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1 Introduction

In general symplectomorphism groups are thought to be intermediate objects
between Lie groups and full groups of di�eomorphisms. Although very little is
known about the topology of groups of di�eomorphisms, there are some cases
when the corresponding symplectomorphism groups are more understandable.
For example, nothing is known about the group of compactly supported dif-
feomorphisms of R4 , but in 1985, Gromov showed in [4] that the group of
compactly supported symplectomorphisms of R4 with its standard symplectic
structure is contractible. He also showed that the symplectomorphism group
of a product of two 2{dimensional spheres that have the same area has the
homotopy type of a Lie group.

More precisely, let M� be the symplectic manifold (S2�S2; !� = (1+�)�0��0)
where 0 � � 2 R and �0 is the standard area form on S2 with total area equal
to 1. Denote by G� the group of symplectomorphisms of M� that act as the
identity on H2(S2 � S2;Z). Gromov proved that G0 is connected and it is
homotopy equivalent to its subgroup of standard isometries SO(3) � SO(3).
He also showed that this would no longer hold when one sphere is larger than
the other, and in [9] McDu� constructed explicitly an element of in�nite order
in H1(G�), � > 0. The main tool in their proofs is to look at the action of G�
on the contractible space J� of !�{compatible almost complex structures.

Abreu and McDu� in [2] calculated the rational cohomology of these symplec-
tomorphism groups and con�rmed that these groups could not be homotopic
to Lie groups. In particular they computed the cohomology algebra H�(G�;Q)
for every �. For each integer ‘ � 1 we have

H�(G�;Q) = �(t; x; y) ⊗Q[w‘]; when ‘− 1 < � � ‘

where �(t; x; y) is an exterior algebra over Q with generators t of degree 1, and
x; y of degree 3 and Q[w‘] is the polynomial algebra on a generator w‘ of degree
4‘ that is made from x; y , and t via higher Whitehead products. The generator
w‘ is fragile, in the sense that it disappears (ie, becomes null cohomologous)
when � increases. Moreover they showed that the rational homotopy type of
G� changes precisely when the ratio of the size of the larger to the smaller
sphere passes an integer.

In this paper we show that when 0 < � � 1 the whole homotopy type of G�
(rather than just its rational part) is generated by its subgroup of isometries
SO(3)�SO(3) and by this new element of in�nite order constructed by McDu�.
More precisely we will calculate the homotopy type of G� :
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Theorem 1.1 If 0 < � � 1, G� is homotopy equivalent to the product X =
L � S1 � SO(3) � SO(3) where L is the loop space of the suspension of the
smash product S1 ^ SO(3).

In this product of H {spaces1 one of the SO(3) factors corresponds to rotation
in one of the spheres, the other represents the diagonal in SO(3)�SO(3), and
the S1 factor corresponds to the generator in H1(G�) described by Gromov
and McDu�. This new element of in�nite order represents a S1{action that
commutes with the diagonal action of SO(3), but not with rotations in each
one of the spheres. The loop space L = Ω�(S1 ^ SO(3)) appears as the result
of that non-commutativity.

Although this space X is an H {space, its multiplication is not the same as
on G� . This can be seen by comparing the Pontryagin products on integral
homology.

The main steps in the proof of this theorem determine the organization of
the paper. Therefore in Section 2 we have the �rst main result which is the
calculation of the mod 2 homology ring H�(G�;Z2). Recall that the product
structure in H�(G�;Z2), called Pontryagin product, is induced by the prod-
uct in G� . Denote by �(y1; :::; yn) the exterior algebra over Z2 with gener-
ators yi where this means that y2

i = 0 and yiyj = yjyi for all i; j , and by
Z2hx1; :::; xni the free noncommutative algebra over Z2 with generators xj .
Recall that H�(SO(3);Z2) �= �(y1; y2).

Theorem 1.2 If 0 < � � 1 then there is an algebra isomorphism

H�(G�;Z2) = �(y1; y2)⊗ Z2ht; x1; x2i=R

where deg yi = deg xi = i, deg t = 1 and R is the set of relations ft2 = x2
i =

0; x1x2 = x2x1g.

The notation implies that yi commutes with t and xi . We see that H�(G�;Z2)
contains �(x1; x2) which appears from rotation in the �rst sphere, �(y1; y2)
which represents the diagonal in SO(3) � SO(3) plus the new generator in
H1(G�), � > 0, that we denote by t. From the inclusion of the subgroup of
isometries SO(3)�SO(3) in G� we have classes x1; x2; x3 = x1x2 2 H�(G�;Z2)
in dimensions 1,2 and 3 respectively, representing the rotation in the �rst factor.
The new generator t in H1(G�) does not commute with xi , therefore we have

1X is an H {space if there is a map � : X � X ! X such that � � i1 ’ 1 and
� � i2 ’ 1 where i1 and i2 are the inclusions i1(x) = (x; �) and i2(x) = (�; x), �=
means homotopy equivalent and � 2 X is a base point.
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a nonzero class de�ned as the commutator and represented by xit + txi for
i = 1; 2; 3. It is easy to understand what these classes are in homotopy. For
example, x1 is a spherical class, so it represents an element in �1(G�) and
x1t + tx1 corresponds to the Samelson product [t; x1] 2 �2(G�). This is given
by the map

S2 = S1 � S1=S1 _ S1 ! G�

induced by the commutator

S1 � S1 ! G� : (s; u) 7! t(s)x1(u)t(s)−1x1(u)−1:

Although the mod 2 homology has a �nite number of generators with respect
to the Pontryagin product we will see it is very large containing in particular a
free noncommutative ring on 3 generators, namely the commutators xit + txi ,
i = 1; 2; 3:

The proof of the theorem generalizes Abreu’s work and is based on the fact,
proved by Abreu in [1], that the space J� , of almost complex structures on
S2 � S2 compatible with !� , is a strati�ed space with two strata U0 and U1 ,
where U0 is the open subset of J� consisting of all J 2 J� for which the
homology classes E = [S2�fptg] and F = [fptg�S2] are both represented by
J {holomorphic spheres and its complement U1 is a submanifold of codimension
2. More precisely, U1 consists of all J 2 J� for which the homology class of
the antidiagonal E − F is represented by a J {holomorphic sphere.

In Section 3 we start by giving some considerations about torsion in H�(G�;Z).
In particular we establish that H�(G�;Z) has only 2{torsion. Then we de�ne
a map f between G� and the product X = L� S � SO(3)�SO(3) and prove
it is in fact an homotopy equivalence. This is obtained from three topological
facts: (i) it is enough to �nd a Z{homology isomorphism from another H {
space; (ii) a Z{homology isomorphism is implied by an isomorphism with all
�eld coe�cients; (iii) homology is computed via Leray{Hirsch for two �brations
of G� over U0 and U1 and a model space is built using universal properties for
maps from loop spaces to topological monoids.
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2 The Pontryagin ring H�(G�;Z2)

Recall that for any group G the product � : G�G! G induces a product in
homology

H�(G;Z2)⊗H�(G;Z2) �−! H�(G�G;Z2)
��−! H�(G;Z2)

called the Pontryagin product, that we will denote by \.". Every time it is clear
from the context we will suppress this for simplicity of notation. In this section
we will compute the ring structure on H�(G�;Z2) induced by this product.
Unless noted otherwise we assume Z2 coe�cients throughout.

2.0.1 Geometric description

As we mentioned in the introduction, Abreu proved in [1] that if 0 < � � 1 the
space of almost complex structures compatible with !� , J� , is a strati�ed space
with two strata U0 and U1 , where U0 is open and dense and U1 has codimension
2. Ui is the set consisting of all J 2 J� for which the class E−iF is represented
by a J -holomorphic sphere, where E denotes the homology class of S2 � fptg
and F denotes the �ber class fptg � S2 . The group of symplectomorphisms
G� acts on J� by conjugation. Moreover the group G� has �nite dimensional
subgroups Ki , with i = 0; 1, acting on M� , where K0 = SO(3) � SO(3)
corresponds to the standard Kähler action of SO(3)� SO(3) on S2 � S2 with
complex structure the standard split structure J0 = j0�j0 and K1 = SO(3)�S1

is a Kähler action for a complex structure J1 2 U1 with the property that the
unique J1 {holomorphic representative C2 for the class E − F is �xed by the
S1 part of the action (see below). The SO(3) part of this action is the same as
the diagonal SO(3) action on S2 � S2 .

The next step is to identify each stratum Ui of J� with the quotient of G�
by the isometry group Ki . The result was proved by Abreu in [1] and is the
following:

Proposition 2.1 The stratum Ui 2 J� is weakly homotopy equivalent to the
quotient G�=Ki , i = 0 or 1.

Now we can give a brief geometric description of the S1 part of the action in
K1 corresponding to the element of in�nite order in �1(G�) constructed by
McDu� in [9]. The complex structure J1 is tamed by !� and the complex
manifold (S2 � S2; J1) is biholomorphic to the projectivization P(O(2) � C)
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over S2 . Here O(2) is a complex line bundle over S2 with �rst Chern class 2.
This bundle has two natural sections, P(f0g � C) and P(O(2) � f0g), which
represent the classes E+F (the diagonal in S2�S2 ) and E−F (the antidiagonal
in S2 � S2 ). The element of in�nite order in �1(G�) acts on this �bration by
rotation on the �bers and leaving �xed the sections corresponding to the classes
of the diagonal and antidiagonal. We see that this element is in the stabilizer
of J1 in G� , because this rotation is a complex operation. Moreover for each
J 2 U0 in a neighborhood of U1 the action of t 2 �1(G�) on J gives a loop
around U1 which represents the link of U1 in U0 .

2.1 Relation between H�(G�) and H�(Ui): additive version

The fact that U1 is a codimension 2 submanifold of J� implies that U0 = J�−U1

is connected. This means that G� is connected, which in turn implies that U1

is also connected. Hence

H0(U0;Z2) �= Z2
�= H0(U1;Z2):

Just as M.Abreu showed in [1] we still have for p � 1,

Hp(U0;Z2) �= Hp−1(U1;Z2): (1)

This already implies that H1(U0;Z2) �= Z2 . Now consider the following princi-
pal �brations

K0
i0

// G�

p0

��

U0

K1
i1

// G�

p1

��

U1

(2)

where Ki is the identity component of the stabilizer of Ji in G� . As we stated
before K0 is the subgroup SO(3)�SO(3) and K1 is isomorphic to S1�SO(3).

The following proposition was proved by Abreu for rational coe�cients but we
need it for Z2 coe�cients.

Proposition 2.2 Let Di�0(S2 � S2) denote the group of di�eomorphisms of
S2 � S2 that act as the identity on H2(S2 � S2;Z). The inclusion

i : K0 = SO(3) � SO(3) −! Di�0(S2 � S2)

is injective in homology.
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Proof As in [1] we de�ne a map

F : Di�0(S2 � S2) −! Map1(S2)�Map1(S2)

where Map1(S2) is the space of all orientation preserving self-homotopy equiv-
alences of S2 . Given ’ 2 Di�0(S2 � S2) we de�ne a self map of S2 , denoted
by ~’1 , via the composite

~’1 : S2 i1! S2 � S2 ’! S2 � S2 �1! S2;

where i1 , respectively �1 , denote inclusion into, respectively projection onto,
the �rst S2 factor of S2 � S2 . Because ’ acts as the identity on H2(S2 �
S2;Z), ~’1 is an orientation preserving self homotopy equivalence of S2 , ie,
~’1 2 Map1(S2). De�ning ~’2 in an analogous way using the second S2 factor
of S2 � S2 , we have thus constructed the desired map given by

’ 7! ~’1 � ~’2:

It is clear from the construction that F restricted to SO(3)�SO(3) is just the
inclusion

SO(3) � SO(3) −! Map1(S2)�Map1(S2)

Now we use the following theorem (see [5]).

Theorem 2.3 The space of orientation preserving self-homotopy equivalences
on the 2{sphere has the homotopy type of SO(3) � Ω, where Ω = ~Ω2

0(S2) is
the universal covering space for the component in the double loop space on S2

containing the constant based map.

This proves that SO(3) is not homotopy equivalent to Map1(S2) but we have,
using the Künneth formula with �eld coe�cients,

H�(SO(3) � Ω) �= H�(SO(3)) ⊗H�(Ω) �= H�(Map1(S2))

thus the map
i� : H�(SO(3)) −! H�(Map1(S2))

induced by injection is injective for any �eld coe�cients.

It is proved by D McDu� in [9] that the generator of the Z factor in �1(G�) lies
in �1(K1). This means that the generator of the S1{action in �1(K1) maps to
a generator of in�nite order in �1(G�). Thus the map

i1� : H�(K1) −! H�(G�)
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induced by inclusion is injective. Since we are working over a �eld, the coho-
mology is the dual of homology, thus from the above and Proposition 2.2 the
maps

i�0 : H�(G�) −! H�(K0)

and
i�1 : H�(G�) −! H�(K1)

induced by inclusions i0 and i1 are surjective.

From the Leray{Hirsch Theorem it follows that the spectral sequences of the
�brations collapse at the E2{term, and we have the following vector space
isomorphisms

H�(G�) �= H�(U0)⊗H�(K0) (3)

H�(G�) �= H�(U1)⊗H�(K1): (4)

Passing to the dual we get the homology isomorphisms as vector spaces

H�(G�) �= H�(U0)⊗H�(K0) (5)

H�(G�) �= H�(U1)⊗H�(K1): (6)

2.2 The elements xi; yi; t and wi

Denote by t the generator of in�nite order in H1(G�;Z), � > 0. Recall that
H�(SO(3)) = �(x1; x2) where � is the exterior algebra on generators xi of
degree i. Thus H�(K0) = �(x1; x2; z1; z2), where xi; zi represent rotation in
�rst and second factors respectively. The homology of the SO(3) factor in
K1
�= SO(3) � S1 is generated by yi , and we explain in the next lemma the

relation between these generators and the generators xi and zi .

Lemma 2.4 The homology ring of the diagonal in SO(3) � SO(3), SOd(3),
is given by H�(SOd(3)) = �(y1; y2) where

y1 = x1 + z1

y2 = x2 + z2 + x1z1

y3 = x3 + z3 + x1z2 + x2z1;

xi and zi , with i = 1; 2 are the generators of the homology ring of SO(3) �
SO(3) and x3 = x1x2 , y3 = y1y2 and z3 = z1z2 .

Geometry & Topology, Volume 6 (2002)



Homotopy type of symplectomorphism groups of S2 � S2 203

Proof It is clear that yi includes terms xi+zi , just by looking at the cell struc-
ture. Note that the cup product is de�ned using the diagonal map d : SO(3)!
SO(3) � SO(3). If � 2 H�(SO(3)) generates H1(SO(3)) then (� [ �)(y2) =
d�(� � �)(y2). Now we need to de�ne the duals x̂1 and ẑ1 of x1 and z1 re-
spectively. Let x̂1 be the element in H1(SO(3)�SO(3)) such that x̂1(x1) = 1,
x̂1(xi) = 0 if i = 2 or 3, and x̂1(zi) = 0 if i = 1; 2; 3. ẑ1 is de�ned in a similar
way. We know that the cup product of x̂1 and ẑ1 does not vanish, so we have
0 6= (x̂1 [ ẑ1)(y2). Hence

(x̂1 [ ẑ1)(y2) = d�(x̂1 � ẑ1)(y2)
= (x̂1 � ẑ1)(d�y2) 6= 0:

Therefore we see that d�y2 must have a component in H1(SO(3))⊗H1(SO(3)).
The only element like that is x1z1 , so y2 must involve this element. The result
for y3 follows immediately from that for y1 and y2 by multiplication.

It follows that the generators yi commute with generators xi and zi . From
injections i0� and i1� we have elements t; xi; zi and yi in H�(G�). From iso-
morphisms (1) and (5) we know that the rank of H1(G�) is 3 and as we just
showed we have elements t; x1 and y1 in H1(G�). Clearly these are linearly
independent.

Looking at (5) and (6) we see that t must have a nonzero image in H1(U0).
On the other hand, since the homology of the SO(3) factor in K1 is generated
by the yi , the xi must have a nonzero image in Hi(U1). The class x1 must
correspond by (1) to a class in H2(U0) and we will see in Lemma 2.8 below that
this class is the image x1t in U0 . x1 is a spherical representative of the �rst
SO(3) factor in H1(K0). Therefore, since K0 acts on J� by multiplication
on the left there is a well de�ned 2{cycle x1t in U0 . More precisely if x1 is
represented by

S1 ! G� : u 7! x1(u)

and t by
S1 ! G� : v 7! t(v)

we de�ne a 2{cycle in G� given by the map

S2 = S1 � S1=S1 _ S1 ! G�

induced by the commutator

S1 � S1 ! G� : (v; u) 7! t(v)x1(u)t(v)−1x1(u)−1:

It turns out that the projection of this element in H�(G�) to H�(U0), under
the projection map p0� , is the 2{cycle x1t in U0 . In order to see that let us
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recall that for any group G the Samelson product [x; y] 2 �p+q(G) of elements
x 2 �p(G) and y 2 �q(G) is represented by the commutator

Sp+q = Sp � Sq=Sp _ Sq ! G : (u; v) 7! x(u)y(v)x(u)−1y(v)−1:

The Samelson product in ��(G) is related to the Pontryagin product in
H�(G;Z) by the formula

[x; y] = xy − (−1)jxjjyjyx;

where we suppressed the Hurewicz homomorphism � : ��(G)! H�(G) to sim-
plify the expression. Therefore we see that this 2{cycle is given by the com-
mutator [x1; t], so in homology is simply given by x1t + tx1 2 H2(G�;Z2).
Similarly we de�ne a cycle in H4(G�;Z2) that in homotopy is given by the
commutator [t; x3]. Although x2 is not a spherical class, ie, x2 =2 �2(G�) we
can consider a cycle in degree 3 given by x2t+ tx2 in H�(G�;Z2).

De�nition 2.5 We de�ne elements wi 2 Hi+1(G�;Z2) to be the commutators
xit + txi with i = 1; 2; 3. For a word in the w0is we use the notation wI =
wi1 :::win with I = (i1; :::; in).

The reason why we use these classes xit+txi instead of simply xit; txi is �rst be-
cause they project simultaneously to additive generators in H�(U1) and H�(U0)
so it is easier to see the correspondence between elements in isomorphisms (5)
and (6). Secondly they are in the kernel of the subalgebra of H�(G�) gener-
ated by the duals t̂ and x̂i of t and xi . We show this fact in the next lemma,
but �rst we de�ne the duals of these elements in H1(G�). t̂ is the element in
H1(G�) such that t̂(t) = 1 and t̂(x1) = t̂(y1) = 0. We de�ne x̂1 and ŷ1 in the
obvious way. We also have x̂i = (x̂1)i and ŷi = (ŷ1)i .

Lemma 2.6 The cup product (t̂ [ x̂i) evaluated at the commutator [xi; t] is
0 where t̂ and x̂i represent the dual of t and xi in H�(G�) respectively.

Proof Although in this section we are working with Z2 coe�cients we will
prove a stronger result by showing that the statement is true also over Z. Note
that (t̂[ x̂i)([xi; t]) = (t̂[ x̂i)(xit+txi) = (t̂[ x̂i)(xit)+(t̂[ x̂i)(txi) and we show
that (t̂ [ x̂i)(txi) = (x̂i [ t̂)(xit) = −(t̂ [ x̂i)(xit) = 1. For example, in the case
when i = 1 consider f : S1�S1 ! G� : (t; s) 7! ’t s , where S1 ! G� : t 7! ’t
and S1 ! G� : s 7!  s represent the cycles t and x1 respectively. Then

(t̂ [ x̂1)(tx1) = f�(t̂ [ x̂1)[S1 � S1]
= f�(t̂) [ f�(x̂1)[S1 � S1]
= f�(t̂)[S1]f�(x̂1)[S1] = 1:

Thus (t̂ [ x̂1)([x1; t]) = −1 + 1 = 0.
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We look at an additive basis for each group Hk(G�) and Hk(G�) in the sense
that we want to have a canonical identi�cation between Hk(G�) and Hk(G�),
this meaning that if fc�g is an additive basis for Hk(G�) then fĉ�g is an
additive basis for Hk(G�) where ĉ� is the element satisfying ĉ�(c�) = ��� .
Using this identi�cation we see from the previous lemma that the dual of the
commutators [xi; t] represent classes in H�(G�) which are not in the subalgebra
of H�(G�) generated by t̂, x̂i and ŷi .

We choose a normalized set of elements in the subring of H�(G�) generated by
t; xi; yj with i; j = 1; 2; 3.

Lemma 2.7 Any word in the t; xi; yj with i; j = 1; 2; 3 is a sum of elements
of the form

wIt
�tx�ii y

�j
j ; (7)

where �t ,�i; �j = 0 or 1, I = (i1; :::; ik) and i; j = 1; 2 or 3 (x3 = x1x2; y3 =
y1y2).

Proof We know that yj commutes with all other elements and we have equa-
tions

xiwj = wixj if (i; j) 6= (1; 2) and (2; 1)

xiwj = wixj + w3 if (i; j) = (1; 2) or (2; 1):

We also know that xit = txi + wi , t commutes with wi for i = 1; 2; 3 and
t2 = 0. These facts together with the two equations imply that we can always
bring any copy of xi to the right of t and the wi0s, adding, if necessary, words
on the wi0s.

2.3 A generating set for H�(G�)

In this subsection the aim is to show that the elements xi; yj; t generate the
ring H�(G�;Z2). In order to do that we give a geometric description of the
isomorphism Hp+1(U0) �= Hp(U1).

We have projections pi� : H�(G�)! H�(Ui) with i = 0 or 1. Since xi has im-
age in Hi(K0) and t has image in H1(K1) we can conclude that p0�([xi; t]) =
p0�(xit) in H�(U0) and p1�([xi; t]) = p1�(txi) in H�(U1). We write t for
p0�(t) 2 H�(U0) and xi for p1�(xi) 2 H�(U1). However it will be convenient to
distinguish notationally between the di�erent incarnations of w1 ,w2 ,w3 on the
di�erent spaces. We will denote by vi = p0�(wi) the generators in H�(U0) and
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by ui = p1�(wi) the generators in H�(U1) where i = 1; 2 or 3. Let vI = p0�(wI)
and uI = p1�(wI) where wI is given as in De�nition 2.5. This way we give mean-
ing to expressions as vivj = p0�(wiwj), vit = p0�(wit) and uiuj = p1�(wiwj).
We can write vit or tvi to refer to the same element because t commutes with
wi in H�(G�). Note that H�(Ui) is a left H�(G�){module, so H�(G�) acts
on H�(Ui) by multiplication on the left. Using this module action we have
vI0 = wi:vI and uI0 = wi:uI for I 0 = (i; I).

We can choose right inverses si : H�(Ui) ! H�(G�) such that s0(t) = t,
s0(vi) = wi , s1(xi) = xi , s1(ui) = wi and pi� � si = id. They exist be-
cause of isomorphisms (5) and (6). Moreover we can choose si such that s0

preserves multiplication by t; wi and s1 preserves multiplication by wi .

Lemma 2.8 The isomorphism Hp+1(U0) �= Hp(U1) is given by the map

 : Hp(U1)! Hp+1(U0) : c 7! p0�(s1(c)t)

Proof Note that since U1 is a codimension 2 submanifold of J� , there is a
circle bundle @NU1 where @NU1 is a neighborhood of U1 in U0 :

S1 // @NU1

�

��

U1

(8)

Therefore for any map representing a cycle c 2 Hp(U1) we can obtain a cycle in
Hp+1(U0) by lifting the map to @NU1 using the �bration (8). More precisely,
using the section s1 we can lift c to a cycle in H�(G�). This is represented by a
map � : C ! G� : z 7! �(z). Now note that there is a map from the image of �
to U0 given by g 7! g�J , where g 2 �(z) and we can choose J 2 U0 close to U1 .
In fact, we can choose J 2 NU1 so close to U1 such that g�J 2 NU1 also. Then
using the S1 action, represented by t, we de�ne a map to U0 , representing a
cycle in NU1 � U0 : for each g in the image of � we get a loop around U1

de�ned by g�(t�J) = (gt)�J . Therefore the cycle c lifts to p0�(s1(c)t) which
represents a cycle in H�(U0).

Remark 2.9 Using the notation introduced above we can write

 (xi) = p0�(s1(xi)t) = xit = vi;

 (ui) = p0�(s1(ui)t) = wit = vit;

 (uIxi) = wI :vi = vI0

with I 0 = (I; i) and  (uI) = vIt.
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The map � that gives the corresponding isomorphism in cohomology,

� : Hp+1(U0)! Hp(U1);

is the composite of the restriction i� : H�(U0) −! H�(@NU1) with integration
over the �ber of the projection � : @NU1 ! U1 of the �bration (8) (see [2]).

Now we use the lemma to prove the following proposition.

Proposition 2.10 The generators of the Pontryagin ring H�(G�) are t; xi , yj
with i; j = 1; 2.

Proof The existence of injections ii� : H�(Ki) ! H�(G�) with i = 0 or 1
imply that we have elements t; xi; yj in H�(G�). Let R� � H�(G�) be the
subring generated by t; xi; yj . Suppose there is an element of minimal degree d
in H�(G�)−R� . From isomorphism (5) we can conclude that such an element
would be mapped to a sum of elementsX

l

cl ⊗ kl 2 �
l
(Hd−l(U0)⊗Hl(K0))

with 0 � l � 6. For some l , cl is not a polynomial in the vI ; t. Take the largest
such l . By the isomorphism in Lemma 2.8 and Remark 2.9 this would create
an element in Hd−l−1(U1) that is not a polynomial in uI and xi . But this
is impossible because this would give rise to a new generator in Hd−l−1(G�)
corresponding to this new element in Hd−l−1(U1)⊗H0(K1) and this contradicts
the minimality of d.

2.4 Main theorem

We start by showing that we have isomorphisms H�(G�) �= H�(Ui) ⊗ H�(Ki)
given by the Pontryagin product. More precisely, we can de�ne maps

’i : H�(Ui)⊗H�(Ki)! H�(G�) : c⊗ k 7! si(c):k (9)

with i = 0 or 1. Since Ki � G� and ii is injective in homology we denote
ii�(k) simply by k . Recall that we have projections pi : G� ! Ui as de�ned in
diagram (2) and these induce maps pi� : H�(G�) ! H�(Ui) in homology. It is
clear that pi�(si(c):k) = 0 if k 2 H�(Ki), with � > 0 and the product s0(c)k
is an element in the normalized set de�ned in Lemma 2.7, because s0(c) is a
product of w0is and t and k is a product of xi and yj . We now claim that these
maps are isomorphisms.
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Proposition 2.11 The maps ’i : H�(Ui)⊗H�(Ki)! H�(G�) : c⊗k 7! si(c):k
given by Pontryagin product are isomorphisms.

Proof Consider the elements of the form vIt
�t , with �t = 0; 1 in H�(U0). If

they are not linearly independent, choose a maximal linearly independent subset
B = fc�g. It follows from Proposition 2.10 that this is a basis for H�(U0).
Now consider the image in H�(G�) of B . This is given by B0 = fs0(c�)g with
c� 2 B . These are elements of the form wIt

�t , �t = 0; 1 and the set B0 is
linearly independent. Therefore it is an additive basis for the space spanned by
elements of the form wIt

�t . Note that H�(G�) has a subalgebra isomorphic to
H�(K0) and an additive basis for this is D = fkγg = fx�ii y

�j
j g where �i and �j

are equal to 0 or 1, so an additive basis for H�(G�) will contain all elements
of this form. To prove the theorem in the case i = 0 we need to show that the
set B00 = fs0(c�):kγg where s0(c�) 2 B0 and kγ 2 D is an additive basis of
H�(G�). We start by proving that these elements generate additively H�(G�).
Suppose we have an element a 2 H�(G�). From Proposition 2.10 and Lemma
2.7 it is known that every element in H�(G�) is a sum of elements of the form
(7). Therefore

a =
X
�

wJ�t
��x�ii�y

�j
j�
:

It is also known that x�ii�y
�j
j�

is in D and if wJ�t�� is not in B0 we can write it
as sum of elements in B0 . Thus a is a sum of elements in B00 .

The next step is to show that the elements in B00 are linearly independent. We
know that for a �xed degree d, the dimension of Hd(G�) is given by

dX
l=0

dimHl(U0)� dimHd−l(K0);

because of the vector space isomorphism (5). But this is precisely the number
of elements in B00 of degree d. So they must be linearly independent otherwise
their span would not be the space H�(G�). This means that the set B00 =
fs0(c�):kγg de�ned above is an additive basis for H�(G�). Therefore ’0 is an
isomorphism.

In the case i = 1, ’1 maps c ⊗ k to s1(c):k and this is not an element in the
form (7). However we can prove an analogous result to Lemma 2.7 stating that
any word in the xi; yj ; t is a sum of elements of the form wIx

�i
i ty

�j
j . This is

clear because wItxiyj = wIxityj + wIwityj for all I; i and j . Repeating the
steps for the case i = 0 and using isomorphism (6) instead of isomorphism (5)
it follows easily that ’1 is also an isomorphism.
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We are now in position to calculate the algebra structure on H�(G�).

Theorem 2.12 If 0 < � � 1 then

H�(G�;Z2) = �(y1; y2)⊗ Z2ht; x1; x2i=R

where deg yi = deg xi = i, deg t = 1 and R is the set of relations ft2 = x2
i =

0; x1x2 = x2x1g.

Proof We already know from Proposition 2.10 that the generators of the Pon-
tryagin ring are t; xi; yj . Therefore it is su�cient to prove that the only relations
between them are the ones in R, the commutativity of yi with xi and t plus
the ones on yi coming from the de�nition of an exterior algebra �(y1; y2). We
also know from Lemma 2.7, assuming only these relations, that any word in
these generators is a sum of elements of the form (7). Thus if we prove that
this set of elements give an additive basis of H�(G�) we prove that there are
no more relations between the generators t; xi; yi , because the existence of an-
other relation would give rise to one between the elements of the form (7) and
they would not be linearly independent. We will prove that by induction. The
induction hypothesis is that up to dimension d − 1 elements of form (7) are
linearly independent, thus there are no relations between them up to dimension
d − 1. Suppose there was one of minimal degree d in Hd(G�). The �rst step
is to show that it would be between the w0is only. Assume it was given by a
�nite sum of the type X

k

wIkAk = 0

where wIk is a word on the w0is and Ak = t�kbk where bk is an element in
H�(K0) and �k equals 0 or 1. Then from Proposition 2.11 with i = 0 it follows
that we must have X

k

wIkt
�k ⊗ bk = 0:

We can group together the terms in which bk is the same, thus we can write
the relation as X

k

(
X
lk

wlkt
�lk )⊗ bk = 0

where now bk runs over a set of basis elements of H�(K0). This implies that
we have a relation of the type X

l

wIlt
�l = 0:

Geometry & Topology, Volume 6 (2002)



210 S��lvia Anjos

Using Proposition 2.11 with i = 1 we show that it is between the w0is, becauseX
l

wIl ⊗ t�l =
X
l0

wIl0 ⊗ t+
X
l00

wIl00 ⊗ 1 = 0

implies X
l0

wIl0 = 0 and
X
l00

wIl00 = 0:

A relation in the w0is projects, under the map p0� , to one on the vi0s in Hd(U0).
Using isomorphism (1) this would give a relation in degree d−1 between the ui0s
and x0is in Hd−1(U1). But this contradicts the induction hypothesis because
such relation implies one in H�(G�) with � at most equal to d− 1.

The next corollary is an immediate consequence of the proof of the theorem.

Corollary 2.13 The Pontryagin ring H�(G�) contains a free noncommutative
ring on 3 generators, namely w1; w2; w3 .

We proved also the following proposition:

Proposition 2.14 An additive basis for H�(G�) is given by

wIt
�tx�ii y

�j
j ; (10)

where �t ,�i; �j = 0 or 1, I = (i1; :::; in) and i; j = 1; 2 or 3 (x3 = x1x2; y3 =
y1y2).

2.5 Relation between cohomology and homology

Establishing the vector space isomorphisms (3) and (4) does not imply that we
have algebra isomorphisms on cohomology. That is proved in the next lemma.

Lemma 2.15 The following isomorphisms hold as algebra isomorphisms:

H�(G�) �= H�(Ui)⊗H�(Ki) with i = 0; 1 (11)

Proof The proof is based in the argument used by Abreu in [1] with some
necessary changes. H�(G�) has subalgebras pi

�(H�(Ui)) �= H�(Ui). From
Theorem 2.3 we know that Map1(S2) is homotopy equivalent to SO(3) � Ω
where Ω denotes the universal covering space of Map1�(S

2). Therefore we
have a map Map1(S2)�Map1(S2)! SO(3)�SO(3). The composite of G� !
Map1(S2) � Map1(S2) with the previous map gives us a map p : G� ! K0 .
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Thus H�(G�) has a subalgebra p�(H�(K0)) �= H�(K0). Composing these in-
clusions of H�(U0) and H�(K0) as subalgebras of H�(G�) with cup product
multiplication in H�(G�) we get a map

�0 : H�(U0)⊗H�(K0)! H�(G�):

�0 is an algebra homomorphism because H�(G�) is commutative and it is com-
patible with �ltrations (the obvious one on H�(U0)⊗H�(K0) and the �ltration
F on H�(G�) coming from the �bration on the left in (2)). The degeneration
of the spectral sequence at the E2{term implies that �0 is an algebra isomor-
phism. This proves isomorphism (11) in the case i = 0. For the case i = 1
note that the map i�1 : H�(G�)! H�(K1) is surjective, so there are t̂ and ŷ in
H�(G�) such that i�1(t̂) and i�1(ŷ) generate the ring H�(K1), where i�1(t̂) is the
generator of the cohomology of S1 and t̂ is such that t̂(x1) = 0. i�1(ŷ) is the
generator of the cohomology of the SO(3) factor. Now we need to prove that
t̂2 = 0 in H�(G�) in order to claim that the subalgebra of H�(G�) generated
by t̂ and ŷ is isomorphic to H�(K1).

Lemma 2.16 t̂2 = 0 in H�(G�)

Proof Using isomorphisms (1), (5) and (6) we can show that the rank of
H2(G�) is 6. But in H2(G�) the cycles x2; y2; tx1; ty1; x1y1; w1 are linearly
independent. We will show that t̂2 evaluated on all these classes is 0. The only
one at which is not obviously 0 is w1 . Let the map � : S2 = S1�S1=S1_S1 !
G� represent the 2{cycle w1 . Then t̂2(w1) = ��(t̂2)[S2] = (��(t̂)[S2])2 and this
vanishes because w1 is a spherical class, ie, ��(t̂) 2 H1(S2) = 0.

Again composing these inclusions of H�(K1) and H�(U1) as subalgebras of
H�(G�) with cup product multiplication we get a map

�1 : H�(U1)⊗H�(K1)! H�(G�)

which is an algebra isomorphism.

Remark 2.17 From the isomorphisms in the previous Lemma and in Propo-
sition 2.11 we might be tempted to think that the diagram

H�(U0)⊗H�(K0) :
//

��

H�(G�)

��

H�(U0)⊗H�(K0) [
// H�(G�)

(12)
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commutes, where the vertical arrows are given by taking a basis bi of H�(U0)
or H�(G�) to its dual basis. Actually this diagram does not commute. To see
that we can consider the following example.

We have
hŵ1 [ dx1y2; w1x1y2i = 1

and if diagram (12) was commutative then the cup product ŵ1[dx1y2 evaluated
at all other elements would be 0. But it is not di�cult to verify that we have

hŵ1 [ dx1y2; w2y2i = 1:

2.5.1 The cohomology ring with Z2 coe�cients

Since H�(G�;Z2) is a Hopf algebra we can use the classi�cation theorem of com-
mutative Hopf algebras over a �eld of characteristic 2. It says that H�(G�;Z2)
is a tensor product of the type

(⊗
�
Z2[x�]=xh(x�)

� )⊗ (⊗
�
Z2[x� ])

where h(x�) is a power of 2 (see [13] for a proof of this structure theorem).

In fact we can prove the following proposition.

Proposition 2.18 If 0 < � � 1, H�(G�;Z2) is isomorphic, as an algebra, to a
tensor product of an exterior algebra over Z2 with an in�nite number of gener-
ators and a truncated polynomial algebra with two generators of multiplicative
order 4.

Proof Note that Lemma 2.15 shows that H�(G�;Z2) is the tensor product
of the algebras H�(U0) and H�(K0). Since H�(SO(3)) = Z2[x̂1]=fx̂1

4 = 0g
we can conclude that H�(K0) is a commutative algebra with two generators of
multiplicative order 4. Next we show that H�(U0) has an in�nite number of
generators and all have order 2. This proves the proposition. As we stated in
Remark 2.9, the isomorphism � : Hp+1(U0)! Hp(U1) is the composite of the
restriction

i� : H�(U0) −! H�(@NU1)

with integration over the �ber of the projection � : @NU1 ! U1 of the �bration
(8). Since integration over the �ber kills the elements of ��(H�(U1)), for each
0 6= v 2 Hp(U0) there is k 2 Z2 such that

i�(v) = t̂ [ ��(u) + k��(u0)
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where u 2 Hp−1(U1), u0 2 Hp(U1) and �(v) = u. Therefore we have i�(v2) =
2t̂ [ ��(uu0) + k2��(u02) = k2��(u02), because t̂2 = 0 (proved in Lemma 2.16).
Thus �(v2) = 0. Since � is an isomorphism we get v2 = 0. From knowing
that all generators in H�(U0) have multiplicative order 2 it follows that H�(U0)
must have an in�nite number of generators, just by comparing the dimensions
dimHp(U0) = dimHp(U0) for each p. Recall that Theorem 2.12 implies that
H�(G�;Z2) contains a free noncommutative ring on 3 generators that projects
to non-zero elements in H�(U0;Z2) and the dimensions dimHp(U0) increase as
p increases.

Remark 2.19 In the rational case Abreu proved in [1] that the cohomology
ring H�(U0;Q) contains a generator in dimension 4 of in�nite order. The
previous result does not contradict this fact, but shows that H�(G�;Z) contains
a divided polynomial algebra. We will con�rm this fact in Section 3 when we
compute the homotopy type of G� .

3 Homotopy type of G�

In this section we will show that G� is homotopy equivalent to the product
X = L�S1�SO(3)�SO(3) where L = Ω�(S1�SO(3)). We start by giving
some considerations about torsion in H�(G�;Z). In the second subsection we
explain why we consider the loop space L and the last subsection is devoted to
the construction of the homotopy equivalence between G� and X .

3.1 Torsion in H�(G�;Z)

We can repeat the argument used in Section 2 to compute the Pontryagin rings
H�(G�;Q) and H�(G�;Zp), with Q and Zp coe�cients, with p prime and 6= 2.
In this case the homology of SO(3) is given by a single generator in dimension
3. Therefore it is easy to see that the generators of the homology ring of G� ,
in this case, are simply t; x3 and y3 , where t2 = x2

3 = y2
3 = 0, y3 commutes

with x3 and t, but t does not commute with x3 . Thus we obtain a theorem
analogous to Theorem 2.12:

Theorem 3.1 If 0 < � � 1 then

H�(G�;F ) �= �(y3)⊗ F ht; x3i=R
where deg y3 = 3, R is the set of relations ft2 = x2

3 = 0g and F is the �eld Q
or Zp with p 6= 2.
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Moreover an additive basis for the homology is given by elements of the form

wk3t
�tx�3y

�
3 ;

where �t; �; � = 0 or 1, k 2 N and w3 is obtained as the commutator of x3 and
t. Since the results are the same if we consider Q coe�cients or Zp coe�cients
with p 6= 2 we can conclude that H�(G�;Z) has no p{torsion if p 6= 2.

3.2 The James construction

We proved in Section 2 that H�(G�;Z2) contains a free non-commutative al-
gebra on 3 generators in dimensions 2, 3 and 4. Now the aim is to �nd an
H {space L such that the homology ring H�(L;Z2) is isomorphic to this alge-
bra Z2hw1; w2; w3i where wi is in dimension i+ 1. In order to �nd such space
we will use the James construction that we describe next.

For a pointed topological space (X; �), let Jk(X) = Xk=� where

(x1; :::; xj−1; �; xj+1; :::; xk) � (x1; :::; xj−1; xj+1; �; :::; xk):

The James construction on X , denoted J(X) is de�ned by

J(X) = lim
!
k

Jk(X);

where Jk(X) � Jk+1(X) by adding � in the last component. There is a canon-
ical inclusion X = J1(X) ,! J(X). J(X) is a topological monoid and any map
from X to a topological monoid M extends uniquely to a morphism J(X)!M
of topological monoids. That is, X ,! J(X) is universal with respect to maps
from X to topological monoids, ie, if f : X ! M is given there is a unique ~f
such that the following diagram commutes:

X

��

f

""

D
D
D
D
D
D
D
D

JX
~f

// M

~f is de�ned by ~f(x1; :::; xk) = f(x1) ::: f(xk). From the de�nition,
JkX=Jk−1X = X ^X ^ ::: ^X and since we have a �ltration

JX � ::: � JkX � Jk−1X � :::

applying the Künneth Theorem we conclude the following (see [16]):
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Theorem 3.2

H�(JkX;Z2) = H�(Jk−1X;Z2)�H�(X ^X ^ ::: ^X;Z2)

and
~H�(JX;Z2) = �k

�
~H�(X;Z2)

�⊗k
= T ( ~H�(X;Z2))

where given a vector space H , T (H) is the tensor algebra on H and the last
isomorphism is an isomorphism of Pontryagin rings.

Now note the following theorem (see proof in [14]).

Theorem 3.3 (James) If X has the homotopy type of a connected CW{
complex then JX and Ω�X are homotopy equivalent.

The Theorems 3.2 and 3.3 imply that

~H�(Ω�X;Z2) �= T ( ~H�(X;Z2))

so, in particular, if X = S1 ^ SO(3) we get

~H�(Ω�(S1 ^ SO(3));Z2) �= T ( ~H�(S1 ^ SO(3);Z2)) �= Z2hw1; w2; w3i;

where w1; w2; w3 are generators in dimension 2; 3; 4 respectively. So we see that
the homology with Z2 coe�cients of this space is isomorphic to a subalgebra
of H�(G�;Z2).

3.3 The homotopy equivalence

The following result is well known: see [6], Corollary 3.37.

Proposition 3.4 A map f : X ! Y induces isomorphisms on homology with
Z coe�cients i� it induces isomorphisms on homology with Q and Zp coe�-
cients for all primes p.

We now de�ne the map f from X = Ω�(S1 � SO(3)) � S1 � SO(3) � SO(3)
to G� that induces isomorphisms on homology with Q and Zp coe�cients, for
all primes p. We have an inclusion map

i : S1 � SO(3)! G�

given by

(x; y) 7! i1(x)i0(y)i1(x)−1i0(y)−1 (13)
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where i0 and i1 are the inclusions de�ned in Section 2. More precisely, in this
formula i1 is the restriction of the inclusion K1 ,! G� to the S1 factor and
i0 is the restriction of the inclusion K0 ,! G� to the �rst SO(3) factor. The
restriction to S1 _ SO(3) of i is the identity so there is an induced map

h : S1 ^ SO(3)! G�:

This map induces the right correspondence between generators in homology

h� : H�(S1 ^ SO(3);Z2)! H�(G�;Z2);

this meaning that the three generators of H�(S1 ^ SO(3);Z2) are mapped
to w1; w2; w3 2 H�(G�;Z2), because as we saw before these generators in
H�(G�;Z2) are obtained as commutators of the form (13). Moreover there is a
unique map ~h that extends h to Ω�(S1 ^ SO(3)) as we explained in Section
3.2. Therefore the map

~h� : H�(Ω�(S1 ^ SO(3));Z2)! H�(G�;Z2) (14)

takes the generators of H�(Ω�(S1 ^ SO(3));Z2) to the elements w1; w2; w3 in
H�(G�;Z2). Now consider the map f : L � S1 � SO(3) � SO(3) ! G� given
by

(w; t; y; x) 7! ~h(w)i1(t; y)i0(x); (15)

where w 2 L = Ω�(S1 ^ SO(3)).

Lemma 3.5 The map f de�ned above induces isomorphisms on homology
with Q and Zp coe�cients for all primes p.

Proof The map f restricted to S1�SO(3) or the second SO(3) factor is just
the inclusion in G� . Moreover, using the Künneth formula for homology with
coe�cients in a �eld F, we get

Hn(X;F ) �= �
p+q+l=n

Hp(L;F )⊗Hq(S1 � SO(3);F ) ⊗Hl(SO(3);F ): (16)

Let F be Q or Zp with p 6= 2. Note that in this case H�(SO(3);F ) has only
a generator in dimension 3. Therefore an additive basis for H�(G�;F ) is given
by

wk3 t
�tx�3y

�
3

where �t; �; � = 0 or 1. Thus comparing equation (16) and an additive basis for
H�(G�;F ) we conclude that the homology groups of X and G� are the same.
We just need to show that f induces those isomorphisms. The elements t, x3
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and y3 are the images of the generators of H�(S1�SO(3);F ) and H�(SO(3);F )
under the injective maps

i1� : H�(S1 � SO(3);F )! H�(G�;F )

and
i0� : H�(SO(3);F )! H�(G�;F )

induced by inclusions i0 and i1 . On the other hand the restriction of f to L is
given by the map ~h and we know that ~h� maps the 4{dimensional generator of

H�(Ω�(S1 ^ SO(3));F ) �= T ( ~H�(S1 ^ SO(3);F )) �= F [w3]

to the element in H4(G�;F ) obtained as the Samelson product of t and x3 . This
proves that f induces an isomorphism in homology with Q and Zp coe�cients
for all primes p with p 6= 2.

If F = Z2 then an additive basis for H�(G�;Z2) is given by the set of ele-
ments of the form (7). It follows from equation (16) that the homology groups
H�(G�;Z2) and H�(X;Z2) are isomorphic. The elements t; y1; y2 are the im-
ages of the generators of H�(S1 � SO(3);Z2) and x1; x2 are the images of the
generators of H�(SO(3);Z2). In this case the map ~h� stated in (14) takes
the generators of H�(Ω�(S1 ^ SO(3));Z2) to the elements w1; w2; w3 which
are the three generators of the free noncommutative subalgebra of H�(G�;Z2).
Therefore we get another isomorphism in homology.

Since the conditions of Proposition 3.4 are satis�ed we can conclude that the
map f de�ned in (15) induces isomorphisms on homology with Z coe�cients.
Using the fact the G� and X are both H {spaces it follows that �1 acts trivially
on all �n0s in each one of the spaces (see [16] , pp 119). This allow us to apply
the following corollary of Whitehead’s theorem ([6] proposition 4.48):

Corollary 3.6 If X and Y are abelian CW{complexes (i. e. �1 acts trivially
on all �n

0s) then a map f : X ! Y that induces isomorphisms in homology is
a homotopy equivalence.

Therefore we have proved our main theorem:

Theorem 3.7 If 0 < � � 1, G� is homotopy equivalent to the product
Ω�(S1 ^ SO(3))� S1 � SO(3)� SO(3).
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Remark 3.8 Although the spaces G� and Ω�(S1 ^ SO(3)) � S1 � SO(3) �
SO(3) are homotopy equivalent the above homotopy equivalence is not an H {
map, because it does not preserve the product structure. This can be seen
by comparing the Pontryagin products on integral homology. It would be an
interesting question to �nd an easily understandable H {space with a Pontryagin
ring isomorphic to the one of G� .
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