more complicated than
Figure 1.3 (a) (see Proposition 1.1 for the de�nition of disk of contact). We
will discuss the relation between a sink disk and a disk of contact in section 2
(see Corollary 2.3).

A sink disk can be considered to be a generalized disk of contact. Here is
another way to see this. In a regular neighborhood of such a disk, we consider
the two components of the complement of B (the one above the disk and the
one below). The disk is exactly the intersection of the boundaries of the two
components. Moreover in each component, one can have a properly embedded
disk with smooth boundary, which is isotopic to the sink disk.

Let K be a component of M − int(N(B)). If K is homeomorphic to a 3{
ball, then, since @hN(B) is incompressible in M − int(N(B)), @K consists
of two disk components of @hN(B) and an annulus component of @vN(B).
Moreover, we can give K a �ber structure D2 � I , with D2 � @I � @hN(B)
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and @D2�I � @vN(B). We call K a D2 � I region in M−int(N(B)), D2�@I
the horizontal boundary of K and @D2 � I the vertical boundary of K .

De�nition 1.3 Let D1 and D2 be the two disk components of the horizontal
boundary of a D2�I region K in M− int(N(B)). Hence, D1 and D2 are also
two disk components of @hN(B) and D1 [ D2 = D2 � @I . Thus, �(@D1) =
�(@D2) is a circle in the branch locus L, where � : N(B)! B is the collapsing
map. If � restricted to the interior of D1[D2 is injective, ie, the intersection of
any I {�ber of N(B) with int(D1) [ int(D2) is either empty or a single point,
then we call K a trivial D2 � I region, and we say that �(D1 [ D2) forms a
trivial bubble in B .

Let K = D2 � I be a trivial D2 � I region. Then, after collapsing each I {
�ber of K = D2 � I to a point, N(B) [K becomes a �bered neighborhood of
another branched surface with the induced �ber structure from N(B). Thus, if
B contains a trivial bubble, we can pinch B to get another branched surface by
collapsing the I {�bers in the corresponding trivial D2� I region, and the new
branched surface after this pinching preserves the properties 1{4 in Proposition
1.1. There is really no di�erence between the branched surface before this
pinching and the one after the pinching. It is easy to see that a branched
surface carries a lamination if and only if, after we collapse all trivial bubbles
in B as above, the new branched surface carries a lamination. Not all D2 � I
regions are trivial, eg, we cannot collapse all the D2 � I regions in a standard
Reeb component. Moreover, if we blow an \air bubble" into the interior of a
sink disk, it will destroy the sink disk by de�nition but nothing really changes.
So, in this paper, we always assume B contains no trivial bubble.

De�nition 1.4 A branched surface B in M is called a laminar branched sur-
face if it satis�es conditions 1{3 in Proposition 1.1, and B has no sink disk
(after we collapse all the trivial bubbles as described above).

In this paper, we will also use some techniques about train tracks. We re-
fer readers to [18] section 1.1 for basic de�nitions and properties about train
tracks. Let D be a disk and � be a train track in D . Suppose W is a closed
disk embedded in the plane whose boundary is piecewise smooth with k � 0
discontinuities in the tangent. Let h : W ! D be a C1 immersion which is an
embedding of the interior of W , and h(W ) � � . Let � = h(W ), and we denote
the image (under h) of int(W ) by int(�). Note that int(�) is an embedded
open disk in D , but � − int(�) may not be embedded in D . We call � a
k{gon, if k > 0 and � − int(�) is a sub train track of � in D . So, �− int(�)
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is an immersed circle with k prongs, each smooth arc in �− int(�) is carried
by � , and the k non-smooth points in @� are switches (non-manifold points)
of � . If k = 1, we also call � a monogon, and if k = 2, we also call � a
bigon. If � \ int(�) = ;, we call � a k{gon component of D − � . We call
� a smooth disk if k = 0 and � − int(�) is a sub train track of � in D , ie,
int(�) is an embedded disk, and �− int(�) is a circle carried by � . We call
� a smooth disk component of D− � if � \ int(�) = ;. Let N(�) be a �bered
neighborhood of � . Then, the � above corresponds to an embedded disk in D ;
if � is a smooth disk, @� corresponds to an embedded circle in N(�) trans-
versely intersecting the I {�bers of N(�); if � is a k{gon, @� corresponds to
an embedded circle in N(�) consisting of k arcs, each of which is transverse to
the I {�bers of N(�). Throughout this paper, when we talk about an object in
D with respect to the train track � , we simultaneously use the same notation
to denote the corresponding object in D with respect to N(�).

Let � be a k{gon as above. We call � − int(�) (ie, h(W − int(W )) the
boundary of �, which we denote by @�. We call the image (under h) of a
non-smooth point of @W a vertex of the k{gon �, and call the image (under
h) of a smooth arc between two non-smooth points in @W an edge of the k{gon
�.

2 Some topological lemmas

In this section, we explore topological and combinatorial properties of laminar
branched surfaces by proving some lemmas. Lemmas 2.4 and 2.5 will be used
in section 4 to guarantee that a part of the lamination constructed in section 4
satis�es a technical condition in a lemma. Lemma 2.1 is interesting in its
own right. In particular, we prove Corollary 2.3, which basically says that the
condition of no sink disks implies that there is no disk of contact. Note that
the condition of no disks of contact plays an important role in the proof of
Proposition 1.1 (b) [9].

Let B be a laminar branched surface, and S be a branch of B . The boundary
of S is piecewise smooth, and each smooth arc in @S has a transverse direction
induced from the branch direction of the corresponding arc in L, where L
denotes the branch locus throughout this paper. Then, we can consider B to
be the object obtained by gluing all the branches of B together along their
boundaries according to the branch directions. If the branch direction of each
smooth arc in @S points out of S and there are no two arcs in @S glued
together (to the same arc in L), then B − int(S) naturally forms another
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branched surface, as shown in Figure 2.1. We denote this branched surface
(B− int(S)) by B− . Note that if two arcs in @S are identi�ed to the same arc
in L, B − int(S) is not a branched surface anymore near this arc. Moreover,
no three arcs in @S can be identi�ed to the same arc in L, because otherwise,
one of the three arcs must have induced direction (from the branch direction)
pointing into S .

B B − S

S

Figure 2.1

De�nition 2.1 Let S be a disk branch of B with branch direction of each
boundary edge pointing out of S . If there are no two arcs in the boundary of
S identi�ed to the same arc in L, we call S a removable disk. If B contains no
removable disk, we say that B is e�cient.

Lemma 2.1 Let B be a laminar branched surface and S be a removable disk
in B . Then, B− = B − int(S) is also a laminar branched surface.

Proof We �rst note that we have assumed our laminar branched surface B
does not have any trivial bubble. Then, B− does not contain any trivial bubble
either, since B can be considered as the branched surface obtained by adding
a branch S to B− and if we add a disk branch inside a trivial bubble of B− ,
we always get a trivial bubble in B .

Now, we show that B− has no sink disk. Suppose D is a sink disk in B− , ie,
D is a disk branch with branch directions of its boundary arcs pointing into D .
If D\@S is a union of arcs, then D is cut into pieces by @S , but at least one of
these pieces is a sink disk in B , which gives a contradiction. If D\@S contains
a circle, since S is a disk branch of B and @hN(B) has no sphere component,
@S must be a circle that bounds a disk D0 in D and the branch direction of
@S must point out of D0 . Thus, S [D0 forms a trivial bubble in B , as M −B
is irreducible, which contradicts our assumption of no trivial bubbles.

Since any surface (or lamination) carried by B− must also be carried by B , B−

has no Reeb component. Since no component of @hN(B) is a 2{sphere, it is
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easy to see that no component of @hN(B−) is a 2{sphere. Moreover, M −B−
is irreducible, since a reducing sphere intersects S in loops, which bound disks
in the disk branch S , and the irreducibility follows from a standard cut and
paste argument. So, we only need to show that @hN(B−) is incompressible in
M − int(N(B−)), and there is no monogon in M −B− .

Note that @vN(B−) has a natural �ber structure with every I {�ber a subarc
of an I {�ber of N(B−). Let  : N(B−)! NB− be a map such that:

(1)  collapses every I {�ber of @vN(B−) to a point;

(2)  , when restricted to int(N(B)) and int(@hN(B)), is a homeomorphism.

Figure 2.2 is a schematic picture of  . We denote the image of  by NB− .
Let @hNB− be the image of int(@hN(B−)) (under the map  ). If @hN(B−) is
compressible in M−int(N(B−)), then @hNB− is compressible in M−int(NB−).

N(B−) NB−

 

Figure 2.2

The component S is a surface with @S � B− and int(S) embedded in M−B− .
The branched surface B can be considered as the union of B− and S by
smoothing out @S according to the branch direction. In the same way as
adding S to B− , we can add S to NB− . We can view S as a surface properly
embedded in M − int(NB−) with @S piecewise smoothed out according to
the branch direction. We consider this complex NB− [ S . Note that if we
collapse every I {�ber of NB− to a point, NB− [ S becomes B ; and if we
thicken NB− [ S a little, it becomes N(B). Let E be a compressing disk in
M − int(NB−) with @E � @hNB− . We may assume that the compressing disk
E intersects S transversely except at @E \ @S . We also assume jE \ Sj (the
number of components of E \ S ) is minimal among all compressing disks for
@hNB− . Thus, E \ S contains no closed circles, otherwise, since a circle of
intersection bounds a disk in S , a standard cutting and pasting argument gives
us a compressing disk with fewer intersection curves (with S ).

Next, we show that E \ S 6= ;. Suppose E \ S = ;. Let K be the closure
of the component of M − NB− that contains S . Then, E � K , otherwise, it
contradicts the assumption that @hN(B) is incompressible in M − int(N(B)).
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As E \ S = ;, we can simultaneously consider E to be a disk embedded in
M − int(N(B)) with @E a smooth nontrivial circle in @hN(B). Since @hN(B)
is incompressible, there is an embedded disk E0 � @hN(B) with @E = @E0 and
E[E0 bounds an embedded 3{ball in M−int(N(B)). There are a pair of disks
in @hN(B), which we denoted by S1 and S2 , such that �(S1) = �(S2) = S (S1

and S2 can be considered as two sides of S ). For each smooth arc � � @S ,
let �1 � @S1 and �2 � @S2 be the two corresponding arcs such that �(�1) =
�(�2) = �. Then, since the branch direction of @S points out of S , either
�1 or �2 must lie in the boundary of @hN(B) (ie, @hN(B) \ @vN(B)). Thus,
E0 � int(@hN(B)) cannot intersect both S1 and S2 . Therefore, there must be
a smooth disk � embedded in @hNB− [ S such that @� = @E and � [ E
bounds an embedded 3{ball in K . Since @hN(B) is incompressible, �\S 6= ;.
Note that the purpose of the argument about S1 and S2 is to show that �
cannot cover S from both sides of S and hence the 3{ball bounded by E [�
is embedded. Since E \ S = ;, S must lie in the interior of �. Since S is
a disk and since @hN(B) is incompressible in M − int(N(B)), K must be a
solid torus with @K � @hNB− , and K [ S forms a Reeb component, which
contradicts our assumptions on B .

So, E\S 6= ;. Since E and S are properly embedded in M − int(NB−), E\S
is a union of disjoint simple arcs in E . Since @S is smoothed out according to
the branch direction, the union of @E and E \ S is a train track in E with
all the switches (ie non-manifold points) in @E . Moreover, since M − B has
no monogon, E − E \ S has no monogon component. Hence, by a standard
index argument, E − E \ S must have a smooth disk component (see section
1 for our de�nitions of smooth disk component and smooth disk). We denote
this smooth disk component of E − E \ S by E0 . Since E \ S is a union of
disjoint properly embedded arcs, E−E0 is a union of bigons, which we denote
by E1; : : : ; En (Ei may contain other components of E \ S ). The boundary
of each bigon Ei consists of two edges, �i and �i , where �i = Ei \ E0 and
�i = Ei \ @E .

Since @hN(B) is incompressible, E0 must be parallel to @hNB− [ S , ie, there
is a smooth disk � in @hNB− [ S such that @� = @E0 and � [ E0 bounds
a 3{ball. Note that by the argument about S1 and S2 above, only one side
of S (near @S ) can be in the interior of a smooth surface that corresponds to
@hN(B). Hence, � must be embedded in @hNB− [ S , and � [ E0 bounds an
embedded 3{ball T . If (E−E0)\T 6= ;, then (since E is embedded) there must
be another smooth disk component E00 (of E − E \ S ) lying in (E − E0) \ T ,
and there is a sub-disk of �, say �0 , such that @E00 = @�0 and E00[�0 bounds
a 3{ball inside T . Thus, by choosing an appropriate smooth disk component,

Geometry & Topology, Volume 6 (2002)



Laminar Branched Surfaces in 3{manifolds 165

we can assume that (E − E0) \ T = ;.

Since there are no two arcs in @S identi�ed to the same arc in L, @S is em-
bedded in @NB− . Hence, �\@S is a union of disjoint curves that are properly
embedded in �. Since S is a disk, � \ @S contains no closed curves, and
hence � \ S is a union of disks in �. We denote the components of � \ S by
F1; : : : ; Fm . Then, each arc in @Fi − @S is one of the �j ’s (in @Ej ’s) de�ned
before.

Let F̂i be the union of Fi and those Ej ’s that share boundary edges �j ’s with
Fi . By our construction, [ni=1�i � [mi=1Fi , and hence [ni=1Ei � [mi=1F̂i . Since
each Ej is a bigon with @Ej = �j [ �j (�j � @E − @E0 � @hNB− ), and since
(E−E0)\T = ;, F̂i is an embedded disk with @F̂i � @hNB− . Moreover, after
pushing F̂i out of T , F̂i \ S has fewer components than E \ S . Since we have
assumed that E \ S has the least number of components among compressing
disks, F̂i cannot be a compressing disk. So, F̂i can be homotoped into @hNB−

�xing @F̂i , for any i. However, we can then �rst homotope E0 into � �xing
@E0 and each Ei , then we homotope every F̂i into @hNB− �xing @F̂i . Since
� − @hNB− = [mi=1Fi , and since [ni=1Ei � [mi=1F̂i , after those homotopies
above, we have homotoped E into @hNB− �xing @E , which contradicts the
assumption that E is a compressing disk. Therefore, @hNB− is incompressible
in M − int(NB−), and hence @hN(B−) is incompressible in M − int(N(B−)).

Using a similar argument, we can show that M −NB− contains no monogons.
Note that since the argument in this case is very similar to the one above, we
keep the same notation, and refer many details to the argument above. Now,
we let E be a monogon, and suppose E intersects S transversely except at @S .
We assume E \ S has the least number of components among all monogons.
Note that E \S 6= ;, since M −B contains no monogons. As in the argument
above, (E \S)[@E is a train track in E . Since M −B contains no monogons,
E − E \ S contains no monogon component. Hence, by a standard index
argument, there must be a smooth disk component in E − E \ S , which we
denote by E0 . In this case, E − E0 is a union of bigons and one 3{gon (ie,
a disk with three prongs). Let E1; : : : ; En be the components of E − E0 , and
suppose E1 is the disk with three prongs. As before, there is a smooth disk � in
@hNB− [S such that @� = @E0 and �[E0 bounds an embedded 3{ball. We
can de�ne Fi ’s and F̂i ’s as above. However, in this case, the F̂k that contains
E1 must be a monogon. After pushing this F̂k out of the 3{ball bounded by
�[E0 , we get a monogon with fewer intersection curves (with S ), which gives
a contradiction.
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Remark 2.1 (1) Let B and B− be as above. By Corollary 2.3, B and B−

have no disks of contact. Hence, if B− fully carries a lamination, using
the techniques in [6, 3] (see also section 3), we can construct a lamination
fully carried by B . Then, by Proposition 1.1 (b), this lamination is an
essential lamination.

(2) Let B1; : : : ; Bm be a series of branched surfaces, Li be the branch locus
of Bi (for any i), and Si (i < m) be a removable disk of Bi . Suppose
Bi+1 = Bi − int(Si) (i < m). If B1 is a laminar branched surface,
then by Lemma 2.1, we can inductively show that each Bi is a laminar
branched surface. Moreover, as we point out above, if Bm fully carries a
lamination, we can inductively construct a lamination for each Bi . For
any laminar branched surface B = B1 , there always exist such a series
of branched surfaces such that Bm is e�cient. If we can construct a
lamination carried by Bm , we can inductively extend this lamination to
a lamination fully carried by B = B1 .

(3) Although we used the hypothesis that S is a disk in the proof, Lemma 2.1
is still true if S is not a disk.

De�nition 2.2 Let S1 and S2 be two surfaces or arcs in N(B) that are
transverse to the I {�bers of N(B). We say that S1 and S2 are parallel if there
is an embedding H : S � [1; 2] ! N(B) such that H(S � fig) = Si (i = 1; 2)
and H(fxg � [1; 2]) is a subarc of an I {�ber of N(B) for any x 2 S .

De�nition 2.3 Let B be a branched surface and D be an embedded disk
in N(B) that is transverse to the I {�bers of N(B). Suppose @D � �−1(L),
where L is the branch locus of B . Then, every arc in @D has an induced
direction that is consistent with the branch direction of the corresponding arc
in L. We call D a generalized sink disk if the induced direction of every arc in
@D points into D . Note that if �−1(L) \ int(D) = ;, �(D) is a sink disk.

Lemma 2.2 Let B be a laminar branched surface. Then, N(B) contains no
generalized sink disk.

Proof Suppose D is a generalized sink disk. We �rst show that there must
be a subdisk of D , which we denote by D0 , such that D0 is a generalized sink
disk, and �jD0 is injective (ie, the intersection of each I {�ber of N(B) with D0

is either empty or a single point).

Let n be the maximal number of intersection points of D with any I {�ber of
N(B), and Xn be the union of I {�bers of N(B) whose intersection with D
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consists of n points. We assume n > 1, otherwise, D0 = D . We use induction
on n. Since the induced direction of every arc in @D points into D , Xn \D
is a collection of compact subsurfaces of D . Moreover, since n is maximal, the
boundary of Xn \ D lies in �−1(L) with direction (induced from the branch
direction of L) pointing into Xn \ D . Let P1; : : : ; Pk be the components of
Xn \D , and hence each Pi is a planar surface in D . We call a boundary circle
of Pi the outer boundary of Pi if it bounds a disk in D that contains Pi . We
denote the outer boundary of Pi by �i (i = 1; : : : k) and let Di be the disk
bounded by �i in D . Hence, Pi � Di . Without loss of generality, we can
assume that �1 is an inner most circle (among the �i ’s), ie, Di 6� D1 for any
i 6= 1. Then, @D1 � �−1(L) and the induced direction of every arc in @D1

points into D1 . Hence, D1 is a generalized sink disk. Next, we show that we
can assume the maximal number of intersection points of P1 with any I {�ber
of N(B) is less than n.

Note that Xn can be considered as an I {bundle over a compact surface (if
one collapses every I {�ber in Xn to a point, since n is maximal, one does
not get any branching). Thus, if P1 contains all n points of the intersection,
Xn must be a twisted I {bundle over a nonorientable surface, n = 2, and P1

double covers a nonorientable surface. If two inner boundary components, say
c1 and c2 , of P1 are two parallel curves in a vertical boundary component of the
I {bundle Xn , we can replace the disk (in D) bounded by c1 by a disk that is
parallel to the disk (in D) bounded by c2 . By this cutting and pasting, we can
assume that P1 is an annulus that double covers a Möbius band. Moreover,
the outer boundary �1 of P1 bounds a disk that is parallel to the disk (in
D) bounded by the inner boundary of P1 . By capping �1 o� using this disk,
we get an embedded 2{sphere that double covers a projective plane carried by
B . Then, by applying the train track argument below to this 2{sphere, one
either gets a generalized sink disk D0 in this 2{sphere with �jD0 injective, or
gets a removable disk disjoint from a generalized sink disk and eventually has
a contradiction similar to the argument below. Note that if we assume M to
be irreducible here, M must be RP 3 and it is easy to conclude that this case
cannot happen. Hence, we may assume the maximal number of intersection
points of P1 with any I {�ber of N(B) is less than n.

Since �1 is innermost, the maximal number of intersection points of D1 with
any I {�ber of N(B) must be less than n. Inductively, we can eventually �nd
a generalized sink disk D0 � D such that �jD0 is injective. Note that �(D0) is
not necessarily a sink disk by de�nition because �−1(L) \ int(D0) may not be
empty.

In the remaining part of the proof, we will show that there is a removable
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disk S in B such that the �bered neighborhood of the branched surface B− =
B − int(S) also contains a generalized sink disk. Let D0 be a generalized sink
disk such that �jD0 is injective. Moreover, we may assume that D0 contains
no subdisk that is a generalized sink disk. Note that �−1(L) \ int(D0) 6= ;,
otherwise, �(D0) is a sink disk which contradicts the hypothesis that B is a
laminar branched surface.

We �x a normal direction for D0 . For every point x 2 int(D0), let Jx be the
I {�ber of N(B) that contains x. Then, Jx−x has two components. According
to the �xed normal direction of D0 , we say that the points in one component
of Jx − x are on the positive side of x, and points in the other component of
Jx − x are on the negative side of x. Let G be the union of x 2 D0 such that
Jx � �−1(L) and @vN(B)\ Jx contains a component on the positive side of x.
Note that if �(Jx) is a double point of L, @vN(B)\ Jx consists of two disjoint
arcs. Then, by the construction of G and the local model (Figure 1.2) of a
branched surface, G [ @D0 is a trivalent graph and each edge has a direction
induced from the branch direction. As shown in Figure 2.3, this trivalent graph
G [ @D0 can be deformed into a transversely oriented train track � according
to the directions of the edges in G. Since the direction of every arc in @D0

points into D0 and � is transversely oriented, @D0 is a smooth circle in � .
Note that, by choosing an appropriate normal direction for D0 , we can assume
G 6= ;, since �−1(L) \ int(D0) 6= ;. By a standard index argument, D0 − �
must have a smooth disk component, ie, there is a smooth circle in � which
is the boundary of the closure of a disk component of D0 − � . We denote this
disk with smooth boundary by �. So, @� � � and the directions of the arcs in
@� either all point inwards or all point outwards, as � is transversely oriented
according to the branch direction. Since we have assumed that D0 contains no
subdisk that is a generalized sink disk, the direction of @� must point out of
�, and hence � � int(D0). Therefore, by our construction of G, � must be
parallel to a disk component of @hN(B) (see De�nition 2.2 for the de�nition of
parallel). After an isotopy in a small neighborhood of �, we can assume that
� is a disk component of @hN(B). Since @hN(B) is incompressible, � must
be a horizontal boundary component of a D2 � I region of M − int(N(B)).
Let K = D2 � I (I = [−1; 1]) be the component of M − int(N(B)) such that
� = D2�f−1g � @K . We denote D2�f1g � @K by �0 . Then, we can isotope
D0 across K in a small neighborhood of K . In other words, (D0−�)[A[�0 ,
where A = @D2 � I � @K is the vertical boundary of K , is an embedded disk
in N(B) that is isotopic (in M ) to D0 . Then, by a small perturbation near
A, we can isotope the disk (D0 −�) [A [�0 to be transverse to the I {�bers
of N(B). We denote the disk after this perturbation by D00 . Clearly D00 is
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isotopic to D0 . Moreover, we can assume that �0 � D00 and D0 coincides with
D00 outside a small neighborhood of �. The picture of D0 [D00 is like a disk
with an \air bubble" inside which corresponds to the D2 � I region K .

G �

Figure 2.3

Let G0 be the union of x 2 int(�) such that Jx � �−1(L) and @vN(B) \ Jx
contains a component on the negative side of x. Then, G0 [ @� is also a
trivalent graph, and each edge of G0 has a direction induced from the branch
direction of the corresponding arc in L. Note that G0[@� = �\�−1(L), since
� � @hN(B). As before, we can deform G0 [ @� into a transversely oriented
train track � 0 . By a standard index argument, � − � 0 must have a smooth
disk component, ie, there is a smooth circle in � 0 which is the boundary of the
closure of a component of �− � 0 . We denote this disk with smooth boundary
by � . Since � 0 is transversely oriented and @� is a smooth circle in � 0 , the
directions of the arcs in @� either all point into � or all point out of � . If
the direction of @� points into � , since G0 [ @� = � \ �−1(L), �(�) is a sink
disk, which gives a contradiction. Thus, �(�) must be a branch of B with
branch direction of each boundary arc pointing outwards. Moreover, since �jD0
is injective, �(�) is a removable disk.

Next, we show that �(D00) does not contain �(int(�)), and hence D00 is carried
by the branched surface B− int(�), as � is removable. We �rst show that there
is no I {�ber of N(B) that intersects both �0 and int(�) (note that �0 � D00

and � � � � D0 ). Otherwise, since � \ �−1(L) = @� , � is parallel to a subdisk
of �0 . As @� � @�[G0 , we have two cases: one case is @� = @� and the other
case is @� \G0 \ int(�) 6= ;. If @� = @�, we have � = � and G0 = ;. Then,
since � is parallel to a subdisk of �0 and G0 = ;, � = � is parallel to a subdisk
in the interior of �0 . Since � and �0 are the two components of the horizontal
boundary of the D2�I region K , K forms a standard Reeb component, which
gives a contradiction. In fact, in this case, B − �(int(�)) is a branched surface
with one horizontal boundary component a torus that bounds a solid torus in
M . Thus, @�\G0\ int(�) 6= ;. As � is parallel to a subdisk of �0 and � � �,
there is an I {�ber J of N(B) that intersects both �0 and @� \ int(�). Note
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that since � is a disk component of @hN(B) and J \ int(�) 6= ;, one endpoint
of J must lie in int(�). As @� � �−1(L), J \ @vN(B) 6= ;. Moreover, since
�0 is also a disk component of @hN(B) and since � is parallel to a subdisk
of �0 , J \ @�0 6= ;. Then, as � and �0 are the two horizontal boundary
components of the D2 � I region K , J \ @�0 6= ; implies J \ @� 6= ;. Thus,
J \ int(�) 6= ; and J \ @� 6= ;, and hence J \� contains at least two points,
which contradicts our assumption that �jD0 is injective. Therefore, there is no
I {�ber of N(B) that intersects both �0 and int(�).

Since �jD0 is injective and since there is no I {�ber of N(B) that intersects
both �0 and int(�), by our construction of D00 , there is no I {�ber of N(B)
that intersects both D00 and int(�). Since �(�) is a removable disk, D00 is
a generalized sink disk in N(B−), where B− is the branched surface B −
�(int(�)). Note that �jD00 is not necessarily injective.

Now, D00 is a generalized sink disk in a �bered neighborhood of the branched
surface B− = B − �(int(�)). We can then apply the same argument above
to B− = B − �(int(�)), replacing B and D by B− and D00 respectively. As
in the argument above, the existence of a generalized sink disk always yields a
removable disk (such as the � above). However, if we keep eliminating these
removable disks, we eventually get an e�cient laminar branched surface that
still has a generalized sink disk. This gives a contradiction.

Remark 2.2 It is easy to see from the proof of Lemma 2.2 that if a branched
surface B contains a trivial bubble but has no sink disk, then B must contain
a removable disk.

An easy corollary (Corollary 2.3) of Lemma 2.2 is that there is no disk of contact
in a laminar branched surface. Figure 1.3 (a) is the simplest example of a disk
of contact. By de�nition (see condition 4 in Proposition 1.1), a disk of contact
is an embedded disk D � N(B) such that D is transverse to the I {�bers
of N(B) and @D � @vN(B). If �−1(L) \ int(D) 6= ;, �(D) is not even a
branch of B . For example, we can add some branches to Figure 1.3 (a) in a
complicated way, but it can still be a disk of contact by de�nition. In general,
it is not obvious that the condition of no sink disks implies that there is no disk
of contact, although Figure 1.3 (a) is an example of sink disk.

Corollary 2.3 A laminar branched surface does not contain any disk of con-
tact.

Proof By the de�nition of disk of contact in Proposition 1.1, a disk of contact
is a generalized sink disk and Corollary 2.3 follows from Lemma 2.2.
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The next two lemmas will be used in section 4, and the proofs are essentially
the same as the proof of Lemma 2.2.

Lemma 2.4 Let B be a laminar branched surface. Then, N(B) contains no
disk D with the following properties:

(1) D is an embedded disk in N(B) that is transverse to the I {�bers of
N(B);

(2) �(@D) is a nontrivial simple closed curve in B − L.

Proof We �rst show that if N(B) contains such a disk D , then D has a
subdisk E such that �(@E) = �(@D) and �(@E) \ �(int(E)) = ;. Since
�(@D) is a nontrivial simple closed curve in B−L, D\�−1(�(@D)) is a union
of simple closed curves in D . Let E � D be a disk bounded by an innermost
(among curves in D \ �−1(�(@D))) simple closed curve. Then, since @E is
innermost, �(@E)\�(int(E)) = ;. Therefore, we may assume that our disk D
has an additional property that �(@D) \ �(int(D)) = ;.
If �jD is not injective, since �(@D) \ �(int(D)) = ;, similar to the proof of
Lemma 2.2, there must be a subdisk in int(D) that is a generalized sink disk,
which contradicts Lemma 2.2. More precisely, let n be the maximal number of
intersection points of D with any I {�bers of N(B), and Xn be the union of
I {�bers of N(B) whose intersection with D consists of n points. Since �jD is
not injective, n > 1. Then, since �(@D)\�(int(D)) = ; and �j@D is injective,
Xn \D is a collection of compact subsurfaces of int(D). Moreover, since n is
maximal, the boundary of Xn \D lies in �−1(L) with direction (induced from
the branch direction of L) pointing into Xn \ D . Thus, the outer boundary
of a component of Xn \ D bounds a generalized sink disk in int(D), which
contradicts Lemma 2.2. Therefore, �jD must be injective.

Since �jD is injective, as in the proof of Lemma 2.2, we can �nd a removable disk
� in int(D). Moreover, we can �nd another disk D0 , which we get by isotoping
D across a D2 � I region, such that @D = @D0 and �(D0) \ �(int(�)) = ;.
Therefore, D0 satis�es the two hypotheses (for D) in the lemma, and D0 is
carried by the branched surface B − int(�). Then, we can apply the same
argument to the branched surface B− int(�), replacing B and D by B− int(�)
and D0 respectively. Similar to the proof of Lemma 2.2, we get a contradiction
once the branched surface becomes e�cient.

Lemma 2.5 Let B be a laminar branched surface. Then, N(B) contains no
disk D with the following properties:
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(1) D is an embedded disk in N(B) that is transverse to the I {�bers of
N(B);

(2) �(@D) is a simple closed curve in B that is transverse to L (L\�(@D) 6=
;) and does not contain any double point of L;

(3) the points in L \ �(@D) have coherent branch directions along �(@D)
(clockwise or counterclockwise), where we consider the branch direction
of each point in L \ �(@D) to be along �(@D), ie, a small neighborhood
of �(@D) is either a branched annulus or a branched Möbius band with
coherent branch direction as shown in Figure 4.4.

Proof The proof is very similar to the proof of Lemma 2.4. We �rst show that
D \ �−1(�(@D)) is a union of simple closed curves in D . Since �−1(�(@D)) is
a compact set, D \ �−1(�(@D)) is a union of circles or compact arcs in D . If
D \ �−1(�(@D)) has a component that is a compact arc, which we denote by
�, then by our hypothesis that �j@D is injective, @� must lie in �−1(L) with
direction (consistent with the branch direction) pointing into �. However, this
is impossible because the points in L \ �(@D) have coherent branch directions
along �(@D), in other words, there is no subarc of �(@D) with endpoints
in L and branch directions of both endpoints pointing into this arc. Thus,
D \ �−1(�(@D)) is a union of simple closed curves in D . Let E � D be a disk
bounded by an innermost (among curves in D \ �−1(�(@D))) simple closed
curve. Since @E is innermost, �(@E) \ �(int(E)) = ;. Therefore, similar to
the proof of Lemma 2.4, we can assume that our disk D has an additional
property that is �(@D) \ �(int(D)) = ;.
Thus, as in the proof of Lemma 2.4, �jD must be injective. Then, as in the
proof of Lemma 2.2, we can construct a train track � � int(D) as follows. We
�rst �x a normal direction for D . For every point x 2 int(D), let Jx be the
I {�ber of N(B) that contains x. Then, Jx−x has two components. According
to the �xed normal direction of D , we say that the points in one component
of Jx − x are on the positive side of x, and points in the other component of
Jx − x are on the negative side of x. Let G be the union of x 2 int(D) such
that Jx � �−1(L) and @vN(B)\ Jx contains a component on the positive side
of x. Then, G is a trivalent graph and each edge has a direction induced from
the branch direction. As shown in Figure 2.3, this trivalent graph G can be
deformed into a transversely oriented train track � according to the directions
of the edges in G. By �xing an appropriate normal direction for D , we can
assume that � 6= ;.
Since the branch directions of points in L \ �(@D) are coherent along �(@D)
and since � is transversely oriented according to the branch direction, there is
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no arc carried by � with both endpoints in @D . Then, similar to the argument
in the Poincar�e-Bendixson theorem [17], � must carry a circle that bounds
a disk in int(D). Hence, there must be a smooth disk whose boundary is a
smooth circle in � and whose interior is a component of int(D)− � . As in the
proof of Lemma 2.2, we can �nd a removable disk in int(D), and we can get
another disk D0 (with @D = @D0 ) by isotoping D across a D2� I region K of
M − int(N(B)). Moreover, �(D0) does not pass through the removable disk � .

Then, we can apply the argument above again to the branched surface B −
int(�), replacing B and D by B − int(�) and D0 respectively. As in the
proof of Lemma 2.2, we get a contradiction once the branched surface becomes
e�cient.

3 Extending laminations

In this section, we show that, in most cases, we can extend a lamination from
the vertical boundary of an I {bundle over a surface to its interior. The results
in this section appear in [6] implicitly, and most of the proof we give here is in
fact a modi�cation of the arguments in [6].

Let B be a branched surface carrying a lamination �. Suppose @B is a union
of circles. By ‘blowing air’ into leaves, ie, replacing leaves by I {bundles over
these leaves and deleting the interior of these I {bundles, we can assume that
� is nowhere dense in N(B). For simplicity, we will assume the intersection of
� with every interval �ber is a Cantor set.

Let I = [−1; 1] and Homeo+(I) be the group of self-homeomorphism of I
�xing endpoints. The next lemma is well-known, and the proof is easy (see also
[2]).

Lemma 3.1 Any map f 2 Homeo+(I) is a commutator, ie, there are g; h 2
Homeo+(I) such that f = g � h � g−1 � h−1 .

Proof As the �xed points of f is a closed set in I and the complement of
a closed set is a union of intervals, it su�ces to prove Lemma 3.1 for maps
without �xed points in the interior of I . Hence, we may assume that f(z) > z
for any z 2 (−1; 1) (the case f(z) < z is similar). It su�ces to show that f is
conjugate to any map p 2 Homeo+(I) with the property that p(z) > z for any
z 2 (−1; 1).
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Let x be an arbitrary point in the interior of I . As f(x) > x and p(x) > x,
the intervals [fn(x); fn+1(x)] (n 2 Z, f0(x) = x and f1 = f ) partition the
interval I , and the intervals [pn(x); pn+1(x)] (n 2 Z) also partition the interval
I . Let q0 : [x; f(x)] ! [x; p(x)] be any homeomorphism �xing endpoints. We
de�ne qn = pn � q0 � f−n : [fn(x); fn+1(x)] ! [pn(x); pn+1(x)]. These maps qn
�t together to give a homeomorphism q : [−1; 1]! [−1; 1], and it follows from
the de�nition of qn that f = q−1 � p � q , ie, f and p are conjugate.

The following lemma is an application of Lemma 3.1.

Lemma 3.2 Let c be a circular component of @B . If B fully carries a lam-
ination, then the new branched surface constructed by gluing B and a once-
punctured orientable surface with positive genus along c also carries a lamina-
tion.

Proof Let A = �−1(c), where � : N(B) ! B is the collapsing map. Then
�jA is a one-dimensional lamination in the annulus int(A) = S1 � int(I), and
A − �jA is a union of I {bundles. Each I {bundle is homeomorphic to either
R � I or S1 � I . We trivially extend �jA to a (one-dimensional) foliation
of int(A) by associating each I {bundle with its canonical product foliation.
Assume that the foliation of int(A) constructed above is the suspension of a
homeomorphism f : int(I)! int(I)

Let S be the once-punctured surface that we glue to B . We consider the I {
bundle S�I and A = @S�I = c�I . By Lemma 2.1, there exist a1; b1; : : : ; ag; bg
such that f = [a1; b1] � � � � � [ag; bg], where ai; bi are homeomorphisms of int(I)
and g is the genus of S . By attaching thick bands foliated by the suspensions
of ai ’s and bi ’s to a disk � I with the trivial product foliation, we can build
S � I . The foliations of the thick band and the disk can be glued together
according to the identity map of I . This gives us a foliation of S � I whose
boundary on @S � I is the suspension of f . In other words, we can extend the
foliation of A to a foliation of S � I .

Then by ‘blowing air’ into leaves, we can change the foliation of S � I to a
nowhere dense lamination � such that �jA is a sub-lamination of �jA . Indeed,
by our construction of the foliation of A, �jA is just �jA plus some parallel
nearby leaves. Now we change the lamination � in N(B) by adding some
parallel leaves so that the new lamination restricted to A is the same as �jA .
Gluing up the two laminations, we get a lamination fully carried by the new
branched surface.
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Remark 3.1 The operations we used on laminations and foliations in the
proof above are standard, see operations 2.1.1, 2.1.2, 2.1.3 in [6].

Corollary 3.3 Let c1; c2; : : : ; cn be n circular components of @B . If B fully
carries a lamination, then the new branched surface constructed by gluing a non-
planar orientable surface with n boundary components along ci ’s fully carries
a lamination.

Proof We �rst glue a planar surface with n+ 1 boundary components to B .
By adding thickened bands between c1; c2; : : : ; cn , we can trivially extend the
lamination through the planar surface. Then we can glue a once-punctured
surface to the (n + 1)th boundary component of the planar surface and the
result follows from Lemma 3.2.

The next Lemma is a modi�cation of operation 2.4.4 in [6].

Lemma 3.4 Let c1 and c2 be two circular components of @B . If B fully
carries a lamination without disk leaves, then the new branched surface con-
structed by gluing an annulus between c1 and c2 carries a lamination.

Proof Let the vertical boundary components of N(B) along c1 and c2 be
annuli A1 and A2 , Ai = ci� [−1; 1]. What we want to do is to add some leaves
to � so that the restriction of the new lamination to A1 and A2 are the same,
hence we can glue them together.

First, we replace every boundary leaf of � by an embedded I {bundle over this
leaf, then we delete the interior of the I {bundle. We still call this lamination
�. After this operation, �jAi has two pairs of isolated circles near @Ai .

Then we isotope � such that �jc1�[−1;0] is an isolated circle, say e1 , e1 =
c1 � f−1g, and �jc2�[0;1] is also an isolated circle, say e2 , e2 = c2 � f1g. Let
L1 and L2 be the leaves in � corresponding to e1 and e2 respectively. Clearly
L1 and L2 are orientable surfaces. Then we add two leaves L01; L

0
2 to � which

are parallel and close to L1; L2 respectively such that Li[L0i bounds a product
region in N(B). This is actually the same operation as replacing Li by an
I {bundle and deleting the interior of the I {bundle. Let L0i \Ai = e0i , i = 1; 2.
Let the annulus in Ai bounded by e01 [ c1 � f1g be J1 , the one bounded by
c2�f−1g [ e02 be J2 , the one bounded by e01 [ e1 be K1 , and the one bounded
by e02 [ e2 be K2 .

Before we proceed, we point out a fact that is the following. Let F � I be a
product region over a surface F (F could be non-compact). Suppose F is not
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a disk and C is a boundary component of F . Then any foliation on C � I
can be extended to the whole of F � I . The proof is easy. If F has another
boundary component or an end, the construction is trivial, and otherwise, it
follows from Lemma 3.1.

Case 1 One of L1 and L2 (say L1 ) is not a compact planar surface with
boundary on A1 [A2 .

Case 1a L2 is not a compact planar surface with boundary on A1[A2 either.

We foliate J1 and J2 as before, ie, foliate all annular components of Ai − �jAi
by circles and other components by adding spirals coherent to �jAi . Then we
foliate K1 with the same foliation of J2 and K2 with the same foliation of
J1 . Now the foliation on A1 and A2 are the same. By our assumption on
L1 and L2 , we can extend the foliation of Ki to the product region bounded
by Li [ L0i . Then, as before, by ‘blowing air’ into leaves we can change the
foliation on Ai to be a nowhere dense lamination that contains �jAi as a sub-
lamination. By our construction of foliation on Ai , the complement of �jAi is a
product lamination. After possibly replacing every leaf by a product lamination
of leaf � fa cantor setg, we can extend the lamination on Ai to N(B). Now
the new lamination in N(B) when restricted to A1 and A2 , gives the same
lamination.

Case 1b L2 is a compact planar surface with boundary on A1 [ A2 , but
L2 \ J1 = ;.
This case is very similar to Case 1a. We �rst foliate J1 in the same way as
before, then give K2 the same foliation as that of J1 . Since L2 is not a disk,
we can extend the foliation on K2 to the product region bounded by L2 [ L02 .
Now we might have changed the lamination on J2 . We can extend the (new)
lamination on J2 to a foliation as before and give K1 the same foliation as J2 ,
and the rest is as in Case 1a.

Before we proceed, we quote the Lemma 2.1 of [6].

Lemma 3.5 Let f , h, � , � be either homeomorphisms of I �xing endpoints
or maps of the empty set.

i) There exists a homeomorphism g conjugate to the concatenation of f , g ,
h.

ii) There exists homeomorphisms g , � of I such that � is conjugate to the
concatenation of f , g−1and h, and g is conjugate to the concatenation of � ,
�−1 and � .
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Remark 3.2 Let A be an annulus and F1;F2 be two foliations on @A � I .
Suppose Fi is a suspension of a homeomorphism of I �xing endpoints, say fi ,
i = 1; 2. Then we can extend F1 and F2 to a foliation of A� I if and only if
f1 is conjugate to f2 .

Case 1c L2 is a compact planar surface and has some boundary component
E in J1 .

Since L02 [ L2 bounds a product region, L02 has a boundary component E0

and E0 [ E bounds an annulus J 0 in J1 . We �rst extend the lamination on
J1 − J 0 to a foliation as before, and assume that this foliation is a suspension
of maps f and h (since J1 − J 0 consists of two annuli). Then we construct the
same foliation, which is the suspension of g , on J 0 and K2 , where g is as in
Lemma 3.5 (i). By Lemma 3.5 (i), K2 and J1 have the same foliation. So we
can extend it to a foliation in the product region bounded by L2 [L02 , and the
rest is the same as Case 1b.

Case 2a Both L1 and L2 are planar and some non-e1 component of @L1 is
disjoint from J1 .

We �rst foliate J1 as before, then give K2 the same foliation as that of J1 and
extend it to a foliation of the product region bounded by L2 [ L02 . Applying
Lemma 3.5 (i), if necessary, we can construct the same foliation on K1 and J2

such that it can be extended to a foliation in the product region bounded by
L1 [ L01 (using our assumption of @L1 ).

Case 2b Both L1 and L2 are compact planar surfaces and all the non-ei
components of @Li are in Ji , i = 1; 2.

Let di be another boundary component of Li and d0i be the corresponding
boundary component of L0i . Then di [ d0i bounds a annulus J 0i in Ji , i = 1; 2.
We extend the lamination on Ji−J 0i as before, and foliate K1 by the suspension
of a map g , J 01 by the suspension of map g−1 , K2 by the suspension of a map
�, and J 02 by the suspension of map �−1 . By our assumption on L1 and L2 ,
we can extend the foliation to the product region bounded by Li [L0i , i = 1; 2.
Using Lemma 3.5 (ii), we can �nd maps g and � such that the foliation on Ji
is the same as the foliation on Kj , i 6= j , and the rest is the same as before.

Lemma 3.6 Let c1; c2; : : : ; cn be n circular components of @B . If B fully
carries a lamination without disk leaves, then the new branched surface con-
structed by gluing a non-disk surface with n boundary components along ci ’s
fully carries a lamination.
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Proof Let S be the surface that we glue to B . The case that S is orientable
follows from the lemmas above. As in the previous arguments, we only need to
consider case that S is a Möbius band.

Let c1 = @S and A = c1 � [−1; 1]. As in the proof of Lemma 3.4, by replacing
a boundary leaf by an I {bundle over this leaf and deleting the interior of
the I {bundle, we can assume that c1 � f−1; 0; 1g � �jA are isolated circles.
Since the ambient manifold M is assumed to be orientable, we can glue a
twisted I {bundle over a Möbius band, which we denote by U , to N(B) along
A = c1� [−1; 1]. Then, c1�f0g bounds a Möbius band u in U . Topologically,
U − u is a �bered neighborhood of an annulus with each �ber a half open and
half closed interval, ie, U − u = annulus � [a; b). The vertical boundary of
U −u is the union of c1� [−1; 0) and c1� (0; 1]. By Lemma 3.4, we can extend
the lamination through U − u and the Lemma holds.

4 Constructing laminations carried by branched sur-
faces

Suppose B is a laminar branched surface. Let L0 be a graph in B , whose local
picture is as shown in Figure 4.1 (a). We can also describe L0 as follows. Let
l1; l2; : : : ; ls be the boundary curves of the surface @hN(B). For each li , we
take a simple closed curve l0i in the interior of @hN(B) that is close and parallel
to li . Let DL = [si=1�(li). Near every double point of L, the intersection of
DL with L consists of two points. Then, we add some short arcs connecting
these intersection points to DL, as shown in Figure 4.1 (a), and the union of
DL and these short arcs is L0 .

Let KL0 be a closed small regular neighborhood of L0 in M . Let P (L0) =
B \ KL0 , whose local picture is as shown in Figure 4.1 (b). We call B \
@KL0 the boundary of the branched surface P (L0), and denote B \ int(KL0)
by int(P (L0)). The branch locus of the branched surface P (L0) is a union of
simple arcs, as shown in Figure 4.1 (b).

There is a one-one correspondence between the components of B − L and the
components of B−P (L0). For each branch D of B , we denote the corresponding
component of B − int(P (L0)) by DB . For example, the shaded branch in
Figure 4.2 (a) corresponds to Figure 4.2 (b), which is a component of B −
int(P (L0)). The relation between D and DB can also be described as follows.
We consider N(B) as a �bered regular neighborhood of B , and B lies in
the interior of N(B) such that every I {�ber of N(B) is transverse to B . To
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L0 P (L0)

(a) (b)

Figure 4.1

simplify notation, we do not distinguish the B in the interior of N(B) and the B
as the image of the map � : N(B)! B , which collapses every I {�ber of N(B)
to a point. There is a natural one-one correspondence between components of
B −L and components of N(B)− �−1(L). For any branch D of B , int(D) is
a component of B − L, and the corresponding component of N(B) − �−1(L)
is an I {bundle over int(D), whose intersection with the B lying in int(N(B))
is the same as the component of B − P (L0) that corresponds to int(D).

For any branch D of B , we denote by NB(D) the closure in the path metric
of the component of N(B)− �−1(L) that corresponds to D . Thus, NB(D) is
an I {bundle over D with a bundle structure induced from N(B). The vertical
boundary of NB(D) is bundle isomorphic to @D � I , and we can identify
NB(D) − @D � I with the component of N(B) − �−1(L) that corresponds
to D . By our argument above, B \ (NB(D) − @D � I) is the same as the
component of B − P (L0) corresponding to D . Thus, we can assume that DB ,
the corresponding component of B − int(P (L0)) lies in NB(D) with @DB �
@D � I .

We can reconstruct N(B) by gluing all the NB(D)’s (for all the branches of B )
together along their vertical boundaries, and simultaneously, those DB ’s (lying
in NB(D)’s) are glued together to form B . Moreover, the gluing (for DB ’s)
above is essentially the same as gluing the DB ’s and P (L0) together to form
B .

Now, we let D be a disk branch of B , and we identify NB(D) and D � I .
Let OD = fEj E is an edge of @D with branch direction pointing outwards.g.
For each edge E 2 OD , DB \ (E � I) (where E � I � D � I = NB(D)) must
be one of the three patterns shown in Figure 4.3 (b) by our construction. In
particular, let p be the midpoint of E , fpg�I � E�I intersects DB\(E�I) in
a single point. The train track in Figure 4.3 (a) is a picture of the intersection
of DB with @D � I (the shaded annulus), where D is as in Figure 4.2 (a).

The next proposition is an important observation for our construction. The
notation used is the same as that in the discussion above.
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D

DB

(a) (b)
Figure 4.2

fpg � I

E � I

(a) (b)
Figure 4.3

Proposition 4.1 Let E 2 OD and p be the midpoint of E . Then, as shown
in Figure 4.3 (a), the I {�ber fpg � I of NB(D) = D � I intersects B in a
single point. Given any 1{dimensional lamination � carried by the train track
DB \ @NB(D), where � � @D � I is transverse to each I {�ber of @D � I , we
can change the lamination � near fpg � I to get a new lamination �0 carried
by DB \ @NB(D) such that all the leaves in �0 are circles, and hence �0 can
be extended to a (2{dimensional) product lamination carried by DB .

Proof The proof is easy. We cut @D� I along fpg � I . Then � is cut into a
collection of compact arcs. We can re-glue them along fpg � I in such a way
that these arcs close up to become circles. Since the intersection of fpg� I and
@DB is a single point, the new (1{dimensional) lamination is still carried by
@DB .

Now we are in position to construct a lamination carried by B .

The �rst step is to construct a lamination with boundary carried by P (L0).
For each branch of P (L0), say S , we construct a product lamination fa cantor
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set g�S . Since the branch locus of P (L0) does not have double points, by gluing
together �nitely many fcantor setsg� I ’s along the branch locus of P (L0), one
can easily construct a lamination fully carried by P (L0). What we want to do
next is to modify this lamination so that it can be extended to B− int(P (L0)),
which is the union of DB ’s for all the branches.

Let D1;D2; : : : ;Dn be all the disk branches of B−L. Since there is no sink disk,
any disk Di has a boundary edge, say Ei , with direction pointing outwards.
Locally there are 3 branches incident to E1 . If the branch to which the branch
direction of E1 points is a disk, say it is D2 , we denote D1 [D2 by D1 ! D2 .
Note that E1 is also a boundary edge of D2 with branch direction points into
D2 . D2 also has a boundary edge, say E2 , with direction pointing outwards. If
the branch to which E2 points is a disk, say it is D3 , we denote D1 [D2 [D3

by D1 ! D2 ! D3 . Note that the branch direction of E2 points out of D2 and
points into D3 . We proceed in this manner. We call D1 ! D2 ! � � � ! Dk

a chain if Di 6= Dj for any i 6= j , and call it a cycle if D1 = Dk and D1 !
� � � ! Dk−1 is a chain. We say that two cycles are disjoint if there is no disk
branch appearing in both cycles. We can decompose the union of disk branches
of B − L into a collection of �nitely many disjoint cycles and �nitely many
chains that connect these cycles and the non-disk branches. Moreover, we can
assume that the union of all the disk branches in those chains does not contain
any cycle, otherwise we can increase the number of disjoint cycles. Note that
a disk branch can belong to more than one chain, but it can neither belong to
more than one cycle nor belong to both a cycle and a chain.

Remark 4.1 D1 ! D1 could be a cycle.

The next step is to modify the lamination and extend it through all the chains.
For any chain D1 ! D2 ! � � � ! Dk , we consider NB(Di) and DB

i , i =
1; 2; : : : ; k . There is a one-dimensional lamination carried by @DB

1 , which is
induced from the boundary of the lamination carried by P (L0). By Proposi-
tion 4.1, we can cut @D1 � I along fpg � I (p 2 E1 ) and re-glue it so that
the one-dimensional lamination carried @DB

1 is a union of circles. There is
an arc l properly embedded in a branch of P (L0) that corresponds to E1 ,
such that one endpoint of l is p (in Proposition4.1) and the other endpoint
of l is in @DB

2 . Moreover, we can cut this branch of P (L0) (as well as the
lamination carried by P (L0)) along l , then glue it back in such a way that the
lamination carried by P (L0), when restricted to @DB

1 , becomes a lamination by
circles. Clearly this operation changes the one-dimensional lamination carried
by @DB

2 , but it does not change the boundary lamination carried by @DB
i for

i 6= 1; 2. Now applying Proposition 4.1 to DB
2 , we can modify the lamination
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carried by P (L0) along E2 so that the new lamination restricted to @DB
2 is a

lamination by circles. Since D1 6= D2 and D1 ! D2 ! D1 is not a cycle by our
assumptions, the modi�cation along @DB

2 does not a�ect the lamination along
@DB

1 , in other words, after this modi�cation, the lamination carried by P (L0)
restricted to both @DB

1 and @DB
2 is a lamination by circles. We repeat this

operation through the chain and eventually get a lamination carried by P (L0)
whose restriction to @DB

i is a lamination by circles for each i = 1; 2; : : : ; k .
We can perform this operation for all our chains and extend the lamination of
P (L0) through DB

i for every Di in a chain.

For any non-disk component of B − L, let C be a simple closed curve that
is non-trivial in this component. By Lemma 2.4, C does not bound a disk
in N(B) that is transverse to the interval �bers. So the lamination we have
constructed (for P (L0) and the chains) so far does not contain any disk leaf
whose boundary is in the vertical boundary of NB(S) for any non-disk branch
S .

By repeated application of Lemma 3.6, we can modify the lamination and ex-
tend it through all the non-disk branches of B . So, it remains to be shown
that the lamination can be extended through all the cycles. We denote the
lamination that we have constructed so far by �. Note that � is carried by
B excluding those DB

i ’s that correspond to the disk branches in �nitely many
disjoint cycles.

Let D1 ! D2 ! � � � ! Dk ! D1 be a cycle and c be the core of the cycle, ie,
a simple closed curve in

Sk
i=1 Di such that c \ Di is a simple arc connecting

Ei−1 to Ei for each i (let E0 = Ek ). The intersection of B with a small
regular neighborhood of c in M , which we denote by N(c), is either a branched
annulus or a branched Möbius band with coherent branch directions, as shown
in Figure 4.4.

(a) (b)
Figure 4.4

The lamination � can be trivially extended to a lamination carried by B −S
all cyclesN(c). Hence, it su�ces to extend the lamination from the boundary
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of a branched annulus (or Möbius band) to its interior. We also use � to denote
the lamination carried by B −

S
all cyclesN(c).

We will only discuss the branched annulus case (ie Figure 4.4 (a)). The branched
Möbius band case is similar.

Let A =
Sk
i=1 di be the annulus, where di = Di \N(c), and A0 be the whole

branched annulus (ie, A0 = B \ N(c)). Then @A = A1 [ A2 consists of two
circles and A0 = T1 � I = T2 � I , where Ti is a train track consisting of the
circle Ai and some ‘tails’ with coherent switch directions, i = 1; 2.

Now we consider the one-dimensional lamination in �−1(Ti) induced from �.
Since branch directions of the branched annulus are coherent, as shown in Fig-
ure 4.4 (a), the (one-dimensional) leaves that come into �−1(Ti) from the ‘tails’
must be spirals with the same spiraling direction (ie, clockwise or counterclock-
wise). So the leaves coming from the ‘tails’ above the circle Ai have the same
limiting circle Hi , and the leaves coming from the ‘tails’ below the circle Ai
have the same limiting circle Li , i = 1; 2. Note that the leaves may come into
Ai from di�erent sides depending on the side from which the disks in A0 − A
are attached to A, and this is what the words ‘above’ and ‘below’ mean; in the
branched Möbius band case, we do not have such problems. After replacing a
leaf by an I {bundle over this leaf and deleting the interior of the I {bundle, we
can assume that Hi 6= Li , i = 1; 2.

Then we add two annuli H and L in �−1(A) such that @H = H1 [ H2 and
@L = L1 [ L2 . Notice that the spirals above H1 (resp. below L1 ) in �−1(T1)
are connected, one to one, to the spirals above H2 (resp. below L2 ) in �−1(T2)
by the lamination � (restricted to �−1(@A0−T1−T2)). So, in �−1(A0), we can
naturally connect the spirals above H1 (resp. below L1 ) carried by T1 to the
spirals above H2 (resp. below L2 ) carried by T2 using some (2{dimensional)
leaves of the form spiral� I such that the boundaries of these spiral� I ’s lie
in @�, and H (resp. L) is the limiting annulus of these spiral � I leaves.

There is a product region in �−1(A0) between annuli H and L. As in Lemma
3.4, we can modify and extend the lamination from the vertical boundary of
this product region to its interior, and hence we can extend our lamination
through a given cycle. Note that in order to apply Lemma 3.4, we need the
hypothesis that there is no disk leaf whose boundary is in the vertical boundary
of the product region between by H [L, and this is guaranteed by Lemma 2.5.

Since the cycles are disjoint by our assumption, we can successively modify and
extend the lamination through all the cycles. The lamination we get in the end
is fully carried by B .
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Next, we will show that if � is a lamination by planes, then any branched
surface that carries � must contain a sink disk.

Proposition 4.2 was proved by Gabai (see [8]), and it is a lamination version of
a theorem of Imanishi [14] for C0 foliations by planes.

Proposition 4.2 If M contains an essential lamination by planes, then M is
homeomorphic to the 3{torus T 3 .

Proof Because � is an essential lamination by planes, the complement of any
branched surface carrying it must be a collection of D2 � I regions. Hence,
� can be trivially extended to a C0 foliation by planes. Then a theorem of
Imanishi [14], the classi�cation of leaf spaces and Hölder’s theorem together
imply that �1(M) is commutative and hence M = T 3 .

Proposition 4.3 Let � be a lamination by planes in a 3{manifold M . Then,
any branched surface carrying � cannot be a laminar branched surface.

Proof Suppose B is a laminar branched surface that carries � and L is the
branch locus. If B − L contains a nondisk component, then there is a simple
closed curve C � B − L that is homotopically nontrivial in B − L. Since B
fully carries a lamination � (� � N(B)), �−1(C) \ � must contain a simple
closed curved in a leaf of �. Since every leaf of � is a plane, this simple closed
curve bounds an embedded disk D in a leaf. The disk clearly satis�es the two
conditions in Lemma 2.4 with �(@D) = C , which contradicts the assumption
that B is a laminar branched surface. Therefore, B − L is a union of disks.
Since there is no sink disk, every disk branch of B has an edge whose branch
direction points outwards. Then the disk branches of B form at least one cycle
as before. A small neighborhood of the core of the cycle is either a branched
annulus or a branched Möbius band, as show in Figure 4.4. Hence, one gets a
curve with non-trivial holonomy, which contradicts the Reeb Stability Theorem
and the assumption that every leaf is a plane.

5 Splitting branched surfaces along laminations

Suppose � is an essential lamination in an orientable 3{manifold M and � is
not a lamination by planes. By ‘blowing air’ into leaves, ie, replacing every leaf
by an I {bundle over this leaf and then deleting the interior of the I {bundle,
we can assume that � is nowhere dense and fully carried by a branched surface
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B . By [9], we can assume that B satis�es the conditions in Proposition 1.1. It
is easy to see that B still satis�es conditions 1, 2, and 3 in Proposition 1.1 after
any further splitting along �. We will show in this section that we can split B
along � to make it a laminar branched surface.

Let B0 be a union of some branches of B . We call a point of B0 an interior point
if it has a small open neighborhood in M whose intersection with B0 is a small
branched surface without boundary, ie, the intersection is one of the 3 pictures
as shown in Figure 1.1, otherwise we call it a boundary point. We denote
the union of boundary points of B0 by @B0 . Next, we give every arc in @B0 a
normal direction pointing into B0 , and give every arc in L\(B0−@B0) its branch
direction. We call the direction that we just de�ned for @B0 and L\ (B0−@B0)
the direction associated with B0 . We call B0 (and also N(B0) = �−1(B0)) a
safe region if it satis�es the following conditions:

(1) B0 does not contain any disk branch with the induced direction (from the
direction associated with B0 that we just de�ned) of every boundary arc
pointing inwards;

(2) for any non-disk branch in B0 , if the direction (associated with B0 ) of
every boundary arc points inwards, then it contains a closed curve that
is homotopically non-trivial in M .

Thus, by our de�nition, every disk branch (of B ) lying in a safe region B0 must
have a boundary arc lying in the interior of B0 with branch direction pointing
outwards.

Proposition 5.1 Let B0 be a safe region. For any smooth arc � � L, if either
� � B0 − @B0 or � � @B0 and the branch direction of � points into B0 , then
the union of B0 and all the branches that are incident to � is still a safe region.

Proof Let D * B0 be a branch incident to �. Then the branch direction of �
points out of D . Hence B0[D still satis�es our conditions for safe regions.

Proposition 5.2 Let B0 be a safe region. If B0 = B , then the branched
surface B is a laminar branched surface.

Next, we will show how the safe region changes when we split the branched
surface. What we want is to enlarge our safe region by splitting the branched
surface. Suppose we do some splitting to B whose local picture is shown in
Figure 5.1. We will call the splitting an unnecessary splitting if the shaded
area in Figure 5.1 belongs to the safe region, otherwise, we call it a necessary
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splitting. Note that, by Proposition 5.1, if the shaded area belongs to the safe
region, we can include all the branches (of the branched surface on the left)
in Figure 5.1 into the safe region, so we do not need to do such a splitting
to enlarge our safe region. The following proposition says that the safe region
does not decrease under necessary splittings. The proof is an easy application
of Proposition 5.1. Figure 5.2 is just Figure 5.1 with di�erent shaded regions
which denote the safe region.

(1)

(2)

splitting

Figure 5.1

Proposition 5.3 Let B0 be a safe region. If after a necessary splitting, a
branch S of B slides on B0 , as shown in splitting (1) in Figure 5.2, or S
and a branch in B0 locally becomes one branch, as shown in splitting (2) in
Figure 5.2, then we can enlarge the safe region after the splitting as shown in
the two pictures on the right in Figure 5.2. In particular, for any interval �ber
of N(B) that is in a safe region, if this �ber breaks into two interval �bers after
some necessary splitting, then we can enlarge the safe region after the splitting
such that both interval �bers lie in the safe region.

Proof After the splitting (1) in Figure 5.2, S has a boundary arc, with branch
direction pointing outwards, lying in the interior of the shaded region in Fig-
ure 5.2. So, by Proposition 5.1, after splitting (1), the union of the original safe
region and this branch is still a safe region. Note that, since it is a necessary
splitting, the branch in the middle does not belong to the safe region and the
change (done by the splitting) of this branch does not a�ect the safe region.

In the splitting (2) of Figure 5.2, if S and the shaded region in the left picture
of Figure 5.2 do not belong to the same branch in B , then after splitting (2) the
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new shaded branch in B either has a boundary arc with direction (associated
with the safe region) pointing outwards or contains a non-trivial curve, since
the shaded branch before the splitting is in the safe region.

Suppose S and the shaded region in the left picture of Figure 5.2 belong to
the same branch in B (before the splitting). We denote this branch by D
(D � B0). If D has a boundary arc whose direction (associated with the safe
region) points outwards, then after the splitting, it still has such a boundary
arc. If D does not have such an arc, then D is not a disk and it contains
a curve that is homotopically non-trivial in M . Thus, after splitting (2), the
branch still contains such an essential closed curve, and we can include this
branch (after the splitting) into the safe region.

B0 S

B0

S

safe region

(1)

(2)

splitting

Figure 5.2

Now we are ready to prove the following lemma that is a half of Theorem 1. In
the proof, we �rst construct a safe region B0 by taking a small neighborhood
of a union of �nitely many essential curves in leaves of �. Then, we perform
some necessary splitting (along �) and enlarge B0 so that B−B0 lies in a union
of disjoint 3{balls. After splitting B along the boundary of these 3{balls and
getting rid of the disks of contact in these 3{balls, we can include the whole of
B to the safe region, and hence B becomes a laminar branched surface.

Lemma 5.4 Let � be an essential lamination that is not a lamination by
planes. Then � is carried by a laminar branched surface.

Proof Suppose that � is an essential lamination in a 3{manifold M . We �rst
show that any sub-lamination � of � is not a lamination by planes. Suppose �
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is a lamination by planes and γ is a closed curve in M − �. Then, by splitting
�, we can assume that � is carried by N(B) and γ lies in a component C
of M − int(N(B)). By isotoping �, we can assume that @hN(B) � �. Let
l be a boundary leaf of the component of M − � that contains γ . Then, we
can choose a big disk D1 � l such that l \ @hN(B) � D1 . Moreover, there is
a vertical annulus A consisting of subarcs of I {�bers of N(B) such that one
boundary circle of the A is @D1 , @A � �, and the int(A) lies in the same
component of M − � that contains γ . Since � is assumed to be a lamination
by planes, the other boundary circle of the A bounds a disk D2 in a leaf of �.
So, D1 [A [D2 forms a sphere. Since M is irreducible, D1 [A [D2 bounds
a 3{ball whose interior lies in M − �. As l \ @hN(B) � D1 , C and hence
γ must lie in this 3{ball, which implies every component of M − � is simply
connected. Since every leaf of � is �1{injective, every leaf of � must be a plane,
which contradicts our hypothesis. Therefore, any sub-lamination of � is not a
lamination by planes.

By [9], we can assume that � is carried by a branched surface B that satis�es the
conditions in Proposition 1.1. Moreover, we also assume that � is in Kneser-
Haken normal form with respect to a triangulation T (one can take a �ne
enough triangulation so that the branched surface B is a union of normal disks
in this triangulation). Now, � lies in N(B) transversely intersecting every
interval �ber of N(B), and N(B)\T (1) is a union of I {�bers of N(B), where
T (1) is the 1{skeleton of T . Note that, by [9], B still satis�es conditions 1{3
in Proposition 1.1 after any splitting.

For any point x 2 � \ T (1) , we denote the leaf that contains x by lx . Let �x
be the closure of lx . Then �x is a sub-lamination of �. Hence, �x is not a
lamination by planes. Let cx be a non-trivial simple closed curve in a non-plane
leaf of �x . Then there is an embedding A : S1� I ! N(B), where I = [−1; 1],
such that A(fpg�I) is a sub-arc of an interval �ber of N(B), A(S1�f0g) = cx ,
and every closed curve in A−1(�) is of the form S1 � ftg for some t 2 (−1; 1).
Moreover, after some isotopies, we can assume that there are a; b 2 I such that
−1 < a � 0 � b < 1, A(S1 � fa; bg) � �, and A−1(�) \ (S1 � (I − [a; b])) is
either empty or a union of spirals whose limiting circles are S1 � fa; bg. We
call such embedded annuli regular annuli.

To simplify notation, we will not distinguish the map A and its image. Since
cx lies in the closure of lx , there must be a simple arc in lx connecting x
to the annulus A. Moreover, there is an embedding b : I � (−1; 1) ! N(B)
such that b(−1; 0) = x, b(f1g � (−1; 1)) � A, Ix = b(f−1g � (−1; 1)) � T (1) ,
and b−1(�) is a union of compact parallel arcs connecting f−1g � (−1; 1) to
f1g � (−1; 1). Hence, Ix is an open neighborhood of x in T (1) . For every
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point x 2 � \ T (1) , we have such an open interval Ix and a regular annulus
as A above. By compactness, there are �nitely many points x1; x2; : : : ; xn in
� \ T (1) such that � \ T (1) � [ni=1Ixi , where Ixi is an open neighborhood of
xi in T (1) as above. Let A1; : : : ; An be the regular annuli that correspond to
x1; : : : ; xn respectively as above. Since �\T (1) � [ni=1Ixi , for any x 2 �\T (1) ,
there is an arc on a leaf of � connecting x to Ai for some i. Note that each
Ai is embedded but Ai and Aj may intersect each other if i 6= j .

Claim There are �nitely many disjoint regular annuli E1; : : : ; Ek such that,
for any x 2 �\ T (1) , there is an arc in a leaf of � connecting x to Ei for some
i.

Proof of the Claim If A1; : : : ; An are disjoint, the claim holds immediately.
Suppose that A1\A2 6= ;. As a map, Ai : S1�I ! N(B) is an embedding (i =
1; : : : ; n). To simplify notation, we use Ai to denote both the map and its image
in N(B). After some homotopies, we can assume that A−1

i (Aj) is a union of
disjoint sub-arcs of the I {�bers of S1�I , and (S1�@I)\A−1

i (�)\A−1
i (Aj) = ;

(i 6= j ). Thus, the intersection of A−1
i (�) and A−1

i (Aj) must lie in the interior
of A−1

i (Aj).

A−1
1 (�) is a one-dimensional lamination in S1 � I , and by our construction,

every leaf of A−1
1 (�) that is not a circle must have a limiting circle in A−1

1 (�).
Therefore, if every circular leaf of A−1

1 (�) has non-empty intersection with
A−1

1 ([ni=2Ai), then for every point p 2 A1(A−1
1 (�)), there is an arc in a leaf

of � connecting p to [ni=2Ai . Hence, for any point x 2 � \ T (1) , there is
an arc in lx connecting x to [ni=2Ai , and we only need to consider n − 1
annuli A2; : : : ; An . If there are circular leaves in A−1

1 (�) whose intersection
with A−1

1 ([ni=2Ai) is empty, then since A−1
1 (�)\A−1

1 ([ni=2Ai) lies in the interior
of A−1

1 ([ni=2Ai), there are �nitely many disjoint annuli B1; : : : ; Bm in S1 � I
such that A−1

1 ([ni=2Ai)\ ([mj=1Bj) = ;, every circular leaf of A−1
1 (�) either has

non-empty intersection with A−1
1 ([ni=2Ai) or lies in Bj for some j , and A1jBj

is a regular annulus for each j . To simplify notation, we will not distinguish
A1jBj and its image in N(B). Thus, for any point x 2 �\T (1) , there is an arc
in a leaf of � connecting x to ([ni=2Ai) [ ([mj=1A1jBj ), and A1jBj is disjoint
from Ai for any i; j (i 6= 1).

By repeating the construction above, eventually we will get �nitely many such
disjoint regular annuli as in the claim.

As in the claim, E1; : : : ; Ek are disjoint regular annuli. Let N(Ei) be a small
neighborhood of Ei in M such that N(Ei)\N(Ej) = ; if i 6= j . Topologically,
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N(Ei) is a solid torus for each i. N(Ei)\� consists of a union of parallel annuli
and some simply connected leaves. The limit of every simply connected leaf in
N(Ei)\� is either an annulus or a union of two annuli depending on the number
of ends of the leaf. Since the N(Ei)’s are disjoint, by ‘blowing air’ into the
leaves, we can split the branched surface B along � such that every component
of B \N(Ei) is either an annulus or a branched annulus with coherent branch
directions, as shown in Figure 4.4 (a), whose core is homotopically essential in
M . Let D be a component of B \N(Ei) that is a branched annulus. Since D
has coherent branch directions, every branch in D has a boundary edge with
branch direction pointing outwards. Since the core of every solid torus N(Ei)
is an essential curve in M , the union of the branches of B that have non-empty
intersection with [ki=1N(Ei) is a safe region. We denote the safe region by B0

and N(B0) = �−1(B0) as before.

Note that if B contains a trivial bubble, then we can collapse the trivial bubble
without destroying the branched annuli constructed above, though the number
of \tails" in a branched annulus may decrease. More precisely, let c be the core
of a branched annulus as above, by the de�nition of trivial bubble, we can always
pinch B to eliminate a trivial bubble so that the neighborhood of c after this
pinching is still a branched annulus with coherent branch direction. Moreover, if
B\N(Ei) is an annulus, since the core of N(Ei) is homotopically nontrivial, the
operation of eliminating trivial bubbles does not a�ect the annulus B \N(Ei).
Thus, our safe region will never be empty due to eliminating trivial bubbles.
Next, we will perform necessary splitting to our branched surface. If we see any
trivial bubble during the splitting, we eliminate it by pinching the branched
surface and start over. Since the number of components of the complement of
the branched surface never increases during necessary splittings and the number
of components decreases by one after a trivial bubble is eliminated, eventually
we will never get any trivial bubble. Therefore, we can assume the necessary
splittings we perform in the following never create any trivial bubble.

For any x 2 � \ T (1) , by the claim and our construction of B0 , there is a
simple arc γ : [0; 1] ! lx connecting x to a point in N(B0), ie, γ(0) = x and
γ(1) = y 2 N(B0). Moreover, there is an embedding bx : [0; 1]�(−�; �)! N(B)
such that bxj[0;1]�f0g = γ , bx(ftg � (−�; �)) is a subarc of an I {�ber of N(B),
and b−1

x (�) is a union of parallel arcs connecting f0g� (−�; �) to f1g� (−�; �).
For each t 2 [0; 1], we denote bx(ftg � (−�; �)) by It , and we also use Ix to
denote I0 . Thus, x 2 Ix . To simplify notation, we do not distinguish bx and its
image in N(B). So, bx = [t2[0;1]It . Now for every x 2 � \ T (1) , we have such
an open interval Ix � N(B) \ T (1) as above. By compactness, we can choose
�nitely many points x1; x2; : : : ; xn 2 � \ T (1) such that � \ T (1) � [ni=1Ixi .
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Using Proposition 5.1, we enlarge our safe region as much as we can. Then we
do the necessary splitting along �, and include all possible branches into our
safe region (using Proposition 5.3) after the splitting. We will always denote the
safe region by B0 (or N(B0)). If a certain splitting cuts through a band bx and
a vertical arc It of bx breaks into some smaller arcs Jt1 ; Jt2 ; : : : ; Jth , to simplify
notation, we will denote [ht=1Jti also by It , and denote [t2[0;1]It also by bx .
Note that our new bands after splitting may contain some ‘bubbles’, as shown
in Figure 5.3, but they are always embedded in N(B) by our construction.

band bx

splitting

Figure 5.3

Next, we will show that we can do some necessary splitting along a band bx
and include Ix in the safe region. By Proposition 5.3, we know that once an
interval �ber of N(B) is in the safe region, it will stay in the safe region forever,
though it may break into some small intervals after further splitting.

Suppose after some splitting, the band bx contains some ‘bubbles’ as shown
in Figure 5.3. Although bx is embedded in N(B), there may be an I {�ber of
N(B) whose intersection with bx has more than one component. By perturbing
bx a little, we can assume that there are only �nitely many I {�bers of N(B)
whose intersection with bx have more than one component. So, �(bx) is an
immersed train track (immersed curve with some ‘bubbles’) on B , where �
is the map collapsing every interval �ber to a point. Those �nitely many I {
�bers whose intersection with bx have more than one component become double
points of �(bx) after the collapsing. Let C be the number of double points of
�(bx) − B0 . If C = 0, then we perform all possible necessary splittings along
bx and enlarge our safe region as in Proposition 5.3. Since bx is compact, after
�nitely many necessary splittings along bx , the whole of bx and (hence Ix ) is
included in the safe region.

Let [t2(a;b)It � bx − N(B0) and Ia � N(B0) ([a; b] � [0; 1]). Suppose that
�([t2(a;b)It) contains double points. We split N(B) between Ia and Ib along bx
(using only necessary splittings) as above. After the splitting passes an interval
�ber that is the inverse image (ie, �−1 ) of a double point of �(bx)−B0 , either the
double point disappears under the collapsing map of the new branched surface
after the splitting, or it is included in the safe region, as shown in Figure 5.4.
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Therefore, C decreases and eventually we can include the whole band bx in the
safe region.

band bx

splitting

safe region

safe region

Figure 5.4

Since there are �nitely many such intervals that cover �\ T (1) , we can include
N(B)\T (1) into the safe region after �nitely many steps. Then, by performing
similar splittings, we can include N(B)\T (2) into the safe region. Now N(B)−
N(B0) is contained in the interior of �nitely many disjoint 3{simplices, ie 3{
balls.

We consider B− (B0−@B0), and let Γ1; : : : ;Γs be the components of B− (B0−
@B0). Each Γi is a union of branches of B . We can de�ne the boundary of Γi
in the same way as we did for B0 at the beginning of this section. The branch
direction of every boundary arc of any Γi must point into Γi , and the other two
(local) branches incident to this arc must belong to B0 (since it is a boundary
arc of Γi ), otherwise, using Proposition 5.1, we can enlarge B0 by adding all
the branches incident to this arc to B0 . Thus, for each Γi , there is a small
neighborhood of Γi , which we denote by N(Γi), such that N(Γi) \N(Γj) = ;
if i 6= j . Moreover, after some necessary splitting, we can assume that each
N(Γi) is homeomorphic to a 3{ball. By our de�nition of the safe region, any
branch in B0 that has non-empty intersection with [si=1@N(Γi) either contains
an essential closed curve, or has a boundary arc (lying in the interior of B0) with
branch direction pointing outwards. Therefore, after any (unnecessary) splitting
along B \ @N(Γi), each branch in B − int(N(Γi)) either contains an essential
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closed curve, or has a boundary arc (lying in the interior of B−int(N(Γi))) with
branch direction pointing outwards. Next, we split B along � \ @N(Γi) (for
each i) so that B \ ([si=1@N(Γi)) becomes a union of circles, and at this point,
each branch of B − int(N(Γi)) that has non-empty intersection with @N(Γi)
either contains an essential closed curve, or has a boundary arc (lying in the
interior of B− int(N(Γi))) with branch direction pointing outwards. Then, we
split B to get rid of the disks of contact in [si=1int(N(Γi)). After this splitting,
B \ N(Γi) becomes a union of disks for each i, and each branch of B either
contains an essential closed curve, or has a boundary arc with branch direction
pointing outwards. Hence, B contains no sink disk after all these splittings,
and becomes a laminar branched surface.
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