Geometry & Topology Volume 7 (2003) 399{441 Published: 24 June 2003



# The virtual Haken conjecture: Experiments and examples

Nathan M Dunfield William P Thurston

Department of Mathematics, Harvard University
Cambridge MA, 02138, USA
and
Department of Mathematics, University of California, Davis
Davis, CA 95616, USA

Email: nathand@math.harvard.edu and wpt@math.ucdavis.edu

#### Abstract

A 3-manifold is Haken if it contains a topologically essential surface. The Virtual Haken Conjecture says that every irreducible 3-manifold with in nite fundamental group has a nite cover which is Haken. Here, we discuss two interrelated topics concerning this conjecture.

First, we describe computer experiments which give strong evidence that the Virtual Haken Conjecture is true for hyperbolic 3-manifolds. We took the complete Hodgson-Weeks census of 10,986 small-volume closed hyperbolic 3-manifolds, and for each of them found nite covers which are Haken. There are interesting and unexplained patterns in the data which may lead to a better understanding of this problem.

Second, we discuss a method for transferring the virtual Haken property under Dehn lling. In particular, we show that if a 3-manifold with torus boundary has a Seifert bered Dehn lling with hyperbolic base orbifold, then most of the Dehn lled manifolds are virtually Haken. We use this to show that every non-trivial Dehn surgery on the gure-8 knot is virtually Haken.

AMS Classi cation numbers Primary: 57M05, 57M10

Secondary: 57M27, 20E26, 20F05

Keywords: Virtual Haken Conjecture, experimental evidence, Dehn lling, one-

relator quotients, gure-8 knot

Proposed: Jean-Pierre Otal Received: 30 September 2002 Seconded: Walter Neumann, Martin Bridson Accepted: 13 April 2003

## 1 Introduction

Let  $\mathcal{M}$  be an orientable 3-manifold. A properly embedded orientable surface  $S \not\in S^2$  in  $\mathcal{M}$  is *incompressible* if it is not boundary parallel, and the inclusion  $_1(S)$  !  $_1(\mathcal{M})$  is injective. A manifold is *Haken* if it is irreducible and contains an incompressible surface. Haken manifolds are by far the best understood class of 3-manifolds. This is because splitting a Haken manifold along an incompressible surface results in a simpler Haken manifold. This allows induction arguments for these manifolds.

However, many irreducible 3-manifolds with in nite fundamental group are not Haken, e.g. all but 4 Dehn surgeries on the gure-8 knot. It has been very hard to prove anything about non-Haken manifolds, at least without assuming some sort of additional Haken-like structure, such as a foliation or lamination.

Sometimes, a non-Haken 3-manifold M has a nite cover which is Haken. Most of the known properties for Haken manifolds can then be pushed down to M (though showing this can be di cult). Thus, one of the most interesting conjectures about 3-manifolds is Waldhausen's conjecture [54]:

**1.1 Virtual Haken Conjecture** Suppose M is an irreducible 3-manifold with in nite fundamental group. Then M has a nite cover which is Haken.

A 3-manifold satisfying this conjecture is called *virtually Haken*. For more background and references on this conjecture see Kirby's problem list [38], problems 3.2, 3.50, and 3.51. See also [12, 13] and [40, 39] for some of the latest results toward this conjecture. The importance of this conjecture is enhanced because it's now known that 3-manifolds which are virtually Haken are geometrizable [27, 26, 49, 41, 42, 25, 9].

There are several stronger forms of this conjecture, including asking that the nite cover be not just Haken but a surface bundle over the circle. We will be interested in the following version. Let M be a closed irreducible 3-manifold. If  $H_2(M;\mathbb{Z}) \not \in 0$  then M is Haken, as any non-zero class in  $H_2(M;\mathbb{Z})$  can be represented by an incompressible surface. Now  $H_2(M;\mathbb{Z})$  is isomorphic to  $H^1(M;\mathbb{Z})$  by Poincare duality, and  $H^1(M;\mathbb{Z})$  is a free abelian group. So if the rst betti-number of M is  $_1(M) = \dim H_1(M;\mathbb{R}) = \dim H^1(M;\mathbb{R})$ , then  $_1(M) > 0$  implies M is Haken. As the cover of an irreducible 3-manifold is irreducible [41], a stronger form of the Virtual Haken Conjecture is:

**1.2 Virtual Positive Betti Number Conjecture** Suppose M is an irreducible 3-manifold with in nite fundamental group. Then M has a nite cover N where  $_{1}(N) > 0$ .

We will say that such an M has *virtual positive betti number*. Note that  $_1(N) > 0$  if and only if  $H_1(N;\mathbb{Z})$ , the abelianization of  $_1(N)$ , is in nite. So an equivalent, more algebraic, formulation of Conjecture 1.2 is:

**1.3 Conjecture** Suppose M is an irreducible 3-manifold. Assume that  $_1(M)$  is in nite. Then  $_1(M)$  has a nite index subgroup with in nite abelianization.

Here, we focus on this form of the Virtual Haken Conjecture because its algebraic nature makes it easier to examine both theoretically and computationally. While in theory one can to use normal surface algorithms to decide if a manifold is Haken [37], in practice these algorithms are prohibitively slow in all but the simplest examples. Computing homology is much easier as it boils down to computing the rank of a matrix. Also, it's probably true that having virtual positive betti number isn't much stronger than being virtually Haken (see the discussion of [40] in Section 11 below).

## 1.4 Outline of the paper

This paper examines the Virtual Haken Conjecture in two interrelated parts:

### **Experiment: Sections 2-6**

Here, we describe experiments which strongly support the Virtual Positive Betti Number Conjecture. We looked at the 10,986 small-volume hyperbolic manifolds in the Hodgson-Weeks census, and tried to show that they had virtual positive betti number. In all cases, we succeeded. It was natural to restrict to hyperbolic 3-manifolds for our experiment since, in practice, all 3-manifolds are geometrizable and the Virtual Positive Betti Number Conjecture is known for all other kinds of geometrizable 3-manifolds.

Section 2 gives an overview of the experiment and discusses the results and limitations of the survey. Sections 3 and 4 describe the techniques used to compute the homology of the covers. Section 5 discusses some interesting patterns that we found among the covers where the covering group is a simple group. Some further questions are given in Section 6.

## Examples and Dehn lling: Sections 7 - 12

Here we consider Dehn llings of a xed 3-manifold M with torus boundary. Generalizing work of Boyer and Zhang [5], we give a method for transferring

virtual positive betti number from one lling of M to another. Roughly, Theorem 7.3 says that if M has a lling which is Seifert bered with hyperbolic base orbifold, then most Dehn llings have virtual positive betti number. We use this to give new examples of manifolds M where all but nitely many Dehn llings have virtual positive betti number. In Section 9, we show this holds for most surgeries on one component of the Whitehead link.

In the case of gure-8 knot, we use work of Holt and Plesken [35] to amplify our results, and prove that every non-trivial Dehn surgery on the gure-8 knot has virtual positive betti number (Theorem 10.1).

In Section 11, we discuss possible avenues to other results using llings which are Haken rather than Seifert bered. This approach is easiest in the case of toroidal Dehn llings, and using these techniques we prove (Theorem 12.1) that all Dehn llings on the sister of the gure-8 complement satisfy the Virtual Positive Betti Number Conjecture.

## Acknowledgments

The rst author was partially supported by an NSF Postdoctoral Fellowship. The second author was partially supported by NSF grants DMS-9704135 and DMS-0072540. We would like to thank Ian Agol, Daniel Allcock, Matt Baker, Danny Calegari, Greg Kuperberg, Darren Long, Alex Lubotzky, Alan Reid, William Stein, and Dylan Thurston for useful conversations. We also thank of the authors of the computer programs SnapPea [56] and GAP [28] which were critical for our computations.

# 2 The experiment

#### 2.1 The manifolds

We looked at the 10,986 hyperbolic 3-manifolds in the Hodgson-Weeks census of small-volume closed hyperbolic 3-manifolds [56]. The volumes of these manifolds range from that of the smallest known manifold (0.942707:::) to 6.5. While there are in nitely many closed hyperbolic 3-manifolds with volume less than 6.5, there are only nitely many if we also bound the injectivity radius from below. The census manifolds are an approximation to all closed hyperbolic 3-manifolds with volume < 6.5 and injectivity radius > 0.3.

A more precise description of these manifolds is this. Start with the Callahan-Hildebrand-Weeks census of cusped nite-volume hyperbolic 3-manifolds, which

is a complete list of the those having ideal triangulations with 7 or fewer tetrahedra [34, 8]. The closed census consists of all the Dehn llings on the 1-cusped manifolds in the cusped census, where the closed manifold has shortest geodesic of length >0.3.

Only 132 of the 10,986 manifolds have positive betti number. It is also worth mentioning that many (probably the vast majority) of these manifolds are non-Haken. For the 246 manifolds with volume less than 3, exactly 15 are Haken [19].

#### 2.2 Computational framework

For each 3-manifold, we started with a nite presentation of its fundamental group G, and then looked for a nite index subgroup H of G which has in nite abelianization. There is a fair amount of literature on how nd such an H, because nding a nite index subgroup with in nite abelianization is one of the main computational techniques for proving that a given nitely presented group is in nite. See [43] for a survey. The key idea which simplifies the computations is contained in [35], which we used in the form described in Section 3.

We used SnapPea [56] to give presentations for the fundamental groups of each of the manifolds in the closed census. We then used GAP [28] to nd various nite index subgroups and compute the homology of the subgroups (see Sections 3-4).

### 2.3 Types of covers

When looking for a subgroup with positive betti number, we tried a number of di erent types of subgroups. Some types were much better at producing homology than others. Those that worked well were:

Abelian/p-group covers with exponent 2 or 3.

Low (< 20) index subgroups. Coset enumeration techniques allow one to enumerate low-index subgroups [52]. Given such a subgroup H < G, we looked at the largest normal subgroup contained in H, to maximize the chance of H nding homology.

Normal subgroups where the quotient is a  $\,$  nite simple group. These were found by choosing the simple group in advance and then  $\,$  nding all epimorphisms of  $\,$  onto that group.

The following types were ine cient in producing homology:

Abelian/nilpotent covers with exponents > 3.

Dihedral covers.

Intersections of subgroups of the types listed in the rst list (the useful types).

It would be nice to have heuristics which explain why some things worked and others didn't (we plan to explore this further in [21]). Also, while intersecting subgroups was not e cient in general, there were certain manifolds where the only positive betti number cover we could nd were of this type.

#### 2.4 Results

We were able to nd positive betti number covers for all of the Hodgson-Weeks census manifolds. For most of the manifolds, it was easy to nd such a cover. For instance, just looking at abelian covers and subgroups of index 6 works for 42% of the manifolds. See Table 1 for more about the degrees of the covers we used.

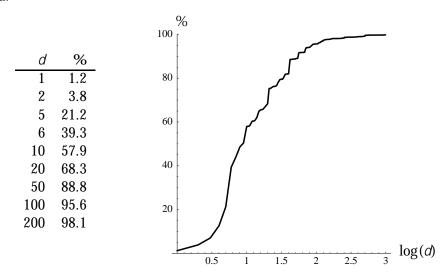



Table 1: The table at left shows the proportion of manifolds for which we found a cover with positive betti number of degree  $\ensuremath{\mathcal{C}}$ . Note this is just for the covers that we found, which are not always the positive betti number covers of smallest degree. The plot at right presents all of the data, where  $\log(\ensuremath{\mathcal{C}})$  is base 10.

For each of the manifolds, we stored a presentation of the fundamental group and a homomorphism from that nitely presented group to  $S_n$  whose kernel has positive betti number. This information is available on the web at [20] together with the GAP code we used for the computations, and will hopefully be useful as a source of examples. The amount of computer time used to nd all the covers

was in excess of one CPU-year, but the amount of time needed to check all the covers for homology given the data available at [20] is only a few of hours.

There was one manifold in particular where it was very discult to and a cover with positive betti number. This manifold is N = s633(2;3). Its volume is 4.49769817315::: and  $H_1(N) = \mathbb{Z}=79\mathbb{Z}$ . The manifold N has a genus-2 Heegaard splitting, and is the 2-fold branched cover of the 3-bridge knot in Figure 1. One of the reasons that N was so discult is that I(N) has very

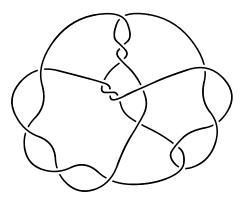



Figure 1: The 2-fold cover branched over this knot is the manifold N. Figure created with [36].

few low-index subgroups (the smallest index is 13). In the end, a search using Magma [4], turned up a subgroup of index 14 which has positive betti number. It is very hard to enumerate all nite-index subgroups for an index as large as 14, roughly because the size of  $S_n$  is n!; nding this index 14 subgroup took 2 days of computer time.

While  $_1(N)$  has few subgroups of low index, it does have a reasonable number of simple quotients, and might be a good place to look for a co- nal sequence of covers which fail to have positive betti number. The manifold N is non-Haken, but it contains a essential lamination (and thus a genuine lamination [7]). Arithmetically, it is quite a complicated manifold | Snap [29] computes that the trace eld has a minimal polynomial p(x) whose degree is 51 and largest coe cient is about  $4 10^7$ . The coe cients of p are, starting with the constant term:

1, 24, 223, 929, 909, -6163, -20232, -2935, 79745, 121259, -57077, -428280, -507427, 689749, 2245466, -519994, -5455251, 355551, 9513149, -1958013,

## 2.5 Overlap with known results

The manifolds we examined have little overlap with those covered by the known results about the Virtual Haken Conjecture. The only general results are those of Cooper and Long [12, 13] building on work of Freedman and Freedman [24]. These are Dehn surgery results | they say that many \large" Dehn llings on a 1-cusped hyperbolic 3-manifold are virtually Haken. Because \large" Dehn llings usually have short geodesics, the Cooper-Long results probably apply to very few, if any, of the census manifolds.

#### 2.6 Limitations

It's possible the behavior we found might not be true in general because the census manifolds are non-generic in a couple ways. First, they all have fundamental groups with presentations with at most 3 generators. About 75% have 2-generator presentations. For these manifolds, it seems that (at least most of the time) the number of generators and the Heegaard genus coincide. So most of these manifolds have Heegaard genus 2 or 3.

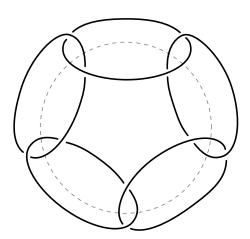



Figure 2: The minimally-twisted 5-chain link.

Moreover Callahan, Hodgson, and Weeks (unpublished) showed that almost all of the census manifolds are Dehn surgeries on a single 5-component link, the

minimally twisted 5-chain shown in Figure 2. Let L be this link and  $M = S^3 \, n \, N(L)$  be its exterior. The link L is invariant under rotation of about the dotted grey axis. The induced involution of M acts on each torus in @M by the elliptic involution. Thus the involution of M extends to an orientation preserving involution of every Dehn lling of M. So almost all of the census manifolds have an orientation preserving involution where the xed point set is a link and underlying space of the quotient is  $S^3$ . While any manifold which has a genus-2 Heegaard splitting has such an involution [3], this says that the other 25% of the census manifolds are also special. The presence of such an involution has proven useful in the past. For instance, it implies that the manifold is geometrizable. So it's possible that our computations only reflect the situation for manifolds of this type.

The 5-chain L is a truly beautiful link, and it's worth describing some of its properties here. The orbifold N which is M modulo this involution is easy to describe. Take the triangulation T of  $S^3$  gotten by thinking of  $S^3$  as the boundary of the 4-simplex. The 1-skeleton of T is called the *pentacle*, see Figure 3. If we take  $S^3$  minus an open ball about each vertex in T, and label

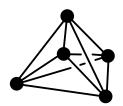



Figure 3: The pentacle.

what's left of each edge of the pentacle by  $\mathbb{Z}=2\mathbb{Z}$ , we get exactly the orbifold N!

We can put a hyperbolic structure on N and thus M by making each tetrahedron in T a regular ideal tetrahedron. Thus the volume of M is  $10v_3 = 10.149416064$ ::, and further M is arithmetic and commensurable with the Bianchi group  $PSL_2O(\frac{1}{-3})$ . The symmetric group  $S_5$  acts on the 4-simplex by permuting the vertices, inducing an action of  $S_5$  on N. This action is exactly the group of isometries of N. The isometry group of M is  $S_5 = \mathbb{Z} = 2\mathbb{Z}$ , where the  $\mathbb{Z} = 2\mathbb{Z}$  is the rotation about the axis.

The manifold M bers over the circle, and in fact every face of the Thurston norm ball is bered. Here's an explicit way to see that N bers over the interval I with mirrored endpoints (this bration lifts to a bration of M over  $S^1$ ). Take

any Hamiltonian cycle in the 1-skeleton of T. The complementary edges also form a Hamiltonian cycle. Split the fat vertices of T (the cusps of N) in the obvious way in space so that these two cycles become the unlink, with cusps stretched between them. Then the special bers over the  $\mathbb{Z}$ -2 $\mathbb{Z}$  endpoints of I are two pentagons, spanning the two Hamiltonian cycles. The other bers are 5-punctured spheres.

# 3 Techniques for computing homology

Given a nite index subgroup H of a nitely presented group G, a simpli ed version of the Reidemeister-Schreier method produces a matrix A with integers entries whose cokernel is the abelianization of H. Computing this matrix is not very time-consuming. The hard part of computing the rank of the abelianization of H is nding the rank of A. Computing the rank of a matrix is  $O(n^3)$  if eld operations are constant time. We need to compute the rank over  $\mathbb Q$  so the time needed is somewhat more than that (see Section 4). The side lengths of A are usually about n = [G:H], which at  $O(n^3)$  is prohibitive for many of the covers that we looked at (the largest covering group we needed was  $PSL_2\mathbb F_{101}$ , whose order is 515,100).

So one wants to keep the degree of the cover, or really the size of the matrix involved, as small as possible. One way to do this, rst used in this context by Holt and Plesken [35], is the following application of the representation theory of nite groups. Suppose H is a nite index subgroup of G. Assume that H is normal, so the corresponding cover is regular. Set Q = G = H and let f: G! Q be the quotient map. The group Q acts on the homology of the cover  $H_1(H;\mathbb{C})$ , giving a representation of Q on the vector space  $H_1(H;\mathbb{C})$ . Another description of  $H_1(H;\mathbb{C})$  is that it is the homology with twisted coe cients  $H_1(G;\mathbb{C}Q)$ . As a Q-module,  $\mathbb{C}Q$  decomposes as  $\mathbb{C}Q = V_1^{n_1} V_2^{n_2} V_k^{n_k}$  where the  $V_i$  are simple Q-modules and dim  $V_i = n_i$ . So

$$H_1(H) = H_1(G; \mathbb{C}Q) = H_1(G; V_1)^{n_1} \quad H_1(G; V_2)^{n_2} \quad H_1(G; V_k)^{n_k}$$

Since the dimensions of the  $V_i$  are usually much less than the order of O, the matrices involved in computing  $H_1(G;V_i)$  are much smaller than the one you would get by applying Reidemeister-Schreier to the subgroup H. For instance,  $PSL_2\mathbb{F}_p$  has order about  $(1=2)p^3$ , but every  $V_i$  has dimension about p. If we want to show that  $H_1(H;\mathbb{C})$  is non-zero, we just have to compute that a single  $H_1(G;V_i)$  is non-zero.

There are a couple of disculties in computing  $H_1(G; V_i)$ . First, to do the computation rigorously, we need to compute not over  $\mathbb{C}$  but over a site extension

of  $\mathbb{Q}$ . Now there is a eld k so that kQ splits over k the same way as  $\mathbb{C}Q$  splits over  $\mathbb{C}$ . However, the matrices we need to compute  $H_1(G;V_i)$  will have entries in k, whereas the matrix given to us by Reidemeister-Schreier has integer entries. If A is a matrix with entries in k, to compute its rank over  $\mathbb{Q}$  one can form an associated  $\mathbb{Q}$ -matrix B by embedding k as a subalgebra of  $\mathrm{GL}_n\mathbb{Q}$  where n is  $[k:\mathbb{Q}]$  (see e.g. [45]). The rank of B can then be computed using one the techniques for integer matrices. However, the size of B is the size of A times  $[k:\mathbb{Q}]$ , so this eats up part of the apparent advantage to computing just the  $H_1(G;V_i)$ .

The other problem is that we may not know what the irreducible representations of  $\mathcal{Q}$  are, especially if we don't know much about  $\mathcal{Q}$ . While computing the character table of a nite group is a well-studied problem, the problem of nding the actual representations is harder and not one of the things that GAP or other standard programs can do. Even when the representations of  $\mathcal{Q}$  are explicitly known (e.g.  $\mathcal{Q} = PSL_2\mathbb{F}_p$ ), it can be time-consuming to tell the computer how to construct the representations. For more on computing the actual representations see [16, 44].

We used the following modi ed approach which avoids the two disculties just mentioned, while still reducing the size of the matrices considerably. Suppose we are given normal subgroup H and we want to determine if  $H_1(H;\mathbb{C})$  is non-zero. Suppose U is a subgroup of Q. Note U is not assumed to be normal. The permutation representation of Q on  $\mathbb{C}[Q=U]$  desums into irreducible representations, say  $\mathbb{C}[Q=U] = V_1^{e_1} \quad V_2^{e_2} \quad V_k^{e_k}$ . Let  $K = f^{-1}(U)$ , a nite index subgroup of G containing H. Then

$$H_1(K) = H_1(G; \mathbb{C}[Q=U]) = H_1(G; V_1)^{e_1} \quad H_1(G; V_2)^{e_2} \quad H_1(G; V_k)^{e_k}$$

Suppose that U is chosen so that every irreducible representation appears in  $\mathbb{C}[Q=U]$ , that is, every  $e_i > 0$ . Then we see that  $H_1(H)$  is non-zero if and only if  $H_1(K)$  is. As long as U is non-trivial, the index [G:K] = [Q:U] is smaller than [G:H] = #Q, so computing  $H_1(K)$  is easier that computing  $H_1(H)$ . Returning to the example of  $\mathrm{PSL}_2\mathbb{F}_p$ , there is such a U of index about  $p^2$ , whereas the order of  $\mathrm{PSL}_2\mathbb{F}_p$  is about  $p^3=2$ . Looking at a matrix with side  $O(p^2)$  is a big savings over one of side  $O(p^3)$ .

Moreover, nding such a U given Q is easy. First compute the character table of Q and the conjugacy classes of subgroups of Q (these are both well-studied problems). For each subgroup U of Q compute the character U of the permutation representation of Q on  $\mathbb{C}[Q=U]$ . Expressing U as a linear combination of the irreducible characters tells us exactly what the  $e_i$  are. Running through the U, we can U nd the subgroup of lowest index where all of the U of U of the U of the U of U

When we were searching for positive betti number covers, we used this method of replacing H with  $K = f^{-1}(U)$  and computed the ranks of the resulting matrices over a nite eld  $\mathbb{F}_p$ . Once we had found an H with positive  $\mathbb{F}_p$ -betti number, we did the following to check rigorously that H has in nite abelianization. First, we went through aH the subgroups U of Q, till we found the U of smallest index such that  $f^{-1}(U)$  has positive  $\mathbb{F}_p$ -betti number. For this U, we computed the  $\mathbb{Q}$ -betti number of  $f^{-1}(U)$  using one of the methods described in Section 4. Doing this kept the matrices that we needed to compute the  $\mathbb{Q}$ -rank of small, and was the key to checking that the covers really had positive  $\mathbb{Q}$ -betti number. For instance, for the  $\mathrm{PSL}_2\mathbb{F}_{101}$ -cover of degree 515,100 there was a U so that the intermediate cover  $f^{-1}(U)$  with positive betti number had degree  $\mathrm{Noly}^{\mathrm{u}}$  5,050.

It's worth mentioning that the rank over  $\mathbb{Q}$  was very rarely di-erent than that over a small nite eld. Initially, for each manifold we found a cover where the  $\mathbb{F}_{31991}$ -betti number was positive. All but 3 of those 10,986 covers had positive  $\mathbb{Q}$ -betti number.

## 4 Computing the rank over Q

Here, we describe how we computed the  $\mathbb{Q}$ -rank of the matrices produced in the last section. Normally, one thinks of linear algebra as \easy", but standard row-reduction is polynomial time only if eld operations are constant time. To compute the rank of an integer matrix A rigorously one has to work over  $\mathbb{Q}$ . Here, doing row reduction causes the size of the fractions involved to explode. There are a number of ways to try to avoid this.

The rst is to use a clever pivoting strategy to minimize the size of the fractions involved [33, 32, 31]. This is the method built into GAP, and was what we used for the covers of degree less than 500, which su ced for 99:2% of the manifolds.

For all but about 7 of the remaining 94 manifolds, we used a simplified version of the p-adic algorithm of Dixon given in [17]. Over a large in itemed eld  $\mathbb{F}_p$ , we computed a basis of the kernel of the matrix. Then we used \rational reconstruction", a partial inverse to the map  $\mathbb{Q}$  !  $\mathbb{F}_p$  to try to lift each of the  $\mathbb{F}_p$ -vectors to  $\mathbb{Q}$ -vectors (see [17, pg. 139]). If we succeeded, we then checked that the lifted vectors were actually in the kernel over  $\mathbb{Q}$ .

For 7 of the largest covers (degree 1,000{5,000), this simpli cation of Dixon's algorithm fails, and we used the program MAGMA [4], which has a very sophisticated p-adic algorithm, to check the ranks of the matrices involved.

# 5 Simple covers

To gain more insight into this problem, we looked at a range of simple covers for a randomly selected 1,000 of the census manifolds which have 2-generator fundamental groups. For these 1,000 manifolds we found all the covers where the covering group was a non-abelian nite simple group of order less than 33,000. For each cover we computed the homology. We will describe some interesting patterns we found.

First, look at Table 2. There, the simple groups are listed by their ATLAS [11] name (so, for instance,  $L_{\Pi}(q) = \mathrm{PSL}_{\Pi}\mathbb{F}_q$ ), together with basic information about how many covers there are, and how many have positive betti number. There is quite a bit of variation among the di erent groups. For instance, only 11:3% of the manifold groups have  $L_2(16)$  quotients but 42:8% have  $L_3(4)$  quotients. Moreover, there are big di erences in how successful the di erent kinds of covers are at producing homology. Only half of the  $L_2(37)$  covers have positive betti number, but almost all (97:5%) of the  $U_4(2)$  covers do. There are no obvious reasons for these patterns (for instance, the success rates don't correlate strongly with the order of the group). It would be very interesting to have heuristics which explain them, and we will explore these issues in [21].

In terms of showing manifolds are virtually Haken, even the least useful group has a **Hit** rate greater than 10%. That is, for any given group at least 10% of the manifolds have a positive betti number cover with that group. So unless things are strongly correlated between di erent groups, one would expect that every manifold would have a positive betti number simple cover, and that one would generally nd such a cover quickly. Let Q(n) denote the  $n^{\text{th}}$  simple group as listed in Table 2. Set V(n) to be the proportion of the manifolds which have a positive betti number Q(k)-cover where k n. We expect that the increasing function V(n) should rapidly approach 1 as n increases. This is born out in Figure 4.

Figure 4 shows that the groups behave pretty independently of each other, although not completely as we will see. Let H(n) denote the hit rate for Q(n), that is the proportion of the manifolds with a Q(n) cover with positive betti number. If everything were independent, then one would expect

$$V(n)$$
  $V(n-1) + (1 - V(n-1))H(n)$ :

If we let E(n) be the right-hand side above, and compare E(n) with V(n) we nd that E(n) - V(n) is almost always positive. To judge the size of this

| Quotient           | Order | Hit  | HavCov | SucRat1 | SucRat2 |
|--------------------|-------|------|--------|---------|---------|
| $A_5$              | 60    | 14.0 | 26.9   | 52.0    | 52.9    |
| $L_2(7)$           | 168   | 17.8 | 28.2   | 63.1    | 66.3    |
| $\mathcal{A}_6$    | 360   | 21.6 | 31.4   | 68.8    | 68.7    |
| $L_2(8)$           | 504   | 15.4 | 21.7   | 71.0    | 72.6    |
| $L_2(11)$          | 660   | 24.1 | 32.8   | 73.5    | 71.8    |
| $L_2(13)$          | 1092  | 29.4 | 41.1   | 71.5    | 77.8    |
| $L_2(17)$          | 2448  | 29.4 | 43.1   | 68.2    | 69.6    |
| $A_7$              | 2520  | 41.1 | 45.8   | 89.7    | 90.9    |
| $L_2(19)$          | 3420  | 28.2 | 44.4   | 63.5    | 65.7    |
| $L_2(16)$          | 4080  | 11.3 | 18.3   | 61.7    | 65.3    |
| $L_3(3)$           | 5616  | 19.2 | 28.0   | 68.6    | 76.5    |
| $U_3(3)$           | 6048  | 16.4 | 18.0   | 91.1    | 92.8    |
| $L_2(23)$          | 6072  | 32.7 | 47.6   | 68.7    | 70.1    |
| $L_2(25)$          | 7800  | 24.7 | 33.0   | 74.8    | 75.5    |
| $\mathcal{M}_{11}$ | 7920  | 14.6 | 17.1   | 85.4    | 88.8    |
| $L_2(27)$          | 9828  | 14.2 | 26.6   | 53.4    | 57.1    |
| $L_2(29)$          | 12180 | 42.0 | 57.1   | 73.6    | 74.1    |
| $L_2(31)$          | 14880 | 38.1 | 56.5   | 67.4    | 70.9    |
| $A_8$              | 20160 | 18.7 | 20.7   | 90.3    | 92.3    |
| $L_3(4)$           | 20160 | 42.8 | 50.2   | 85.3    | 89.1    |
| $L_2(37)$          | 25308 | 24.9 | 54.2   | 45.9    | 50.5    |
| $U_4(2)$           | 25920 | 26.6 | 27.8   | 95.7    | 97.5    |
| <i>Sz</i> (8)      | 29120 | 26.9 | 43.9   | 61.3    | 73.1    |
| $L_2(32)$          | 32736 | 12.4 | 17.9   | 69.3    | 72.1    |

Table 2: **Hit** is the percentage of manifolds having a cover with this group which has positive betti number. **HavCov** is the percentage of manifolds having a cover with this group. **SucRate1** is the percentage of manifolds having a cover with this group which have such a cover with positive betti number. **SucRate2** is the percentage of covers with this group having positive betti number.

deviation, we look at

$$\frac{E(n) - V(n)}{1 - V(n-1)}$$
 which lies in [-0.007;0:13],

and which averages 0.022. In other words, V(n) - V(n-1) is usually about 2% smaller as a proportion of the possible increase than E(n) - V(n-1).

Geometry & Topology, Volume 7 (2003)

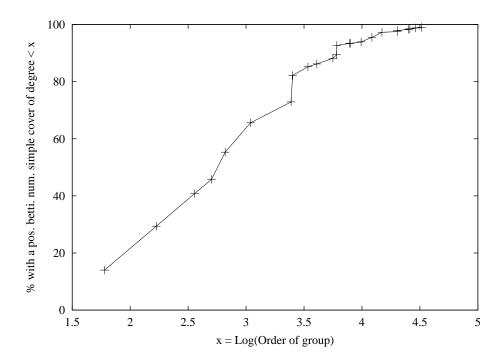



Figure 4: This graph shows how quickly simple group covers generate homology. Each + plotted is the pair  $(\log(\#Q(n)); V(n))$ , where the log is base 10. Thus the leftmost + corresponds to the fact that 14% of the manifolds have an  $A_5$  cover with positive betti number. The second leftmost + corresponds to the fact that 29% of the manifolds have either an  $A_5$  or an  $L_2(7)$  cover with positive betti number, and so on.

For a graphical comparison, de ne  $V^{\ell}(n)$  by the recursion

$$V^{\ell}(n) = V^{\ell}(n-1) + (1 - V^{\ell}(n-1))H(n)$$

and compare with V(n) in Figure 5.

Asymptotically, every non-abelian  $\$ nite simple group is of the form  $\ L_2(q)$ , and so it's interesting to look at a modi ed  $\ V(n)$  where we look only at the  $\ Q(n)$  of this form. This is also shown in Figure 5.

## 5.1 Amount of homology

Suppose we look at a simple cover of degree d, what is the expected rank of the homology of the cover? The data suggests that the expected rank is linearly proportional to d. For the simple group Q(n), set R(n) to be the mean of  $_1(N)$ , where N runs over all the Q(n) covers of our manifolds (including

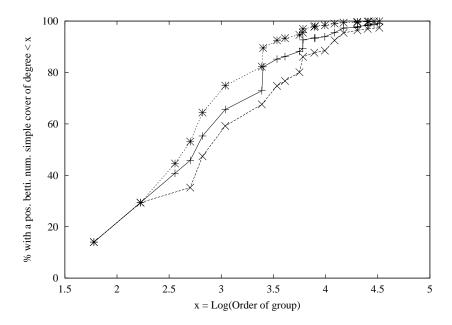



Figure 5: The top line plots  $(\log(\#Q(n)); V^{\ell}(n))$ , the middle line  $(\log(\#Q(n)); V(n))$  (as in Figure 4), and the lowest line plots only the groups of the form  $L_2(q)$ .

those where  $_1(N) = 0$ ). Figure 6 gives a plot of  $\log R(n)$  versus  $\log(\# Q(n))$ . Also shown is the line y = x - 1.3 (which is almost the least squares t line y = 1.018x - 1.303). The data points follow that line, suggesting that:

$$\log R(n) = \log(\# Q(n)) - 1.3$$
 and hence  $R(n) = \frac{\# Q(n)}{20}$ . (1)

Now each of the 3-manifold groups we are looking at here are quotients of the free group on two generators  $F_2$ . Let G be fundamental group of one of our 3-manifolds, say  $G = F_2 = N$ . Given a homomorphism G! Q(n), we can look at the composite homomorphism  $F_2$ ! Q(n). Let H be the kernel of G! Q(n) and K the kernel of  $F_2$ ! Q(n). Then the rank of  $H_1(K)$  is #Q(n) + 1. As  $H_1(H)$  is a quotient of  $H_1(K)$ , Equation 1 is says that on average, 5% of  $H_1(K)$  survives to  $H_1(H)$ .

This amount of homology is not a priori forced by the high hit rate for the  $\mathcal{Q}(n)$ . For instance,  $L_2(p)$  has order  $(p^3-p)=2$  but has a rational representation of dimension p. Thus it would be possible for  $L_2(p)$  covers to have

$$\log(R(n))$$
 (1=3)  $\log(\#G(n)) + C$ ;

even if a large percentage of these covers had positive betti number. This data suggests that on a statistical level these 3-manifold groups are trying to behave

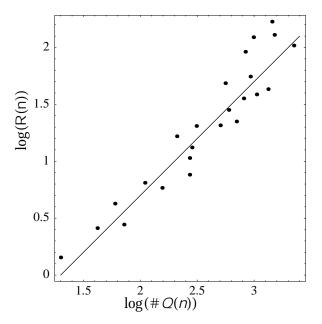



Figure 6: This plot shows the relationship between the expected rank and the degree of the cover. The line shown is y = x - 1.3.

like the fundamental group of a 2-dimensional orbifold of Euler characteristic -1=20.

#### **Caveats**

The data in Figure 6 is not based on the full Q(n) covers but on subcovers coming from a xed subgroup U(n) < Q(n), chosen as described in Section 3. The degree plotted is the degree of the cover that was used, that is [Q(n):U(n)] not the order of Q(n) itself, so the above analysis is still valid. Also, throughout Section 5 having positive betti number really means having positive betti number over  $\mathbb{F}_{31991}$ . Also, we originally used a list of the Hodgson-Weeks census which had a few duplicates and so there are actually 12 manifold which appear twice in our list of 1000 random manifolds.

#### 5.2 Homology of particular representations

As discussed in Section 3, if we look at a cover with covering group Q, the homology of the cover decomposes into

$$H_1(G; V_1)^{n_1} \quad H_1(G; V_2)^{n_2} \qquad H_1(G; V_k)^{n_k};$$

Geometry & Topology, Volume 7 (2003)

| Partition | Dim. of rep | Success rate | Mean homology |
|-----------|-------------|--------------|---------------|
| 7         | 1           | 2%           | 0.0           |
| 1;6       | 6           | 22%          | 1.5           |
| 2;5       | 14          | 63%          | 19.8          |
| 1;1;5     | 15          | 64%          | 21.8          |
| 3:4       | 14          | 41%          | 11.0          |
| 1;2;4     | 35          | 70%          | 101.6         |
| 1;1;1;4   | 20          | 61%          | 20.7          |
| 1;3;3     | 21          | 61%          | 33.9          |

Table 3: The  $\mathbb{Q}$ -irreducible representations of  $A_7$ . Success Rate is the percentage of covers where that representation appeared. Mean Homology is the average amount of homology that that representation contributed (the mean homology of an  $A_7$  cover was 210.3).

where G is the fundamental group of the base manifold and the  $V_i$  are the irreducible Q-modules. For Q an alternating group, we looked at this decomposition and found that the ranks of the  $H_1(G;V_i)$  were very strongly positively correlated. This contrasts with the relative independence of the ranks of covers with di erent Q(n).

We will describe what happens for  $A_7$ , the other alternating groups being similar. The rational representations of  $A_7$  are easy to describe: they are the restrictions of the irreducible representations of  $S_7$ . They correspond to certain partitions of 7. Table 3 lists the representations and their basic properties. Table 4 shows the correlations between the ranks of the  $H_1(G; V_i)$ . Many of the correlations are larger than 0.5 and all are bigger than 0 (+1 is perfect correlation, -1 perfect anti-correlation and 0 the expected correlation for independent random variables). Figure 7 shows the distribution of the homology of the covers.

#### 5.3 Correlations between groups

In the beginning of Section 5 we saw that the two events

having a Q(n)-cover with 1 > 0; having a Q(m)-cover with 1 > 0

were more or less independent of each other, though overall there was a slight positive correlation which dampened the growth of V(n). In the appendix, there is a table giving these correlations, was well one giving those between the events:

having a Q(n)-cover; having a Q(m)-cover:

|      | 7    | 16   | 25   | 115  | 34   | 124  | 1114 | 133  |
|------|------|------|------|------|------|------|------|------|
| 7    | 1.00 | 0.01 | 0.11 | 0.08 | 0.15 | 0.17 | 0.02 | 0.13 |
| 16   | 0.01 | 1.00 | 0.22 | 0.09 | 0.23 | 0.19 | 0.18 | 0.19 |
| 25   | 0.11 | 0.22 | 1.00 | 0.63 | 0.65 | 0.79 | 0.37 | 0.61 |
| 115  | 0.08 | 0.09 | 0.63 | 1.00 | 0.52 | 0.80 | 0.75 | 0.78 |
| 34   | 0.15 | 0.23 | 0.65 | 0.52 | 1.00 | 0.73 | 0.50 | 0.65 |
| 124  | 0.17 | 0.19 | 0.79 | 0.80 | 0.73 | 1.00 | 0.65 | 0.89 |
| 1114 | 0.02 | 0.18 | 0.37 | 0.75 | 0.50 | 0.65 | 1.00 | 0.66 |
| 133  | 0.13 | 0.19 | 0.61 | 0.78 | 0.65 | 0.89 | 0.66 | 1.00 |

Table 4: Table showing the correlations between the ranks of  $H_1(G; V_i)$  where the  $V_i$  are indexed by the partition of the corresponding representation.

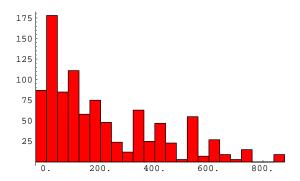



Figure 7: Plot showing the distribution of the ranks of the homology of the 964 covers with group  $A_7$ . The x-axis is the amount of homology and the y-axis the number of covers with homology in that range.

Some of these correlations are much larger than one would expect by chance alone  $\mid$  for instance the correlation between

having a  $L_2(7)$ -cover with  $_1 > 0$ ; having a  $L_2(8)$ -cover with  $_1 > 0$ 

is 0.38. Moreover, there are very few negative correlations and those that exist are quite small. Overall, the average correlation is positive as we would expect from Section 5.

One way of trying to understand these correlations is to observe that almost all of these manifolds are Dehn surgeries on the minimally twisted 5-chain. Let us focus on the simpler question of correlations between having a cover with group Q(n) and having a cover with group Q(m). Let M be the complement of the 5-chain. Consider all the homomorphisms  $f_k$ :  ${}_1M$ ! Q(n). Supposes

X is a Dehn lling on M along the ve slopes  $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$  where f is in  $f(@_iM)$ . The manifold X has a cover with group Q(n) if and only if there is an  $f_k$  where each f lies in the kernel of  $f_k$  restricted to  $f_k = 1$  ( $f_k = 1$ ). Thus having a cover with group  $f_k = 1$  ( $f_k = 1$ ) is determined by certain subgroups of the groups  $f_k = 1$  ( $f_k = 1$ ). If we consider a different group  $f_k = 1$  ( $f_k = 1$ ) we get a different family of subgroups of the  $f_k = 1$  ( $f_k = 1$ ). If there is a lot of overlap between these two sets of subgroups, there will be a positive correlation between having a cover with group  $f_k = 1$  and having a cover with group  $f_k = 1$  ( $f_k = 1$ ) and having a cover with group  $f_k = 1$  ( $f_k = 1$ ). If there is little overlap then there will be a negative correlation. However, even looked at this way there seems to be no reason that the average correlation should be positive.

If we look at the same question for manifolds which are Dehn surgeries on the gure-8 knot (a simpli ed version of this setup) there are many negative correlations and the overall average correlation is 0. If we look at the question for small surgeries on the Whitehead link, the overall average correlation is positive and of similar magnitude of that for the 5-chain. If we also look at larger surgeries on the Whitehead link the average correlation drops somewhat. By changing the link we get a di erent pattern of correlations, and so it is unwise to attach much signi cance to these numbers.

# 6 Further questions

Here are some interesting further questions related to our experiment.

- (1) What happens for 3-manifolds bigger than the ones we looked at? Do the patterns we found persist? It is computationally di cult to deal with groups with large numbers of generators, which would limit the maximum size of the manifolds considered. But another di culty is how to nd a \representative" collection of such manifolds. (Some notions of a \random 3-manifold", which help with this latter question, will be discussed in [21]).
- (2) How else could the virtually Haken covers we found be used to give insight into these conjectures? For instance, one could try to look at the virtual bration conjecture. While there is no good algorithm for showing that a closed manifold is bered, one could look at the following algebraic stand-in for this question. If a 3-manifold bers over the circle, then one of the coe cients of the Alexander polynomial which is on a vertex of the Newton polytope is 1 (see e.g. [18]). One could compute the Alexander polynomial of the covers with virtual positive betti number and see how

- often this occurred. As many of our covers are quite small, computing the Alexander polynomial should be feasible in many cases.
- (3) One could use our methods to look at the Virtual Positive Betti Number conjecture for lattices in the other rank-1 groups that don't have Property T. This would be particularly interesting for the examples of complex hyperbolic manifolds where every congruence cover has  $_1=0$ . These complex hyperbolic manifolds were discovered by Rogawski [47, Thm. 15.3.1] and are arithmetic.

## 7 Transferring virtual Haken via Dehn lling

In the rest of this paper, we consider the following setup. Let M be a compact 3-manifold with boundary a torus. The process of Dehn Iling creates closed 3-manifolds from M by taking a solid torus  $D^2$   $S^1$  and gluing its boundary to the boundary of M. The resulting manifolds are parameterized by the isotopy class of essential simple closed curve in @M which bounds a disc in the attached solid torus. If denotes such a class, called a slope, the corresponding Dehn lling is denoted by  $M(\ )$ . Though no orientation of is needed for Dehn lling, we will often think of the possible as being the primitive elements in  $H_1(@M;\mathbb{Z})$  and so  $H_1(@M;\mathbb{Z})$  parameterizes the possible Dehn llings.

If you have a general conjecture which you can't prove for all 3-manifolds, a standard thing to do is to try to prove it for most Dehn llings on an arbitrary 3-manifold with torus boundary. For instance, in the case of the Geometrization Conjecture there is the following theorem:

**7.1 Hyperbolic Dehn Surgery Theorem** [53] Let M be a compact 3-manifold with @M a torus. Suppose the interior of M has a complete hyperbolic metric of nite volume. Then all but nitely many Dehn llings of M are hyperbolic manifolds.

For the Virtual Haken Conjecture there is the following result of Cooper and Long. A properly embedded compact surface S in M is *essential* if it is incompressible, boundary incompressible, and not boundary parallel. Suppose S is an essential surface in M. While S may have several boundary components, they are all parallel and so have the same slope, called the boundary slope of S. If and are two slopes, we denote their minimal intersection number, or *distance*, by  $(\ ;\ )$ .

**7.2 Theorem** (Cooper-Long [12]) Let M be a compact orientable 3-manifold with torus boundary which is hyperbolic. Suppose S is a non-separating orientable essential surface in M with non-empty boundary. Suppose that S is not the ber in a bration over  $S^1$ . Let be the boundary slope of S. Then there is a constant N such that for all slopes with  $(\ ;\ )$  N, the manifold  $M(\ )$  is virtually Haken.

Explicitly, N = 12g - 8 + 4b where g is the genus of S and b is the number of boundary components.

This result di ers from the Hyperbolic Dehn Surgery Theorem in that it excludes those llings lying in an in nite strip in  $H_1(@M)$ , instead of only excluding those in a compact set. Here, we will prove a Dehn surgery theorem about the Virtual Positive Betti Number Conjecture, assuming that M has a very simple Dehn lling which strongly has virtual positive betti number. Our theorem is a generalization of the work of Boyer and Zhang [5], which we discuss below.

The basic idea is this. Suppose M has a Dehn lling M() which has virtual betti number in a very strong way. By this we mean that there is a surjection  $_1(M())$ ? where is a group all of whose nite index subgroups have lots of homology. In our application, will be the fundamental group of a hyperbolic 2-orbifold. Given some other Dehn lling M(), we would like to transfer virtual positive betti number from M() to M(). Look at  $_1(M)=h$ ; i which we will call  $_1(M();)$ . This group is a common quotient of  $_1(M())$  and  $_1(M())$ . Choose  $_2(M)$  so that  $_1(M)$  is a basis of  $_1(M)$ . Then  $_1(M)$  if we think of  $_1(M)$  is a quotient of  $_1(M)$  we have:

$$_{1}(M(\cdot; \cdot)) = _{1}(M(\cdot)) = h i = _{1}(M(\cdot)) = h^{n}i$$
:

Thus  $_1(M(\cdot; \cdot))$  surjects onto  $=h^{-n}i$ , where here we are confusing and its image in . So  $_1(M)$  surjects onto  $=h^{-n}i$ . If has rapid homology growth, one can hope that  $_n==h^{-n}i$  still has virtual positive betti number when n is large enough. This is plausible because adding a relator which is a large power often doesn't change the group too much. If there is an N so that  $_n$  has virtual positive betti number for all n N, then  $M(\cdot)$  has virtual positive betti number for all N.

Our main theorem applies when  $M(\ )$  is a Seifert bered space whose base orbifold is hyperbolic:

**7.3 Theorem** Let M be a compact 3-manifold with boundary a torus. Suppose M() is Seifert bered with base orbifold hyperbolic. Assume also

that the image of  $_1(@M)$  under the induced map  $_1(M)$  !  $_1($  ) contains no non-trivial element of nite order. Then there exists an N so that M( ) has virtual positive betti number whenever ( ; ) N.

If is not a sphere with 3 cone points, then N can be taken to be 7.

In light of the above discussion, if we consider the homomorphism  $_1(\mathcal{M}(\ ))$  !  $_1(\ )=\$ , Theorem 7.3 follows immediately from:

**7.4 Theorem** Let be a closed hyperbolic 2-orbifold without mirrors, and be its fundamental group. Let 2 be a element of in nite order. Then there exists an N such that for all n N the group

$$n = -h^{n}i$$

has virtual positive betti number. In fact,  $_{\cap}$  has a  $_{\cap}$  nite index subgroup which surjects onto a free group of rank 2.

If is not a 2-sphere with 3 cone points, then  $N = \max f 1 = j1 + ()j/3g$ . In this case, N is at most 7.

In applying Theorem 7.3, the technical condition that the image of  $_1(@M)$  not contain an element of  $_1$  nite order holds in many cases. For instance, Theorem 7.3 implies the following theorem about Dehn surgeries on the Whitehead link. Let W the exterior of the Whitehead link. Given a slope  $_1$  on the  $_2$  nstance boundary component of  $_2$  we denote by  $_3$  the manifold with one torus boundary component obtained by  $_3$  lling along  $_3$ .

**Theorem (9.1)** Let W be the exterior of the Whitehead link. Then for all but nitely many slopes , the manifold M = W() has the following property: All but nitely many Dehn llings of M have virtual positive betti number.

In fact, our proof of this theorem excludes only 28 possible slopes (see Section 9). The complements of the twist knots in  $S^3$  are exactly the W(1=n) for  $n \ 2 \ \mathbb{Z}$ . Theorem 9.1 applies to all of the slopes 1=n except for  $n \ 2 \ f0$ ; 1g which correspond to the unknot and the trefoil. Thus we have:

**7.5 Corollary** Let K be a twist knot in  $S^3$  which is not the unknot or the trefoil. Then all but nitely many Dehn surgeries on K have virtual positive betti number.

For the simplest hyperbolic knot, the gure-8, we can use a quantitative version of Theorem 7.4 due to Holt and Plesken [35] which applies in this special case. We will show:

**7.6 Theorem** Every non-trivial Dehn surgery on the gure-8 knot in  $S^3$  has virtual positive betti number.

As we mentioned, Theorem 7.3 generalizes the work of Boyer and Zhang [5]. They restricted to the case where the base orbifold was not a 2-sphere with 3 cone points. In particular, they proved:

7.7 **Theorem** [5] Let M have boundary a torus. Suppose M() is Seifert bered with a hyperbolic base orbifold which is not a 2-sphere with 3 cone points. Assume also that M is small, that is, contains no closed essential surface. Then M() has virtual positive betti number whenever () 7.

The condition that M is small is a natural one as if M contains an closed essential surface, then there is a so that M() is actually Haken if (); ) > 1 [15, 57].

Boyer and Zhang's point of view is di erent than ours, in that they do not set out a restricted version of Theorem 7.4. While the basic approach of both proofs comes from [2], Boyer and Zhang's proof of Theorem 7.7 also uses the Culler-Shalen theory of  $SL_2\mathbb{C}$ -character varieties and surfaces arising from ideal points. From our point of view this is not needed, and Theorem 7.7 follows easily from Theorem 7.3 (see the end of Section 8 for a proof).

In Section 11, we discuss possible generalizations of Theorem 7.3 to other types of llings. In a very special case, we use toroidal Dehn llings to show (Theorem 12.1) that every Dehn lling of the sister of the gure-8 complement satis es the Virtual Positive Betti Number Conjecture.

# 8 One-relator quotients of 2-orbifold groups

This section is devoted to the proof of Theorem 7.4. The basic ideas go back to [2] which proves the analogous result for  $=\mathbb{Z}=p$   $\mathbb{Z}=q$ . Fine, Roehl, and Rosenberger proved Theorem 7.4 in many, but not all, cases where is not a 2-sphere with 3 cone points [22, 23]. In the case  $=S^2(a_1;a_2;a_3)$ , Darren Long and Alan Reid suggested the proof given below, and Matt Baker provided invaluable help with the number theoretic details.

**Proof of Theorem 7.4** Let  $_n$  be the 2-complex with marked cone points consisting of together with a disc D with a cone point of order n, where the boundary of D is attached to along a curve representing . Thus  $_n = 1$ 

 $_1(n)$ . Now the Euler characteristic of  $_n$  is  $_n(n) + 1 = n$ , which is negative if n > 1 = j ( )j. From now on, assume that n > 1 = j ( )j. Suppose  $_n$  contains a subgroup  $_n^{\ell}$  of nite index such that if is a small loop about a cone point then  $_n^{\ell}$ . For instance, this is the case if  $_n^{\ell}$  is torsion free. Let  $_n^{\ell}$  be the corresponding cover of  $_n$ , so  $_n^{\ell} = _1(_n^{\ell})$ . Then  $_n^{\ell}$  is a 2-complex without any cone points. Since  $_n^{\ell}$  has negative Euler characteristic and there is no homology in dimensions greater than two, we must have  $H_1(_n^{\ell}, \mathbb{Q}) \not\in 0$ . Thus  $_n$  has virtual positive betti number.

One can show more: Let d be the degree of the cover  $\binom{\theta}{n}!$  n. The complex  $\binom{\theta}{n}$  is a smooth hyperbolic surface S with d=n discs attached. From this description it is easy to check that  $\binom{\theta}{n}$  has a presentation where

(# of generators) – (# of relations) = 
$$(j (S)j + 1) - \frac{d}{n}$$
  
=  $1 + d j ()j - \frac{1}{n}$  2:

By a theorem of Baumslag and Pride [1], the group  ${}^{\emptyset}_{\Pi}$  has a  ${}^{\circ}$  nite-index subgroup which surjects onto  ${\mathbb Z}$   ${\mathbb Z}$ .

So it remains to produce the subgroups  $\int_{\Omega}^{\theta}$ . First, we discuss the case where is not a sphere with 3 cone points. A homomorphism  $f\colon I \cap Q$  is said to preserve torsion if for every torsion element in the order of  $f(\cdot)$  is equal to the order of  $\cdot$ . (Recall that the torsion elements of are exactly the loops around cone points.) The key is to show:

**8.1 Lemma** Suppose is not a 2-sphere with 3 cone points, and that 2 has in nite order. Given any n > 2, there exists a homomorphism : ! PSL<sub>2</sub> $\mathbb{C}$  such that preserves torsion and () has order n.

Suppose we have —as in the lemma, which we will regard as a homomorphism from  $_n$  to  $PSL_2\mathbb{C}$ . By Selberg's lemma, the group —( ) has a nite index subgroup—which is torsion free. We can then take  $_n^{\ell}$  to be  $_n^{-1}$ ( ). Because the lemma only requires that n>2 and the preceding argument required that n>1=j ( )j, in this case we can take the N in the statement of Theorem 7.4 to be  $\max f3:1+1=j$  ( )jg. A case check, done in [5], shows that N is at most 7. As we will see, the proof of Lemma 8.1 is relatively easy and involves deforming Fuchsian representations—! Isom( $\mathbb{H}^2$ ) to nd—.

The harder case is when is a 2-sphere with 3 cone points, which we denote  $S^2(a_1;a_2;a_3)$ . Here the fundamental group can be presented as

$$hx_1; x_2; x_3 \ j \ x_1^{\partial_1} = x_2^{\partial_2} = x_3^{\partial_3} = x_1 x_2 x_3 = 1 \ i$$
:

Geometrically,  $x_i$  is a loop around the  $i^{th}$  cone point. We will show:

**8.2 Lemma** Let  $= {}_{1}(S^{2}(a_{1}; a_{2}; a_{3}))$  where  $1=a_{1}+1=a_{2}+1=a_{3}<1$ . Given an element 2 of in nite order, there exists an N such that for all n N the group has a nite quotient where the images of  $(x_{1}; x_{2}; x_{3}; n)$  have orders exactly  $(a_{1}; a_{2}; a_{3}; n)$  respectively.

With this Lemma, we can take  $\int_{\Omega}^{\theta}$  to be the kernel of the given nite quotient. The proof of Lemma 8.2 involves using congruence quotients of and a some number theory. Unfortunately, unlike the previous case, the proof of Lemma 8.2 gives no explicit bound on N.

In any event, we've established Theorem 7.4 modulo Lemmas 8.1 and 8.2. □

The rest of this section is devoted to proving the two lemmas.

**Proof of Lemma 8.1** Because is not a 2-sphere with 3 cone points, the Teichmüller space of is positive dimensional. Thus there are many representations of into  $\text{Isom}(\mathbb{H}^2)$ . We can embed  $\text{Isom}(\mathbb{H}^2)$  into  $\text{Isom}^+(\mathbb{H}^3) = PSL_2\mathbb{C}$  as the stabilizer of a geodesic plane. We will then deform these Fuchsian representations to produce .

Pick a simple closed curve which intersects essentially. There are two cases depending on whether a neighborhood of is an annulus or a Möbius band.

Suppose the neighborhood is an annulus. First, let's consider the case where separates into 2 pieces. In this case is a free product with amalgamation  $A_{hi}B$ . Let  $_1$ : ! PSL $_2\mathbb{C}$  be one of the Fuchsian representations. Conjugate  $_1$  so that  $_1()$  is diagonal. Then  $_1()$  commutes with the matrices

$$C_t = \begin{array}{cc} t & 0 \\ 0 & t^{-1} \end{array} \quad \text{for } t \text{ in } \mathbb{C} :$$

For t in  $\mathbb C$ , let  $_t$  be the representation of whose restriction to A is  $_1$  and whose restriction to B is  $C_{t-1}C_t^{-1}$ . Consider the function  $f\colon \mathbb C$  !  $\mathbb C$  which sends t to  $\operatorname{tr}^2(_{t}(_t))$ . It is easy to see that f is a rational function of t by expressing as a word in elements of A and B. We claim that f is nonconstant. First, suppose that neither of the two components of n is a disc with two cone points of order 2. In this case, can be taken to be a geodesic loop. If we restrict t to  $\mathbb R$  then the family  $f_{t}g$  corresponds to twisting around in the Fenchel-Nielsen coordinates on Teich( ). As intersects essentially, the length of changes under this twisting and so f is non-constant. From

this same point of view, we see that that f has poles at 0 and f. If one of the pieces of f is a disc with two cone points of order 2, then naturally shrinks not to a closed geodesic, but to a geodesic arc joining the two cone points. There is still a Fenchel-Nielsen twist about f, and so we have the same observations about f in this case (think of f being obtained from a surface with a geodesic boundary component by pinching the boundary to a interval).

Since the rational function f has poles at f0; f, we have  $f(\mathbb{C}) = \mathbb{C}$ . So given f so that f so tha

Now we consider the case where the neighborhood of is a M"obius band. The di erence here is that you can't twist a hyperbolic structure of is along. To see this, think of constructing is a surface with geodesic boundary where the boundary is identified by the antipodal map to form is a surface. Instead, we will deform the length of is a surface in is a surface will need the hypothesis that is a surface you can see by looking at is a surface with is a surface deform the length of is a surface will need the hypothesis that is a surface you can see by looking at is a surface with is a surface deform a surface with geodesic deformance is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see by looking at is a surface you can see

The underlying surface of is non-orientable. We can assume that least one cone point since every non-orientable surface covers such an orbifold. to a cone point p. Let A be a closed neighborhood Pick an arc *a* joining  $\int a$ . The set A is a Möbius band with a cone point. Let B be the be the boundary of A. A small neighborhood of closure of nA. Let essentially, we can replace is an annulus, so if intersects and use the argument above. So from now on, we can assume that ! PSL<sub>2</sub>C be a Fuchsian representation. Suppose we construct a representation :  $_1(A)$  ! PSL $_2\mathbb{C}$  so that preserves torsion, ( ) has order n, and  $tr^{2}(()) = tr^{2}(())$ . Then as  $= {}_{1}(A) {}_{h,i} {}_{1}(B)$  and and conjugate on h i, we can glue and restricted to  $_{1}(B)$  together to get the required representation of

Thus we have reduced everything to a question about certain representations of  $_1(A)$ . The group  $_1(A)$  is generated by and . Choosing orientations correctly, a small loop about the cone point p is =  $^2$  . If p has order r, then  $_1(A)$  has the presentation

$$; ; = {}^{2}; {}^{r} = 1 :$$

Given any representation of  $_1(A)$ , we will x lifts of ( ) and ( ) to  $SL_2\mathbb{C}$ . Having done this, any word w in and has a canonical lift of (w) to  $SL_2\mathbb{C}$ . We will abuse notion and denote this lift by (w) as well. In this way, we can treat as though it was a representation into  $SL_2\mathbb{C}$  so that, for instance, the trace of (w) is defined.

De ne a 1-parameter family of representations t for  $t \ge \mathbb{C}$  as follows. Set

$$(\ ) = \begin{array}{ccc} 0 & 1 \\ -1 & t \end{array}$$
 and  $(\ ) = \begin{array}{ccc} e & s \\ 0 & e^{-1} \end{array}$ 

where  $e+e^{-1}={\rm tr}(\ (\ ))$  and  $s=\frac{1}{t}(e^{-1}t^2-(e+e^{-1})-{\rm tr}(\ (\ ))$ . This gives a representation of  $_1(A)$  because s was chosen so that  ${\rm tr}(_t(\ ))={\rm tr}(_t(\ ))$  and so  $_t(\ )$  also has order r in  ${\rm PSL}_2\mathbb{C}$ .

Let  $\operatorname{Teich}(A)$  denote hyperbolic structures on A with geodesic boundary where the length of the boundary is  $\mathsf{xed}$  to be that of the Fuchsian representation . This Teichmüller space is  $\mathbb{R}$  with the single Fenchel-Nielsen coordinate being the length of  $\mathsf{x}$ . Note that any irreducible representation of  $\mathsf{x}$  is conjugate to some  $\mathsf{x}$ , and so each point in  $\operatorname{Teich}(A)$  yields a Fuchsian representation  $\mathsf{x}$ . As gets short in  $\operatorname{Teich}(A)$ , the curve gets long. Thus if we set  $\mathsf{x} = \mathsf{tr}(\mathsf{x}(\mathsf{x}))$ , then  $\mathsf{x} = \mathsf{x}$  is a non-constant Laurent polynomial in  $\mathsf{x}$ .

Let  $v = {}_{2n} + {}_{2n}^{-1}$ . To nish the proof of the lemma, all we need to do is nd a  $t \ 2 \ \mathbb{C}$  so that  $f(t)^2 = v^2$ . As a map from the Riemann sphere to itself, f is onto and there are  $t_1$  and  $t_2$  in  $\mathbb{C}$  so that  $f(t_1) = v$  and  $f(t_2) = -v$ . As n > 2, v is not 0 and so  $t_1$  and  $t_2$  are distinct. As f is non-constant and nite on  $\mathbb{C}$ , it has a pole at at least one of 0 and 1. Therefore, at least one of  $t_1$  and  $t_2$  is in  $\mathbb{C}$  and we are done.

**Proof of Lemma 8.2** The group is naturally a subgroup of  $PSL_2\mathbb{R}$ . Set  $b_i = 2a_i$ . Let  $X_i$  be the matrix in  $PSL_2\mathbb{R}$  corresponding to the generator  $x_i$ . As  $X_i$  has order  $a_i$ , it follows that  $tr(X_i) = (b_i + b_i^{-1})$  where  $b_i$  is some primitive  $b_i$ <sup>th</sup> root of unity. Any irreducible 2-generator subgroup of  $PSL_2\mathbb{C}$  is determined by its traces on the generators and their product, and so we can conjugate in  $PSL_2\mathbb{C}$  so the  $X_i$  are:

$$X_1 = \begin{pmatrix} 0 & 1 \\ -1 & b_1 + b_1^{-1} \end{pmatrix}; X_2 = \begin{pmatrix} b_2 + b_1^{-1} & -b_3 \\ b_3 & 0 \end{pmatrix}; \text{ and } X_3 = (X_1 X_2)^{-1};$$

Henceforth we will identify with its image. The entries of the  $X_i$  lie in  $\mathbb{Q}(b_1; b_2; b_3)$ , and moreover are integral, so is contained in the subgroup  $\mathrm{PSL}_2O(\mathbb{Q}(b_1; b_2; b_3))$ . Let G be a matrix in  $\mathrm{PSL}_2\mathbb{C}$  representing . Let a

be one of the eigenvalues of G. Note that a is an algebraic integer, in fact a unit, because it satis es the equation  $a^2 - (\operatorname{tr} G)a + 1$  and  $\operatorname{tr} G$  is integral. Let K be the eld  $\mathbb{Q}(b_1;b_2;b_3;a)$ . From now on, we will consider as a subgroup of  $\operatorname{PSL}_2O(K)$ . We will construct the required quotients of from congruence quotients of  $\operatorname{PSL}_2O(K)$ . Suppose f is a prime ideal of f is an algebraic integer, in fact f is an algebraic integer.

! 
$$PSL_2O(K)$$
 !  $PSL_2k$ :

What conditions do we need so that  $(x_1;x_2;x_3;)$  have the right orders in  $PSL_2k$ ? Well, the eigenvalues of  $X_i$  are  $f_{b_i}; \frac{-1}{b_i}g$ , so as long as  $b_i$  has order  $b_i$  in k, the matrix  $X_i$  in  $PSL_2k$  also has order  $b_i$ . Similarly, if we set m=2n, then G in  $PSL_2k$  has order n if a has order m in k. Thus the following claim will complete the proof of the lemma:

**8.3 Claim** There exists an  $\mathbb{N}$  such that for all  $n \in \mathbb{N}$  there is a prime ideal g such that if  $g \in O(K) = g$  then the images of  $g \in \mathcal{B}_1$ ;  $g \in \mathcal{B}_2$ ;  $g \in \mathcal{B}_3$ ; g

Let's prove the claim. The idea is to show that  $a^m - 1$  is not a unit in O(K) for large m, and then just take f to be a prime ideal dividing f and f then f to be careful, though, that f to be a prime ideal dividing f and f then f then f that f is not a unit in f to be a prime ideal dividing f and f is not a unit in f to be a prime ideal dividing f and f is not a unit in f to be a prime ideal dividing f and f is not a unit in f to be a prime ideal dividing f and f is not a unit in f to be a prime ideal dividing f and f is not a unit in f and f is not a unit in f in f is not a unit in f in f in f is not a unit in f in f is not a unit in f i

A prime ideal is called *primitive* if it divides  $a^m - 1$  and does not divide  $a^r - 1$  for all r < m. Postnikova and Schinzel proved the following theorem:

**8.4 Theorem** [48, 46] Suppose that a is an algebraic integer which is not a root of unity. There there is an N such that for all n N the integer  $a^n - 1$  has a primitive divisor.

The proof of Theorem 8.4 relies on deep theorems of Gelfond and A. Baker on the approximation by rationals of logarithms of algebraic numbers.

Because has in nite order, we know that a is not a root of unity. Thus Theorem 8.4 applies, and let N be as in the statement. By increasing N if necessary, we can ensure that the primitive divisor f given Theorem 8.4 does not divide any element of the f nite set

$$R = \int_{b_i}^{r} -1 j 1$$
  $r < b_i$ :

It would be nice to have given a proof of Lemma 8.2 which gave an explicit bound on N. The number theory used gives \an e ectively computable constant" for N, but doesn't actually compute it. Perhaps there are other proofs of Lemma 8.2 more like that of Lemma 8.1. While  $_1(S^2(a_1;a_2;a_3))$  has only a nite number of representations into  $PSL_2\mathbb{C}$ , if one looks at representations into larger groups there are deformation spaces where you could hope to play the same game. For instance, if one embeds  $\mathbb{H}^2$  as a totally geodesic subspace in complex hyperbolic space  $\mathbb{C}H^2$ , then a Fuchsian representation deforms to a one real parameter family in  $Isom^+(\mathbb{C}H^2) = PU(2;1)$ . One could instead consider deformations in the space of real-projective structures, which gives rise to homomorphisms to  $PGL_3\mathbb{R}$  [10]. In general, the structure of the space representations of  $_1(S^2(a_1;a_2;a_3))$ !  $SL_n\mathbb{C}$  is closely related to the Deligne-Simpson problem [51].

We end this section by deducing Boyer and Zhang's original Theorem 7.7 from Theorem 7.3.

**Proof of Theorem 7.7** Let M be a manifold with torus boundary which is small. Suppose that M() is Seifert bered with hyperbolic base orbifold which is not sphere with 3 cone points. We need to check that Theorem 7.3 be a curve so that f : q is a basis for  $_1(@M)$ . It su ces to does not have nite order in = 1 ( ). Suppose not. Then show the image of there are in nitely many Dehn llings M(i) of M where I(M(i)) surjects . The orbifold contains an essential simple closed curve which isn't a loop around a cone point. Therefore, has non-trivial splitting as a graph of groups and so acts non-trivially on a simplicial tree. Then each  $_{1}(M(i))$  act non-trivially on a tree and so M(i) contains an essential surface. As in nitely many llings contain essential surfaces, a theorem of Hatcher [30] implies that M contains a closed essential surface. This is contradicts that M is small. So has in nite order and we are done. the image of П

# 9 Surgeries on the Whitehead link

Consider the Whitehead link pictured in Figure 8. Let W be its exterior. We will denote the two boundary components of W by  $\mathscr{Q}_0W$  and  $\mathscr{Q}_1W$ . For each  $\mathscr{Q}_iW$ , we x a meridian-longitude basis  $f_{i,i}g$  with the orientations shown in the gure. With respect to one of these bases, we will write boundary slopes as rational numbers, where p + q corresponds to p = q. We will denote Dehn lling of both boundary components of W by  $W(p_0 = q_0; p_1 = q_1)$ . Dehn lling

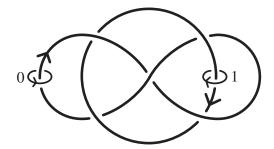



Figure 8: The Whitehead link, showing our orientation conventions for the meridians and longitudes.

on a single component of W will be denoted  $W(p_0=q_0;)$  and  $W(;p_1=q_1)$ . As W(p=q;) is homeomorphic to W(;p=q), we will sometimes denote this manifold by W(p=q). With our conventions, W(1) is the trefoil complement, and W(-1) is the gure-8 complement. The manifold W(p=q) is hyperbolic except when p=q is in f(1):0:1:2:3:4g. The point of this section is to show:

**9.1 Theorem** Let W be the complement of the Whitehead link. For any slope p=q which is not in E=f1, 0, 1, 2, 3, 4, 5, 5=2, 6, 7=1, 7=2, 8, 8=3, 9=2, 10=3, 11=2, 11=3, 13=3, 13=4, 14=3, 15=4, 16=3, 16=5, 17=5, 18=5, 19=4, 24=5, 24=7g the manifold W() has the property that all but nitely many Dehn llings have virtual positive betti number.

**Proof** The proof goes by showing that except for p=q in E, the manifold W(p=q) has at least 2 distinct Dehn llings which are Seifert bered and to which Theorem 7.3 applies. The reason that W(p=q) has so many Seifert bered llings is because the manifolds W(1), W(2), and W(3) are all Seifert bered with base orbifold a disc with two cone points. In particular, the base orbifolds are  $D^2(2/3)$ ,  $D^2(2/4)$ , and  $D^2(3/3)$  respectively. Therefore, all but one Dehn surgery W(1; p=q) on W(1) is Seifert bered with base orbifold a sphere with 3 cone points. Similarly for W(2) and W(3). In fact, you can check that

W(1; p=q) Seifert bers over  $S^2(2;3;jp-6qj)$  if  $p=q \neq 6$ .

W(2; p=q) Seifert bers over  $S^2(2;4; p-4qj)$  if  $p=q \neq 4$ .

W(3; p=q) Seifert bers over  $S^2(3;3;jp-3qj)$  if  $p=q \neq 3$ .

Now x a slope p=q, and consider the manifold  $\mathcal{M}=\mathcal{W}(;p=q)$ . We want to know when we can apply Theorem 7.3 to  $\mathcal{M}(1)$ ,  $\mathcal{M}(2)$ , or  $\mathcal{M}(3)$ . First, we

need the base orbifold to be hyperbolic, i.e. that the reciprocals of the orders of the cone points sum to less than 1. This leads to the conditions:

For 
$$\mathcal{M}(1)$$
 that  $jp - 6qj > 6$ .  
For  $\mathcal{M}(2)$  that  $jp - 4qj > 4$ . (2)  
For  $\mathcal{M}(3)$  that  $jp - 3qj > 3$ .

We claim that as long as the base orbifold is hyperbolic then Theorem 7.3 applies. Consider the map  $_1(\mathcal{M})$  ! where is the fundamental group of one of the base orbifolds. Let in  $@\mathcal{M}$  be the meridian coming from our meridian  $_0$  of  $\mathcal{W}$ . Since intersects any of the slopes 1/2/3 once, its image in generates the image of  $_1(@\mathcal{M})$ . Thus we just need to check that the image of is an element of in nite order in . One can work out what the image in is explicitly (most easily by with the help of SnapPea [56]):

For 
$$M(1)$$
,  $V = aba^{-1}b^{-1}$  where
$$= a; b = a^2 = b^3 = (ab)^{p-6q} = 1 :$$
For  $M(2)$ ,  $V = ab^2$  where
$$= a; b = a^2 = b^4 = (ab)^{p-4q} = 1 :$$
For  $M(3)$ ,  $V = ab^{-1}$  where
$$= a; b = a^3 = b^3 = (ab)^{p-3q} = 1 :$$

It remains to check that the images of above always have in nite order in . This is intuitively clear for looking at loops which represent these elements. The suspicious reader can check that this is really the case by using, say, the solution to the word problem for Coxeter groups [6, x II.3].

Thus, Theorem 7.3 applies whenever one of the conditions in (2) holds. If p=q is such that two of (2) hold, then all but nitely many Dehn surgeries on M have virtual positive betti number. The set in  $H_1(@M;\mathbb{R}) = \mathbb{R}^2$  where any one of the conditions fails is an in nite strip. So the set where a xed pair of them fail is compact, namely a parallelogram. Hence, outside a union of 3 parallelograms, at least two of the conditions hold. These 3 parallelograms are all contained in the square where jpj;jqj 100. To complete the proof of the theorem, one checks all the slopes in that square to nd those where fewer that two of (2) hold.

For most of the slopes in E, one of (2) holds, and so one still has a partial result. The slopes where none of the conditions in (2) hold are

One interesting manifold among these exceptions is the sister of the gure-8 complement W(5). We will consider that manifold in detail in Section 12.

## 10 The gure-8 knot

Here we prove:

**10.1 Theorem** Every non-trivial Dehn surgery on the gure-8 knot has virtual positive betti number.

**Proof** Let M be the gure-8 complement. As the gure-8 knot is isotopic to its mirror image, the Dehn lling M(p=q) is homeomorphic to M(-p=q). Now, if W is the Whitehead complement as in the last section, M = W(-1). Hence M has at least 6 interesting Seifert bered surgeries namely M(-1), M(-2) and M(-3). In (3), we saw exactly which orbifold quotients  $-h^{-n}i$  arise when we try our method of transferring virtual positive betti number. By a minor miracle, Holt and Plesken have looked at exactly these quotients and shown:

#### **10.2 Theorem** [35] *Let*

$$\begin{array}{lll}
1 & a & b & a^2 = b^3 = (ab)^7 = (aba^{-1}b^{-1})^n = 1 \\
2 & a & b & a^2 = b^4 = (ab)^5 = (ab^2)^n \\
3 & a & b & a^3 = b^3 = (ab)^4 = (ab^{-1})^n = 1 \\
\end{array}$$

These groups have virtual positive betti number if n 11 for  $\frac{1}{n}$  and n 6 for  $\frac{2}{n}$  and  $\frac{3}{n}$ .

Thus M() has virtual positive betti number if any of the following hold:

It's easy to check that the only slopes for which none of these hold are f1;0;1;2g. Since  $H_1(M(0)) = \mathbb{Z}$  and the Seifert bered manifolds M(1) and M(2) have virtual positive betti number, we've proved the theorem.  $\square$ 

# 11 Other groups of the form $=h^{-n}i$ and further questions

As we have seen, groups of the form  $=h^n i$ , where is a Fuchsian group, are very useful for studying the Virtual Haken Conjecture via Dehn lling. So it is natural to ask: what other types of give similar results? In this section, we consider which are free products with amalgamation of nite groups. The

key source here is Lubotzky's paper [40], which gives a number of applications of these groups to the Virtual Positive Betti Number Conjecture.

For convenience, we will only discuss free products with amalgamation, but there are analogous statements for HNN extensions. Let  $= A \ _C B$  be an amalgam of nite groups where C is a proper subgroup of A and B. The group acts on a tree T with nite point stabilizers. By  $[50, x \ II.2.6]$ , has a nite index subgroup which acts freely on T. The subgroup has to be free, and so is virtually free. It is not hard to show that if one of [A:C] and [B:C] is 3 then is virtually a free group of rank 2 [40, Lemma 2.2]. From now on, we will assume [A:C] 3. Because is virtually free, it is natural to hope that the answer to the following question is yes:

**11.1 Question** Let be an amalgam of nite groups, and x = 2 of in nite order. Does there exist an N such that for all n = N, the group n = -n = -n = 1 has virtual positive betti number?

Note that by Gromov, there is an N such that n is a non-elementary word hyperbolic group for all n N.

Now consider these groups in the context of Dehn lling. Suppose M is a manifold with torus boundary, and suppose is a slope where  $_1(M(\ ))$  surjects onto , an amalgam of nite groups. Choose in  $_1(@M)$  so that f; g form a basis. The proof of Theorem 7.7 shows that if M does not contain a closed incompressible surface, then the image of in has in nite order.

In general, we will say that  $_1(S)$  is *weakly separable* when there is such an amalgam preserving map from  $_1(N)$  to an amalgam of nite groups. A priori, this is weaker than  $_1(S)$  being closed in  $_1(N)$ , which is in turn weaker than  $_1(N)$  being subgroup separable (aka LERF).

Note that if  $_1(S)$  is weakly separable, then N has virtual positive betti number as  $_1(N)$  virtually maps onto a free group. If N is hyperbolic, it seems quite

possible that the fundamental group of an embedded surface is always weakly separable. If this is the case, there is no dierence between being virtually Haken and having virtual positive betti number. Subgroup separability properties for 3-manifold groups have been dicult to prove even in special cases. Weak separability also seems quite dicult to show even though the surface S is embedded.

Let M be a manifold with torus boundary which is hyperbolic. Assume that M does not contain a closed incompressible surface. Then there are always at least two Dehn llings of M which contain an incompressible surface [14, 15]. If embedded surface subgroups are weakly separable, we would expect that for most M, there are at least two slopes where  $_1(M(\ ))$  surjects onto an amalgam of nite groups. One has to say \most" here because  $M(\ )$  might be a (semi-) ber or the Poincare conjecture might fail. This makes it plausible that, regardless of the truth of the virtual Haken conjecture in general, for a xed M all but nitely many Dehn llings of M have virtual positive betti number. In this context, it is worth mentioning the result of Cooper-Long [13] which says that for any such hyperbolic M all but nitely many of the Dehn llings contain a surface group. If fundamental groups of hyperbolic manifolds are subgroup separable, then this result would also imply that all but nitely many llings of M have virtual positive betti number.

One case where weak separability is known is when N = M() is irreducible and the incompressible surface S in N is a torus. Then N is Haken and, by geometrization,  $_1(N)$  is residually nite. Using this it's not too hard to show that  $_1(S)$  is a separable subgroup. So in this case  $_1(N)$  maps to a amalgam of nite groups. In the next section, we will use these ideas in this special case to show that all of the Dehn lings on the sister of the gure-8 complement satisfy the Virtual Haken Conjecture.

# 12 The sister of the gure-8 complement

Let M be the sister of the gure-8 complement. The manifold M is the punctured torus bundle where the monodromy has trace -3, and is also the surgery on the Whitehead link W(5). We will use the basis ( ; ) of  $_1(@M)$  coming from the standard basis on W. We will show:

**12.1 Theorem** Let M be the sister of the gure-8 complement. Then every Dehn lling of M which has in nite fundamental group has virtual positive betti number.

**Proof** The manifold M has a self-homeomorphism which acts on  $_1(@M)$  via  $(\ ;\ )$  V  $(\ +\ ;-\ )$ . Let N be the lling M(4)=M(4=3). The manifold N contains a separating incompressible torus. It turns out that this torus splits N into a Seifert bered space with base orbifold  $D^2(2;3)$  and a twisted interval bundle over the Klein bottle. Rather than describe the details of this splitting, we will simply exhibit the nal homomorphism from  $_1(N)$  onto an amalgam of nite groups. In fact,  $_1(N)$  surjects onto  $_1(N)$  onto an action of order N.

According to SnapPea, the group  $_1(N)$  has presentation:

$$a; b \quad ab^2 ab^{-1} a^3 b^{-1} = ab^2 a^{-2} b^2 = 1$$

where 2 (@M) becomes ab in  $_1(N)$ . If we add the relators  $a^3 = b^4 = 1$  to the presentation of  $_1(N)$ , we get a surjection from  $_1(N)$  onto

$$= a; b \quad a^3 = b^4 = (ab^2)^2 = 1 :$$

As  $S_3$  has presentation x; y  $x^3 = y^2 = (xy)^2 = 1$ , we see that is  $S_3$   $C_2$   $C_4$  where the rst factor is generated by fa;  $b^2g$  and the second by b.

We will need:

**12.2 Lemma** Let be 
$$S_3$$
  $C_2$   $C_4$  and let 2 be ab. The group  $C_1 = C_2 + C_4$ 

has virtual positive betti number for all n-10. For n<10, the group  $_n$  is nite.

Assuming the lemma, the theorem follows easily. Given a slope in  $_1(@M)$ , if either ( ;4) 10 or ( ;4=3) 10 then M( ) has virtual positive betti number. The only which satisfy neither condition are E=f0, -1, 1, 1=2, 2, 3, 3=2, 4, 4=3, 5=2, 5=3, 7=3, 7=4g. One can check that the llings along these slopes either have nite  $_1$  or have virtual positive betti number (the 6 hyperbolic llings in E are all among the census manifolds which we showed have virtual positive betti number in the earlier sections).

Now we will prove the lemma.

**Proof of Lemma 12.2** As in the case of a Fuchsian group the key is to show:

**12.3 Claim** Let n 12. Then there is a homomorphism f from to a nite group Q where f is injective on the amalgam factors  $S_3$  and  $C_4$  and where has order n.

To prove the rest of the theorem, one can check that  $_{10}$  and  $_{11}$  have homomorphisms into  $S_{12}$  and  $PSL_2\mathbb{F}_{23}$  respectively whose kernels have in nite  $H_1$ . Using coset enumeration, it is easy to check that  $_n$  is nite for n < 10.

**12.4** Claim Suppose that f is a special representation of into  $S_n$ . Then there exists a special representation of into  $S_{n+6}$ . Also, there exists an almost special representation of into  $S_{n+7}$ .

To see this, let f be a special representation. First, we construct the representation into  $S_{n+6}$ . Let

$$L = f1; 2; ...; nq [ fp_1; p_2; p_3; p_4; p_5; p_6q:$$

We will nd a special representation into  $S_L$ . Let g: !  $S_{fn;p_1;...;p_6g}$  be the special representation given by

$$g(a) = (p_1p_2p_3)(p_4p_5p_6)$$
 and  $g(b) = (np_1)(p_2p_4p_3p_5)$ :

It's easy to check (using that f(a) commutes with  $g(b^2)$ , etc.) that h(a) = f(a)g(a) and h(b) = f(b)g(b) induces a homomorphism h: !  $S_L$ . Moreover, h(ab) = f(a)g(a)f(b)g(b) = f(a)f(b)g(a)g(b) = f(ab)g(ab). Thus h is the product of an n-cycle and a 7-cycle which overlap only in n, and so is a n + 6 cycle. So h is special.

To construct the almost-special representation, do the same thing, where g replaced is now de ned by

$$g(a) = (p_1p_2p_3)(p_4p_5p_6)$$
 and  $g(b) = (np_1)(p_2p_4p_3p_5)(p_6p_7)$ :

This establishes the inductive Claim 12.4.

Geometry & Topology, Volume 7 (2003)

Using the induction, to prove Claim 12.3 it sunces to show that there are special representations for n = 6/7/15/17, and that there is an almost-special representation for n = 16. These are

This completes the proof of the claim, the lemma, and thus the theorem.

## References

- [1] **B Baumslag**, **S J Pride**, *Groups with two more generators than relators*, J. London Math. Soc. 17 (1978) 425{426
- [2] **G Baumslag**, **J W Morgan**, **P B Shalen**, *Generalized triangle groups*, Math. Proc. Cambridge Philos. Soc. 102 (1987) 25{31
- [3] **JS Birman**, **HM. Hilden**, Heegaard splittings of branched coverings of S<sup>3</sup>, Trans. Amer. Math. Soc. 213 (1975) 315{352
- [4] W Bosma, J Cannon, Handbook of MAGMA functions, (1994)
- [5] **S Boyer**, **X Zhang**, *Virtual Haken 3-manifolds and Dehn Iling*, Topology 39 (2000) 103{114
- [6] KS Brown, Buildings, Springer-Verlag, New York (1989)
- [7] **D Calegari**, *Promoting essential laminations*, arXi v: math. GT/0210148
- [8] **P J Callahan**, **M V Hildebrand**, **J R Weeks**, A census of cusped hyperbolic 3-manifolds, Math. Comp. 68 (1999) 321{332
- [9] A Casson and D Jungreis, Convergence groups and Seifert bered 3-manifolds, Invent. Math. 118 (1994) 441{456
- [10] **S Choi and W Goldman**, *The deformation spaces of projectively flat structures on 2-orbifolds*, preprint (2001) arXi v: math. GT/0107193
- [11] JH Conway, RT Curtis, SP Norton, RA Parker, RA Wilson, Atlas of nite groups, Oxford University Press, Eynsham (1985)

- [12] **D Cooper**, **D D Long**, *Virtually Haken Dehn- Iling*, J. Di erential Geom. 52 (1999) 173{187
- [13] **D Cooper**, **D D Long**, Some surface subgroups survive surgery, Geometry and Topology 5 (2001) 347{367
- [14] **M Culler**, **PB Shalen**, Bounded, separating, incompressible surfaces in knot manifolds, Invent. Math. 75 (1984) 537{545
- [15] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237{300
- [16] J D Dixon, Computing irreducible representations of groups, Math. Comp. 24 (1970) 707{712
- [17] **J D Dixon**, Exact solution of linear equations using p-adic expansions, Numer. Math. 40 (1982) 137{141
- [18] **NM Dun eld**, Alexander and Thurston norms of 3-manifolds bering over the circle, Paci c J. Math 200 (2001) 43{58, arXi v: math. GT/9908050
- [19] **NM Dun eld**, *Which small volume hyperbolic 3-manifolds are Haken?* Slides from a talk at the University of Warwick (1999) available from http://www.math.harvard.edu/~nathand
- [20] **NM Dun eld**, **WP Thurston**, *Data on the virtual Haken conjecture*, http://www.computop.org/software/virtual\_haken
- [21] **NM Dun eld**, **WP Thurston**, Random 3-manifolds: Heuristics for the Virtual Haken Conjecture, in preparation
- [22] **B Fine**, **F Roehl**, **G Rosenberger**, *A Freiheitssatz for certain one-relator amalgamated products*, In: \Combinatorial and geometric group theory (Edinburgh, 1993)", pages 73{86. Cambridge Univ. Press, 1995
- [23] **B Fine**, **G Rosenberger**, Algebraic generalizations of discrete groups, Marcel Dekker Inc. New York (1999)
- [24] **B Freedman**, **MH Freedman**, *Kneser-Haken niteness for bounded* 3-manifolds locally free groups, and cyclic covers, Topology 37 (1998) 133{147
- [25] **D Gabai**, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447{510
- [26] **D Gabai**, On the geometric and topological rigidity of hyperbolic 3-manifolds, J. Amer. Math. Soc. 10 (1997) 37{74
- [27] **D Gabai**, **R Meyerho**, **N Thurston**, *Homotopy hyperbolic 3-manifolds are hyperbolic*, preprint, to appear in Ann. of Math.
- [28] **The GAP Group, Aachen, St Andrews**, *GAP { Groups, Algorithms, and Programming, Version 4.2*, (2000) http://www-gap.dcs.st-and.ac.uk/~gap
- [29] O Goodman, Snap, http://www.ms.unimelb.edu.au/~snap
- [30] **A Hatcher**, *On the boundary curves of incompressible surfaces*, Paci c J. Math. 99 (1982) 373{377

[31] **G Havas**, **DF Holt**, **S Rees**, *Recognizing badly presented Z-modules*, Linear Algebra Appl. 192 (1993) 137{163

- [32] **G Havas**, **BS Majewski**, *Hermite normal form computation for integer matrices*, from: \Proceedings of the Twenty- fth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994)", Congr. Numer. 105 (1994) 87{96
- [33] **G Havas**, **B S Majewski**, *Integer matrix diagonalization*, J. Symbolic Comput. 24 (1997) 399{408
- [34] **M Hildebrand**, **J Weeks**, *A computer generated census of cusped hyperbolic* 3-manifolds, from: \computers and mathematics (Cambridge, MA, 1989)", Springer (1989) 53{59
- [35] **D F Holt**, **W Plesken**, A cohomological criterion for a nitely presented group to be in nite, J. London Math. Soc. (2) 45 (1992) 469{480
- [36] J Hoste, M Thistlethwaite, Knotscape, www.math.utk.edu/~morwen
- [37] **W Jaco**, **U Oertel**, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23 (1984) 195{209
- [38] **R Kirby**, *Problems in low-dimensional topology*, from: \Geometric topology (Athens, GA, 1993)", Amer. Math. Soc. Providence, RI (1997) 35{473, http://www.math.berkeley.edu/~kirby/
- [39] A Lubotzky, Eigenvalues of the Laplacian, the rst Betti number and the congruence subgroup problem, Ann. of Math. 144 (1996) 441{452}
- [40] A Lubotzky, Free quotients and the rst Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71{82
- [41] W Meeks, L Simon, S-T Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. 116 (1982) 621{659
- [42] **G Mess**, The Seifert bered space conjecture and groups which are coarse quasiisometric to planes, preprint
- [43] W Plesken, Presentations and representations of groups, from: \Algorithmic algebra and number theory (Heidelberg, 1997)", Springer, Berlin (1999) 423{434
- [44] **W Plesken**, **B Souvignier**, Constructing rational representations of nite groups, Experiment. Math. 5 (1996) 39{47
- [45] **W Plesken**, **B Souvignier**, Constructing representations of nite groups and applications to nitely presented groups, J. Algebra 202 (1998) 690{703
- [46] **LP Postnikova**, **A Schinzel**, Primitive divisors of the expression  $a^n b^n$  in algebraic number elds, Mat. Sb. (N.S.) 75 (117) (1968) 171{177
- [47] **JD Rogawski**, Automorphic representations of unitary groups in three variables, Princeton University Press, Princeton, NJ (1990)
- [48] **A Schinzel**, Primitive divisors of the expression  $A^n B^n$  in algebraic number elds, J. Reine Angew. Math. 268/269 (1974) 27{33

- [49] P Scott, There are no fake Seifert bre spaces with in nite 1, Ann. of Math.(2) 117 (1983) 35{70
- [50] **J-P Serre**, *Trees*, Springer-Verlag, Berlin (1980) translated from the French by John Stillwell
- [51] **CT Simpson**, *Products of matrices*, from: \Di erential geometry, global analysis, and topology (Halifax, NS, 1990)", Amer. Math. Soc. Providence, RI (1991) 157{185.
- [52] **C C Sims**, *Computation with nitely presented groups*, Cambridge University Press, Cambridge (1994)
- [53] **W.P. Thurston**, *The geometry and topology of 3-manifolds*, Lecture notes (1978) http://www.msri.org/publications/books/gt3m/
- [54] **F Waldhausen**, The word problem in fundamental groups of su ciently large irreducible 3-manifolds, Ann. of Math. 88 (1968) 272{280
- [55] CTC Wall, Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961) 182{184
- [56] J Weeks, SnapPea, http://www.geometrygames.org/
- [57] **Y Q Wu**, Incompressibility of surfaces in surgered 3-manifolds, Topology 31 (1992) 271{279

# Appendix

|                                                                                                                                                                                                                                                       | Λ                                                                                                                                                      | 1 (7)                                                                                                                                                                                                                | Λ /                                                                                                                                              | 2(8) L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (11) L                                                                                                                                        | 2(13)                                                                                                                                           | L <sub>2</sub> (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A 1                                                                                                                                           | 2(19)                                                                                                                                                        | L <sub>2</sub> (16)                                                                                                                                                                                                                                                      | 1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 (2)                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| A <sub>5</sub>                                                                                                                                                                                                                                        | A <sub>5</sub>                                                                                                                                         | $\frac{L_2(7)}{0.02}$                                                                                                                                                                                                |                                                                                                                                                  | $\frac{2(6)}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{(11)}{0.17}$                                                                                                                           | $\frac{2(13)}{0.03}$                                                                                                                            | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A <sub>7</sub> L<br>0.12                                                                                                                      | 0.15                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                     | L <sub>3</sub> (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U <sub>3</sub> (3)                                                                                                                           |
| $L_2(7)$                                                                                                                                                                                                                                              | 0.02                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                          | 0.03                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12                                                                                                                                          | -0.02                                                                                                                                                        | -0.04                                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                         |
| $A_6$                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               | -0.07                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                          | 0.02                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                         |
| L <sub>2</sub> (8)                                                                                                                                                                                                                                    | 0.05                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                          | 0.20                                                                                                                                            | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                          | 0.05                                                                                                                                                         | -0.00                                                                                                                                                                                                                                                                    | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11                                                                                                                                         |
| $L_2(11)$                                                                                                                                                                                                                                             | 0.17                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               | -0.01                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.11                                                                                                                                          | 0.11                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                         |
| $L_2(13)$                                                                                                                                                                                                                                             | 0.03                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.01                                                                                                                                         | 1.00                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.01                                                                                                                                         | 0.04                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.09                                                                                                                                         |
| L <sub>2</sub> (17)                                                                                                                                                                                                                                   | -0.03                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                          | 0.00                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                          | 0.05                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12                                                                                                                                         |
| A <sub>7</sub>                                                                                                                                                                                                                                        | 0.12                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               | -0.01                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                          | 0.08                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11                                                                                                                                         |
| $L_2(19)$                                                                                                                                                                                                                                             | 0.15                                                                                                                                                   | -0.02                                                                                                                                                                                                                | 0.11                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.11                                                                                                                                          | 0.04                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                          | 1.00                                                                                                                                                         | 0.11                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                         |
| $L_2(16)$                                                                                                                                                                                                                                             | 0.09                                                                                                                                                   | -0.04                                                                                                                                                                                                                | 0.09 -                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14                                                                                                                                          | 0.04                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                          | 0.11                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                     | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                         |
| $\tilde{L}_3(3)$                                                                                                                                                                                                                                      | 0.02                                                                                                                                                   | 0.12                                                                                                                                                                                                                 | 0.04 -                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                          | 0.06                                                                                                                                            | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                          | 0.03                                                                                                                                                         | -0.02                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                         |
| $U_3(3)$                                                                                                                                                                                                                                              | 0.02                                                                                                                                                   | 0.09                                                                                                                                                                                                                 | 0.00                                                                                                                                             | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                          | 0.09                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.11                                                                                                                                          | 0.03                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                         |
| $L_2(23)$                                                                                                                                                                                                                                             | 0.01                                                                                                                                                   | 0.10                                                                                                                                                                                                                 |                                                                                                                                                  | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                          | 0.03                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.04                                                                                                                                         | 0.03                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                     | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04                                                                                                                                         |
| $L_2(25)$                                                                                                                                                                                                                                             | 0.04                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.14                                                                                                                                          | 0.03                                                                                                                                            | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                                          | 0.10                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                     | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08                                                                                                                                         |
| $M_{11}$                                                                                                                                                                                                                                              | 0.16                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               | -0.02                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.12                                                                                                                                          | 0.01                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                         |
| $L_2(27)$                                                                                                                                                                                                                                             | -0.01                                                                                                                                                  |                                                                                                                                                                                                                      |                                                                                                                                                  | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                          | 0.15                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.09                                                                                                                                          | 0.04                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                         |
| $L_2(29)$                                                                                                                                                                                                                                             | 0.01                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.17                                                                                                                                          | 0.10                                                                                                                                            | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.19                                                                                                                                          | 0.15                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.01                                                                                                                                         |
| $L_2(31)$                                                                                                                                                                                                                                             | 0.08                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                               | -0.05                                                                                                                                           | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                          | 0.10                                                                                                                                                         | 0.09                                                                                                                                                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                         |
| A <sub>8</sub>                                                                                                                                                                                                                                        | 0.11                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.08                                                                                                                                          | 0.08                                                                                                                                            | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.17                                                                                                                                          | 0.10                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11                                                                                                                                         |
| L <sub>3</sub> (4)                                                                                                                                                                                                                                    | 0.15                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                               | -0.04                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.23                                                                                                                                          | 0.05                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03                                                                                                                                         |
| L <sub>2</sub> (37)                                                                                                                                                                                                                                   | 0.02                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06                                                                                                                                          | 0.02                                                                                                                                            | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                          | 0.08                                                                                                                                                         | 0.13                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                         |
| U <sub>4</sub> (2)                                                                                                                                                                                                                                    | 0.18                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               | -0.04                                                                                                                                           | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.13                                                                                                                                          | 0.05                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.01                                                                                                                                        |
| Sz(8)                                                                                                                                                                                                                                                 | -0.00<br>0.07                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03<br>0.01                                                                                                                                  | -0.03<br>0.03                                                                                                                                   | $0.00 \\ 0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.02<br>-0.02                                                                                                                                | 0.09<br>0.01                                                                                                                                                 | -0.03<br>0.02                                                                                                                                                                                                                                                            | -0.01<br>-0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.03<br>0.05                                                                                                                                |
| $L_2(32)$                                                                                                                                                                                                                                             | 0.07                                                                                                                                                   | 0.06 -                                                                                                                                                                                                               | 0.02 -                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                          | 0.03                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.02                                                                                                                                         | 0.01                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                     | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                         |
|                                                                                                                                                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |
|                                                                                                                                                                                                                                                       | L <sub>2</sub> (23)                                                                                                                                    | L <sub>2</sub> (25)                                                                                                                                                                                                  | $M_{11}$                                                                                                                                         | L <sub>2</sub> (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L <sub>2</sub> (29)                                                                                                                           | L <sub>2</sub> (31                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L <sub>3</sub> (4)                                                                                                                            | L <sub>2</sub> (37)                                                                                                                                          | $U_4(2)$                                                                                                                                                                                                                                                                 | Sz(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L <sub>2</sub> (32)                                                                                                                          |
|                                                                                                                                                                                                                                                       | 0.01                                                                                                                                                   | 0.04                                                                                                                                                                                                                 | 0.16                                                                                                                                             | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.01                                                                                                                                          | 0.0                                                                                                                                             | 8 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15                                                                                                                                          | 0.02                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                     | -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07                                                                                                                                         |
| $L_2(7)$                                                                                                                                                                                                                                              | 0.01<br>0.10                                                                                                                                           | 0.04<br>0.06                                                                                                                                                                                                         | 0.16<br>0.03                                                                                                                                     | -0.01<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01<br>0.13                                                                                                                                  | 0.0                                                                                                                                             | 8 0.11<br>8 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15<br>0.03                                                                                                                                  | 0.02<br>0.01                                                                                                                                                 | 0.18<br>0.02                                                                                                                                                                                                                                                             | -0.00<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.07<br>0.06                                                                                                                                 |
| $L_2(7) A_6$                                                                                                                                                                                                                                          | 0.01<br>0.10<br>0.03                                                                                                                                   | 0.04<br>0.06<br>0.15                                                                                                                                                                                                 | 0.16<br>0.03<br>0.21                                                                                                                             | -0.01<br>0.19<br>-0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01<br>0.13<br>0.01                                                                                                                          | 0.0<br>0.0<br>0.1                                                                                                                               | 8 0.11<br>8 0.14<br>8 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.15<br>0.03<br>0.13                                                                                                                          | 0.02<br>0.01<br>0.06                                                                                                                                         | 0.18<br>0.02<br>0.24                                                                                                                                                                                                                                                     | -0.00<br>0.02<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07<br>0.06<br>-0.02                                                                                                                        |
| $\frac{L_2(7)}{A_6}$                                                                                                                                                                                                                                  | 0.01<br>0.10<br>0.03<br>0.07                                                                                                                           | 0.04<br>0.06<br>0.15<br>0.06                                                                                                                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00                                                                                                                    | -0.01<br>0.19<br>-0.05<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14                                                                                                                  | 0.0<br>0.0<br>0.1<br>0.0                                                                                                                        | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15<br>0.03<br>0.13<br>0.02                                                                                                                  | 0.02<br>0.01<br>0.06<br>0.02                                                                                                                                 | 0.18<br>0.02<br>0.24<br>-0.00                                                                                                                                                                                                                                            | -0.00<br>0.02<br>0.11<br>-0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07<br>0.06<br>-0.02<br>-0.02                                                                                                               |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ \hline L_2(8) \\ L_2(11) \end{array} $                                                                                                                                                                            | 0.01<br>0.10<br>0.03<br>0.07<br>0.05                                                                                                                   | 0.04<br>0.06<br>0.15<br>0.06<br>0.14                                                                                                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09                                                                                                            | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17                                                                                                          | 0.0<br>0.0<br>0.1<br>0.0<br>0.1                                                                                                                 | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15<br>0.03<br>0.13<br>0.02<br>0.11                                                                                                          | 0.02<br>0.01<br>0.06<br>0.02<br>0.06                                                                                                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07                                                                                                                                                                                                                                    | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01                                                                                                       |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ \hline L_2(8) \\ L_2(11) \\ L_2(13) \end{array} $                                                                                                                                                                 | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03                                                                                                           | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03                                                                                                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02                                                                                                   | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10                                                                                                  | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0                                                                                                         | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04                                                                                                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02                                                                                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04                                                                                                                                                                                                                           | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03                                                                                               |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ \hline L_2(8) \\ L_2(11) \\ L_2(13) \\ \hline L_2(17) \end{array} $                                                                                                                                               | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03                                                                                                           | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13                                                                                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09                                                                                           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10                                                                                                  | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0                                                                                                         | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03                                                                                         | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02                                                                                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01                                                                                                                                                                                                                  | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03                                                                                               |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \end{array} $                                                                                                                                                      | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04                                                                                          | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09                                                                                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12                                                                                   | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19                                                                                 | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0                                                                                                         | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23                                                                                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04                                                                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13                                                                                                                                                                                                          | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>0.00<br>-0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02                                                                              |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \end{array} $                                                                                                                                           | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03                                                                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10                                                                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01                                                                           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15                                                                         | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1                                                                                    | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05                                                                         | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08                                                                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13                                                                                                                                                                                                          | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>0.00<br>-0.02<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01                                                                      |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \end{array} $                                                                                                                                | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03                                                                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10                                                                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01                                                                           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15                                                                         | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1                                                                                    | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05                                                                         | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08                                                                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13<br>0.05                                                                                                                                                                                                  | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.00<br>-0.02<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01                                                                      |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \end{array}$                                                                                                                        | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03                                                                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10                                                                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01                                                                           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15                                                                         | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1                                                                                    | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05                                                                         | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08                                                                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13<br>0.05<br>0.05                                                                                                                                                                                          | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.00<br>-0.02<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01                                                                      |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \end{array} $                                                                                                                                | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15                                                                          | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.10                                                                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.05                                                           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15<br>0.06                                                                 | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0                                                               | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07<br>9 0.04<br>6 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05<br>0.01<br>0.07<br>0.03                                                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08                                                                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.03<br>0.05<br>0.05<br>0.02                                                                                                                                                                                  | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.02<br>0.09<br>-0.03<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.02<br>-0.00                                                     |
| $\begin{array}{c} L_2(7) \\ A_6 \\ \hline L_2(8) \\ L_2(11) \\ L_2(13) \\ \hline L_2(17) \\ A_7 \\ L_2(19) \\ \hline L_2(16) \\ L_3(3) \\ U_3(3) \\ \end{array}$                                                                                      | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04                                                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21                                                                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.05<br>0.06                                                   | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.06<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01                                                 | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0                                                        | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>9 0.07<br>9 0.04<br>6 0.11<br>8 -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05<br>0.01<br>0.07<br>0.03                                                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.13<br>0.00                                                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.05<br>0.05<br>0.05<br>0.02<br>-0.01                                                                                                                                                                         | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.02<br>0.09<br>-0.03<br>-0.01<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07<br>0.06<br>-0.02<br>-0.03<br>0.00<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.02                                             |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ \end{array}$                                                                                                | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09                                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.10<br>0.21<br>0.08                                                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.05<br>0.06                                                   | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.06<br>0.10<br>0.07<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01                                                 | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0 | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>9 0.07<br>9 0.04<br>6 0.11<br>8 -0.02<br>4 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05<br>0.01<br>0.07<br>0.03                                                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.13<br>0.00<br>0.02                                                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.01<br>0.01                                                                                                                                                                  | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.02<br>0.09<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>0.03<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.02<br>-0.00<br>0.05<br>0.08                                     |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(17) \\ A_7 \\ L_2(19) \\ \\ L_2(3) \\ L_2(3) \\ L_2(23) \\ L_2(25) \\ \\ M_{11} \\ L_2(27) \\ \end{array}$                                                                  | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.09                                          | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>1.00<br>0.05<br>0.05                                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.01<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05                                                   | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.06<br>0.10<br>0.07<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01<br>0.02<br>0.07<br>0.02                                  | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>1<br>-0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0                                                   | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07<br>9 0.04<br>6 0.11<br>8 -0.02<br>4 0.12<br>4 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.05<br>0.01<br>0.07<br>0.03<br>0.05<br>0.19<br>0.09                                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.13<br>0.00<br>0.02<br>0.06<br>0.00<br>0.06                                         | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                 | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.02<br>0.09<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>0.03<br>-0.04<br>0.09<br>-0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>-0.02<br>0.01<br>0.02<br>-0.00<br>0.05<br>0.08<br>0.03                                     |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \end{array}$                                                                         | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04                                          | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.19<br>0.10<br>0.10<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.05                                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05<br>1.00                           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.16<br>0.10<br>0.07<br>0.15<br>-0.01<br>1.00<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>-0.00<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01<br>0.07<br>-0.00<br>0.01<br>1.00                | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0                                                        | 8 0.11<br>8 0.14<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07<br>9 0.04<br>6 0.11<br>18 -0.02<br>4 0.12<br>4 0.14<br>1 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05<br>0.01<br>0.07<br>0.03<br>0.01<br>0.07<br>0.01<br>0.05<br>0.19         | 0.02<br>0.01<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.13<br>0.00<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.01<br>0.10<br>0.21                                                                                                                                                 | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.09<br>-0.02<br>-0.01<br>-0.03<br>-0.04<br>0.03<br>0.09<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.02<br>-0.00<br>0.05<br>0.08<br>0.03<br>0.04                     |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ U_2(23) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \end{array}$                               | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04<br>0.07                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.15<br>0.07                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.01<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05<br>1.00<br>-0.01                                  | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.10<br>0.07<br>0.15<br>-0.01<br>1.00<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01<br>0.02<br>0.07<br>0.07<br>0.09                          | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.0                                          | 8 0.11<br>8 0.14<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07<br>9 0.04<br>6 0.11<br>18 -0.02<br>4 0.12<br>4 0.14<br>1 0.11<br>7 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.05<br>0.01<br>0.07<br>0.03<br>0.01<br>0.05<br>0.19<br>0.02                         | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.13<br>0.00<br>0.02<br>0.00<br>0.06<br>0.00<br>0.00<br>0.00<br>0.00                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.10<br>0.21<br>-0.01                                                                                                                                                | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.09<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>0.03<br>0.09<br>-0.04<br>-0.01<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.05<br>0.08<br>0.03<br>0.04                                      |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ A_8 \end{array}$                                   | 0.01<br>0.10<br>0.03<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04<br>0.09                                                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.07                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05<br>1.00<br>-0.01                  | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.06<br>0.10<br>0.15<br>-0.01<br>1.00<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01<br>0.07<br>0.07                                          | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                        | 8 0.11<br>8 0.14<br>8 0.14<br>9 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07<br>9 0.04<br>6 0.11<br>8 -0.02<br>4 0.12<br>4 0.17<br>7 0.12<br>0 0.09<br>9 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15<br>0.03<br>0.13<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.05<br>0.01<br>0.07<br>0.03<br>0.01<br>0.05<br>0.19<br>0.02                 | 0.02<br>0.01<br>0.06<br>0.02<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.13<br>0.00<br>0.02<br>0.07<br>0.00<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.04<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.03                                                                                                                                 | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.09<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>0.09<br>-0.04<br>-0.01<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>-0.00<br>-0.05<br>0.08<br>0.03<br>0.04<br>0.05<br>-0.02                   |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(31) \\ L_2(23) \\ L_2(23) \\ L_2(25) \\ \hline M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ A_8 \\ L_3(4) \end{array}$                              | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04<br>0.07<br>0.02<br>0.08                  | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.15<br>0.07<br>0.17<br>0.07                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.05<br>0.06<br>1.00<br>-0.01<br>-0.00<br>0.14                 | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.06<br>0.10<br>0.07<br>0.15<br>-0.01<br>1.00<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01<br>0.02<br>0.07<br>-0.00<br>0.19                         | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                        | 8 0.11<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>9 0.04<br>6 0.11<br>6 -0.12<br>4 0.12<br>0 0.19<br>1 0.07<br>9 0.07<br>9 0.07<br>9 0.07<br>9 0.07<br>9 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05<br>0.01<br>0.07<br>0.03<br>0.01<br>0.05<br>0.19<br>0.02<br>0.11         | 0.02<br>0.01<br>0.06<br>0.02<br>0.02<br>0.07<br>0.04<br>0.08<br>0.03<br>0.00<br>0.00<br>0.06<br>0.00<br>0.06<br>0.00<br>0.00                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.05<br>0.02<br>0.01<br>0.10<br>0.10<br>0.11<br>0.10<br>0.11<br>0.11                                                                                                                           | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.03<br>-0.01<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>-0.03<br>0.09<br>-0.04<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>-0.00<br>0.05<br>-0.08<br>0.03<br>0.04<br>-0.05<br>-0.02<br>0.08          |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(23) \\ L_2(27) \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ A_8 \\ L_3(4) \\ L_2(37) \end{array}$                | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.04<br>0.07<br>0.02<br>0.08<br>-0.02                 | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.15<br>0.07<br>0.14                                                                                 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.09<br>0.12<br>0.01<br>0.05<br>0.06<br>0.04<br>1.00<br>-0.01<br>-0.00<br>0.14                 | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.10<br>0.15<br>-0.01<br>1.00<br>0.15<br>-0.01<br>1.00<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.00<br>0.19<br>0.00<br>0.01<br>0.02<br>0.07<br>0.00<br>0.01<br>0.01<br>0.02                  | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                       | 8 0.11 8 0.14 8 0.14 8 0.14 8 0.12 0 0.11 0 0.08 1 0.07 4 0.17 0 0.10 0 0.09 9 0.07 4 0.11 0 0.01 0 0.10 0 0.10 0 0.10 0 0.10 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.23<br>0.05<br>0.01<br>0.07<br>0.03<br>0.05<br>0.19<br>0.02<br>0.11<br>0.02<br>0.15 | 0.02<br>0.01<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.03<br>0.00<br>0.02<br>0.00<br>0.06<br>0.00<br>0.06<br>0.00<br>0.00                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.1                                                                                                                           | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.03<br>-0.09<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>-0.01<br>0.08<br>0.08<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.05<br>0.08<br>0.03<br>0.04<br>0.05<br>-0.02<br>0.08<br>-0.02    |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ \\ A_8 \\ L_3(4) \\ L_2(37) \\ U_4(2) \end{array}$                              | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04<br>0.07<br>0.02<br>0.08<br>-0.02<br>0.08 | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.07<br>0.14                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.05<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05<br>1.00<br>-0.01<br>-0.00<br>0.14<br>0.14<br>0.19 | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.10<br>0.10<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.09<br>0.15<br>0.06<br>0.00<br>0.01<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07          | 0.0<br>0.0<br>0.1<br>-0.0<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0                                                                      | 8 0.11<br>8 0.14<br>8 0.14<br>8 0.12<br>0 0.11<br>0 0.08<br>5 0.08<br>1 0.07<br>4 0.17<br>0 0.10<br>9 0.07<br>9 0.07<br>9 0.04<br>6 0.11<br>1 0.11<br>0 0.10<br>9 0.09<br>9 0.07<br>9 0.07<br>9 0.07<br>9 0.07<br>9 0.09<br>1 0.10<br>9 0.09<br>1 0.10<br>9 0.09<br>1 0.10<br>1 | 0.15<br>0.03<br>0.13<br>0.02<br>0.11<br>-0.04<br>0.03<br>0.05<br>0.01<br>0.07<br>0.03<br>0.05<br>0.11<br>0.05<br>0.19<br>0.11<br>0.10<br>0.15 | 0.02<br>0.01<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.01<br>-0.01<br>0.05<br>0.05<br>0.05<br>0.05<br>0.01<br>0.01<br>0.01                                                                                                                                                          | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.03<br>-0.09<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>-0.03<br>0.09<br>-0.04<br>-0.01<br>0.08<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.05<br>-0.00<br>0.05<br>-0.02<br>-0.00<br>0.05<br>-0.03<br>-0.04 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ U_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ \\ L_2(37) \\ U_4(2) \\ Sz(8) \end{array}$                       | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04<br>0.07<br>0.02<br>0.08<br>-0.02<br>0.03 | 0.04<br>0.06<br>0.15<br>0.06<br>0.15<br>0.09<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.05<br>0.15<br>0.07<br>0.14<br>0.02<br>0.05<br>0.06<br>0.05<br>0.06<br>0.05<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.08 | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.01<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05<br>1.00<br>0.14<br>0.14<br>0.19<br>0.00           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.16<br>0.10<br>0.15<br>-0.01<br>1.00<br>0.19<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.19<br>0.15<br>0.06<br>0.00<br>0.01<br>0.02<br>0.07<br>-0.00<br>0.19<br>1.00<br>0.19<br>0.01 | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0                                                                              | 8 0.11 8 0.14 8 0.14 8 0.12 0 0.11 0 0.08 1 0.07 4 0.17 0 0.10 9 0.07 9 0.07 9 0.04 1 0.17 0 0.12 0 0.11 0 0.10 9 0.07 9 0.07 9 0.04 1 0.17 8 0.12 1 0.14 1 0.11 7 0.12 0 0.09 9 1.00 0 0.05 2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15 0.03 0.13 0.02 0.11 -0.04 0.03 0.23 0.05 0.01 0.07 0.03 0.01 0.05 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.02                                | 0.02 0.01 0.06 0.02 0.07 0.04 0.08 0.13 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.0                                                                               | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.10<br>0.10<br>0.10<br>0.21<br>-0.01<br>0.03<br>0.13<br>0.03<br>0.03<br>0.03<br>0.03<br>0.04<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01<br>0.02<br>0.02 | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>-0.03<br>0.09<br>-0.04<br>-0.01<br>0.08<br>0.08<br>0.08<br>-0.08<br>-0.08<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0 | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.00<br>-0.02<br>-0.00<br>0.05<br>-0.08<br>0.03<br>0.04<br>0.05<br>-0.02<br>0.08<br>-0.02          |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ \\ A_8 \\ L_3(4) \\ L_2(37) \\ U_4(2) \end{array}$ | 0.01<br>0.10<br>0.03<br>0.07<br>0.05<br>0.03<br>0.12<br>-0.04<br>0.03<br>0.15<br>0.04<br>1.00<br>0.09<br>0.04<br>0.07<br>0.02<br>0.08<br>-0.02<br>0.08 | 0.04<br>0.06<br>0.15<br>0.06<br>0.14<br>0.03<br>0.13<br>0.09<br>0.10<br>0.21<br>0.08<br>0.09<br>1.00<br>0.05<br>0.07<br>0.14                                                                                         | 0.16<br>0.03<br>0.21<br>-0.00<br>0.09<br>-0.02<br>0.01<br>0.05<br>0.05<br>0.06<br>0.04<br>0.05<br>1.00<br>0.14<br>0.14<br>0.19<br>0.00           | -0.01<br>0.19<br>-0.05<br>0.29<br>0.02<br>0.15<br>0.04<br>0.09<br>0.04<br>0.00<br>0.10<br>0.10<br>0.11<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | 0.01<br>0.13<br>0.01<br>0.14<br>0.17<br>0.10<br>0.09<br>0.15<br>0.06<br>0.00<br>0.01<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07          | 0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0<br>0.0                                                                              | 8 0.11 8 0.14 8 0.14 8 0.12 0 0.11 0 0.08 1 0.07 4 0.17 0 0.10 9 0.07 9 0.07 9 0.04 1 0.17 0 0.12 0 0.11 0 0.10 9 0.07 9 0.07 9 0.04 1 0.17 8 0.12 1 0.14 1 0.11 7 0.12 0 0.09 9 1.00 0 0.05 2 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15 0.03 0.13 0.02 0.11 -0.04 0.03 0.23 0.05 0.01 0.07 0.03 0.01 0.05 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.02                                | 0.02<br>0.01<br>0.06<br>0.02<br>0.07<br>0.04<br>0.08<br>0.02<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                 | 0.18<br>0.02<br>0.24<br>-0.00<br>0.07<br>-0.01<br>0.13<br>0.05<br>0.05<br>0.05<br>0.02<br>-0.01<br>0.10<br>0.10<br>0.10<br>0.21<br>-0.01<br>0.03<br>0.13<br>0.03<br>0.03<br>0.03<br>0.03<br>0.04<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01<br>0.02<br>0.02 | -0.00<br>0.02<br>0.11<br>-0.01<br>0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.01<br>-0.03<br>-0.04<br>-0.03<br>0.09<br>-0.04<br>-0.01<br>0.08<br>0.08<br>0.08<br>-0.08<br>-0.08<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0.09<br>-0 | 0.07<br>0.06<br>-0.02<br>-0.02<br>0.01<br>0.03<br>0.00<br>-0.02<br>0.01<br>0.05<br>-0.00<br>0.05<br>-0.02<br>-0.00<br>0.05<br>-0.03<br>-0.04 |

Table 5: This table gives the correlations between: (having a cover with group 1, having a cover with group 2). The average o  $\,$  -diagonal correlation is 0.06.

|                                                                                                                                                                                                                                                         | $A_5$                                                                                                                                         | $L_2(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                     | 2(17)                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                              | $_{-2}(16)$                                                                                                                                          | $L_3(3)$                                                                                                                                               | $U_3(3)$                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_5$                                                                                                                                                                                                                                                   | 1.00                                                                                                                                          | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.28                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.25                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                | 0.06                                                                                                                                                 | 0.11                                                                                                                                                                  | 0.23                                                                                                                                                                         | 0.11                                                                                                                                                 | 0.02                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_2(7)$                                                                                                                                                                                                                                                | -0.01                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                | 0.14                                                                                                                                                 | 0.11                                                                                                                                                                  | 0.02                                                                                                                                                                         | 0.01                                                                                                                                                 | 0.17                                                                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                           |
| $A_6$                                                                                                                                                                                                                                                   | 0.28                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.22                                                                                                                                                         | -0.07                                                                                                                                                                                                                                                                               | 0.12                                                                                                                                                 | 0.13                                                                                                                                                                  | 0.17                                                                                                                                                                         | 0.10                                                                                                                                                 | 0.08                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_{2}(8)$                                                                                                                                                                                                                                              | 0.05                                                                                                                                          | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                 | 0.12                                                                                                                                                                  | 0.06                                                                                                                                                                         | 0.06                                                                                                                                                 | 0.03                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_2(11)$                                                                                                                                                                                                                                               | 0.25                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                 | 0.06                                                                                                                                                                  | 0.18                                                                                                                                                                         | 0.12                                                                                                                                                 | 0.08                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_2(13)$                                                                                                                                                                                                                                               | 0.01                                                                                                                                          | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                 | 0.01                                                                                                                                                                  | 0.04                                                                                                                                                                         | 0.10                                                                                                                                                 | 0.08                                                                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                           |
| L <sub>2</sub> (17)                                                                                                                                                                                                                                     | 0.06                                                                                                                                          | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                | 1.00                                                                                                                                                 | 0.07                                                                                                                                                                  | 0.12                                                                                                                                                                         | 0.07                                                                                                                                                 | 0.15                                                                                                                                                   | 0.11                                                                                                                                                                                                                                                                                                                                                                                           |
| A <sub>7</sub>                                                                                                                                                                                                                                          | 0.11                                                                                                                                          | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                 | 1.00                                                                                                                                                                  | 0.07                                                                                                                                                                         | 0.09                                                                                                                                                 | 0.07                                                                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                           |
| L <sub>2</sub> (19)                                                                                                                                                                                                                                     | 0.23                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.18                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                | 0.12                                                                                                                                                 | 0.07                                                                                                                                                                  | 1.00                                                                                                                                                                         | 0.09                                                                                                                                                 | 0.08                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                           |
| L <sub>2</sub> (16)                                                                                                                                                                                                                                     | 0.11                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                 | 0.09                                                                                                                                                                  | 0.09                                                                                                                                                                         | 1.00                                                                                                                                                 | 0.03                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_3(3)$                                                                                                                                                                                                                                                | 0.02                                                                                                                                          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.08                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                | 0.15                                                                                                                                                 | 0.07                                                                                                                                                                  | 0.08                                                                                                                                                                         | 0.03                                                                                                                                                 | 1.00                                                                                                                                                   | 0.14                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{U_3(3)}{L_2(23)}$                                                                                                                                                                                                                                | 0.02                                                                                                                                          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                         | 0.13                                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                 | 0.13                                                                                                                                                                  | 0.05                                                                                                                                                                         | 0.10                                                                                                                                                 | 0.14                                                                                                                                                   | 1.00                                                                                                                                                                                                                                                                                                                                                                                           |
| L <sub>2</sub> (23)                                                                                                                                                                                                                                     | 0.06                                                                                                                                          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                         | 0.05                                                                                                                                                                                                                                                                                |                                                                                                                                                      | -0.01                                                                                                                                                                 | 0.06                                                                                                                                                                         | 0.05                                                                                                                                                 | 0.15                                                                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_2(25)$                                                                                                                                                                                                                                               | 0.12                                                                                                                                          | 0.13<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 | 0.14<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.17<br>0.12                                                                                                                                                 | 0.06<br>0.00                                                                                                                                                                                                                                                                        | 0.17<br>0.11                                                                                                                                         | 0.12<br>0.17                                                                                                                                                          | 0.14<br>0.07                                                                                                                                                                 | 0.15<br>0.08                                                                                                                                         | 0.21                                                                                                                                                   | 0.13<br>0.07                                                                                                                                                                                                                                                                                                                                                                                   |
| $\frac{M_{11}}{L_2(27)}$                                                                                                                                                                                                                                | 0.19                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                      | 0.06                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |
| $L_2(27)$<br>$L_2(29)$                                                                                                                                                                                                                                  | -0.03<br>0.08                                                                                                                                 | 0.38<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 | 0.45<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05<br>0.24                                                                                                                                                 | 0.35<br>0.18                                                                                                                                                                                                                                                                        | 0.06<br>0.02                                                                                                                                         | 0.10<br>0.22                                                                                                                                                          | 0.01<br>0.15                                                                                                                                                                 | 0.01<br>0.05                                                                                                                                         | 0.09<br>0.06                                                                                                                                           | 0.16<br>0.03                                                                                                                                                                                                                                                                                                                                                                                   |
| $L_2(29)$<br>$L_2(31)$                                                                                                                                                                                                                                  | 0.08                                                                                                                                          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.24                                                                                                                                                         | 0.18                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                 | 0.22                                                                                                                                                                  | 0.15                                                                                                                                                                         | 0.03                                                                                                                                                 | 0.06                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                           |
| $\frac{L_2(31)}{A_8}$                                                                                                                                                                                                                                   | 0.22                                                                                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.13                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                | 0.24                                                                                                                                                 | 0.08                                                                                                                                                                  | 0.13                                                                                                                                                                         | 0.09                                                                                                                                                 | 0.13                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_3(4)$                                                                                                                                                                                                                                                | 0.11                                                                                                                                          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.15                                                                                                                                                         | -0.01                                                                                                                                                                                                                                                                               | 0.14                                                                                                                                                 | 0.28                                                                                                                                                                  | 0.08                                                                                                                                                                         | 0.09                                                                                                                                                 | 0.03                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                                                                           |
| $L_2(37)$                                                                                                                                                                                                                                               | 0.21                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.13                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                 | 0.28                                                                                                                                                                  | 0.13                                                                                                                                                                         | 0.16                                                                                                                                                 | 0.11                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                           |
| $U_4(2)$                                                                                                                                                                                                                                                | 0.03                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14                                                                                                                                                         | -0.01                                                                                                                                                                                                                                                                               | 0.15                                                                                                                                                 | 0.02                                                                                                                                                                  | 0.03                                                                                                                                                                         | 0.10                                                                                                                                                 | 0.05                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                           |
| Sz(8)                                                                                                                                                                                                                                                   | 0.08                                                                                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                | 0.05                                                                                                                                                 | 0.13                                                                                                                                                                  | 0.10                                                                                                                                                                         | 0.03                                                                                                                                                 | 0.03                                                                                                                                                   | -0.01                                                                                                                                                                                                                                                                                                                                                                                          |
| $L_2(32)$                                                                                                                                                                                                                                               | 0.06                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                |                                                                                                                                                      | -0.01                                                                                                                                                                 | 0.10                                                                                                                                                                         | 0.05                                                                                                                                                 | 0.02                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 ( )                                                                                                                                                                                                                                                   |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                         |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                         |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                                                                                                                                                                     |                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                      |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                         | / (00)                                                                                                                                        | / (05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | `` ^4                                                                                                                                                                                                           | (07)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / (90)                                                                                                                                                       | / (01)                                                                                                                                                                                                                                                                              | 4                                                                                                                                                    | 1 (4)                                                                                                                                                                 | (07)                                                                                                                                                                         | 11 (9)                                                                                                                                               | C-(0)                                                                                                                                                  | (20)                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                         | L <sub>2</sub> (23)                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 | L <sub>2</sub> (27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L <sub>2</sub> (29)                                                                                                                                          | L <sub>2</sub> (31)                                                                                                                                                                                                                                                                 | A <sub>8</sub>                                                                                                                                       | L <sub>3</sub> (4)                                                                                                                                                    | L <sub>2</sub> (37)                                                                                                                                                          | U <sub>4</sub> (2)                                                                                                                                   | Sz(8)                                                                                                                                                  | L <sub>2</sub> (32)                                                                                                                                                                                                                                                                                                                                                                            |
| A <sub>5</sub>                                                                                                                                                                                                                                          | 0.06                                                                                                                                          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19                                                                                                                                                                                                          | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.08                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                 | 0.21                                                                                                                                                                  | 0.09                                                                                                                                                                         | 0.17                                                                                                                                                 | 0.08                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                           |
| A <sub>5</sub><br>L <sub>2</sub> (7)                                                                                                                                                                                                                    | 0.06<br>0.13                                                                                                                                  | 0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 0.19<br>3 0.04                                                                                                                                                                                                | -0.03<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08<br>0.17                                                                                                                                                 | 0.22<br>0.08                                                                                                                                                                                                                                                                        | 0.11<br>0.15                                                                                                                                         | 0.21<br>0.08                                                                                                                                                          | 0.09<br>0.03                                                                                                                                                                 | 0.17<br>0.03                                                                                                                                         | 0.08<br>0.08                                                                                                                                           | 0.06<br>0.05                                                                                                                                                                                                                                                                                                                                                                                   |
| A <sub>5</sub><br>L <sub>2</sub> (7)<br>A <sub>6</sub>                                                                                                                                                                                                  | 0.06<br>0.13<br>0.02                                                                                                                          | 0.1<br>0.1<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 0.19<br>3 0.04<br>0 0.33                                                                                                                                                                                      | -0.03<br>0.38<br>-0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.17<br>0.04                                                                                                                                         | 0.22<br>0.08<br>0.30                                                                                                                                                                                                                                                                | 0.11<br>0.15<br>0.15                                                                                                                                 | 0.21<br>0.08<br>0.27                                                                                                                                                  | 0.09<br>0.03<br>0.12                                                                                                                                                         | 0.17<br>0.03<br>0.34                                                                                                                                 | 0.08<br>0.08<br>0.17                                                                                                                                   | 0.06<br>0.05<br>-0.01                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{L_2(7)}{A_6}$<br>$\frac{L_2(8)}{L_2(8)}$                                                                                                                                                                                                         | 0.06<br>0.13<br>0.02<br>0.04                                                                                                                  | 0.1<br>0.1<br>0.2<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03                                                                                                                                                                            | -0.03<br>0.38<br>-0.06<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24                                                                                                                                 | 0.22<br>0.08<br>0.30<br>0.02                                                                                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14                                                                                                                         | 0.21<br>0.08<br>0.27<br>0.04                                                                                                                                          | 0.09<br>0.03<br>0.12<br>0.05                                                                                                                                                 | 0.17<br>0.03<br>0.34<br>0.01                                                                                                                         | 0.08<br>0.08<br>0.17<br>0.03                                                                                                                           | 0.06<br>0.05<br>-0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{L_2(7)}{A_6}$ $\frac{L_2(8)}{L_2(11)}$                                                                                                                                                                                                           | 0.06<br>0.13<br>0.02<br>0.04<br>0.06                                                                                                          | 0.1<br>0.1<br>0.2<br>0.2<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12                                                                                                                                                                  | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.17<br>0.04<br>0.24<br>0.24                                                                                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15                                                                                                                                                                                                                                                | 0.11<br>0.15<br>0.15<br>0.14<br>0.08                                                                                                                 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15                                                                                                                                  | 0.09<br>0.03<br>0.12<br>0.05<br>0.14                                                                                                                                         | 0.17<br>0.03<br>0.34<br>0.01<br>0.10                                                                                                                 | 0.08<br>0.08<br>0.17<br>0.03<br>0.06                                                                                                                   | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{L_2(7)}{A_6}$ $\frac{L_2(8)}{L_2(11)}$                                                                                                                                                                                                           | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05                                                                                                  | 0.1<br>0.1<br>0.2<br>0.1<br>0.1<br>0.1<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00                                                                                                                                                        | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.18                                                                                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02                                                                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12                                                                                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01                                                                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10                                                                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01                                                                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01                                                                                                           | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ \hline L_2(8) \\ L_2(11) \\ L_2(13) \\ \hline L_2(17) \end{array} $                                                                                                                                                 | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05                                                                                                  | 0.1<br>0.1<br>0.2<br>0.1<br>0.1<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11                                                                                                                                              | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.18                                                                                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02                                                                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14                                                                                                 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01                                                                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10                                                                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01                                                                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01                                                                                                           | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \end{array} $                                                                                                                                                        | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13                                                                                          | 0.1<br>0.1<br>0.2<br>0.2<br>0.1<br>0.1<br>0.0<br>0.0<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17                                                                                                                                    | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.18<br>0.02<br>0.22                                                                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08                                                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20                                                                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28                                                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15                                                                                                                         | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15                                                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04                                                                                           | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06<br>0.02<br>-0.01                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \end{array}$                                                                                                                                               | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01                                                                                 | 0.1<br>0.1<br>0.2<br>0.2<br>0.1<br>0.1<br>0.0<br>0.0<br>0.0<br>0.1<br>0.0<br>0.1<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07                                                                                                                          | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15                                                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15                                                                                                                                                                                                                | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08                                                                                 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13                                                                                                 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02                                                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15                                                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10                                                                                   | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \end{array}$                                                                                                                                    | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06                                                                         | 0.1<br>0.1<br>0.2<br>0.2<br>0.1<br>0.1<br>0.0<br>0.0<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08                                                                                                                | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15                                                                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15                                                                                                                                                                                                                | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09                                                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13                                                                                                 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09                                                                                                         | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10                                                                                | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10                                                                                   | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \end{array}$                                                                                                                          | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06<br>0.05                                                                 | 0.1<br>0.1<br>0.2<br>0.2<br>0.1<br>0.1<br>0.0<br>0.0<br>0.1<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06                                                                                                      | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15                                                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09                                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08                                                                                 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13                                                                                                 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02                                                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08                                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10                                                                                   | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \end{array}$                                                                                                                          | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06                                                                         | 3 0.1<br>3 0.1<br>5 0.2<br>4 0.1<br>6 0.1<br>6 0.0<br>8 0.1<br>0.1<br>6 0.1<br>6 0.1<br>6 0.1<br>6 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>66 0.00<br>7 0.11<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07                                                                                                     | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15<br>0.05                                                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09                                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09                                                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09                                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09                                                                                                         | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05                                                                | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03                                                                           | 0.06<br>0.05<br>-0.01<br>0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ \end{array}$                                                                                                  | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06<br>0.05<br>0.15                                                         | 3 0.1<br>3 0.1<br>5 0.2<br>4 0.1<br>6 0.1<br>6 0.0<br>8 0.1<br>6 0.1<br>6 0.1<br>6 0.1<br>7 0.1<br>8 0.1<br>9 0.1<br>9 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>66 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07                                                                                           | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15<br>0.05<br>0.06<br>0.03                                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.09                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.09                                                                 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11                                                                                 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03<br>0.02<br>-0.01                                                          | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \hline L_2(17) \\ A_7 \\ L_2(19) \\ L_3(3) \\ U_3(3) \\ U_2(23) \\ L_2(25) \end{array}$                                                                                              | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06<br>0.05<br>0.15<br>0.09                                                 | 3 0.1<br>3 0.1<br>4 0.2<br>5 0.1<br>6 0.1<br>6 0.1<br>6 0.1<br>6 0.1<br>6 0.1<br>7 0.1<br>8 0.1<br>9 0.1<br>1 0.2<br>1 0.2<br>1 0.1<br>1 | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>66 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07<br>1 0.05<br>0 0.12                                                                       | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.15<br>0.05<br>0.06<br>0.03                                                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.08                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.09<br>0.12                                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03<br>0.02<br>-0.01                                                          | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.04                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \hline L_2(17) \\ A_7 \\ L_2(19) \\ L_3(3) \\ U_3(3) \\ U_2(23) \\ L_2(25) \end{array}$                                                                                              | 0.06<br>0.13<br>0.02<br>0.04<br>0.05<br>0.05<br>0.13<br>-0.01<br>0.05<br>0.15<br>0.09                                                         | 0.1<br>0.1<br>0.2<br>0.2<br>0.1<br>0.1<br>0.0<br>0.1<br>0.0<br>0.1<br>0.1<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>5 0.08<br>1 0.06<br>3 0.07<br>1 0.05<br>0 0.12<br>2 1.00                                                                        | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04<br>0.15<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.15<br>0.05<br>0.06<br>0.03<br>0.04                                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.08                                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.12<br>0.01<br>0.20<br>0.01                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02                                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03<br>0.02<br>-0.01                                                          | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08<br>0.01                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ \end{array}$                                                                                                  | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06<br>0.05<br>0.15<br>0.09                                                 | 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1 3 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>3 0.07<br>1 0.05<br>0 0.12<br>2 1.00                                                                        | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.15<br>0.05<br>0.06<br>0.03                                                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.08<br>0.22                                                                                                                                                                                | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.09<br>0.09<br>0.12                                                 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04                                                                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08                                                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02<br>0.02                                                | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03<br>0.02<br>-0.01<br>-0.05<br>0.04                                         | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ \end{array}$                                                                  | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.05<br>0.15<br>0.09                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07<br>1 0.05<br><b>0</b> 0.12<br>2 <b>1.00</b><br>5 -0.04                                     | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04<br>0.15<br>-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15<br>0.05<br>0.06<br>0.03<br>0.04<br>0.15<br>0.02                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.08<br>0.18<br>0.08                                                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.12<br>0.01<br>0.20<br>0.12                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04<br>0.04                                                                 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08<br>0.09<br>0.16<br>0.05                                                         | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02<br>0.02<br>0.14<br>0.25                                        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03<br>0.02<br>-0.01<br>-0.05<br>0.04                                         | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08<br>0.15<br>0.02<br>0.05                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ A_8 \end{array}$                                        | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.05<br>0.15<br>0.15<br>0.09                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.06<br>3 0.07<br>0 0.12<br>2 1.00<br>5 -0.04<br>5 -0.04<br>8 0.22                                                  | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.10<br>0.01<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04<br>0.15<br>-0.04<br>1.00<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15<br>0.05<br>0.03<br>0.04<br>0.15<br>0.02                                                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15                                                                                                                                                                | 0.11<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.12<br>0.01<br>0.20<br>0.12                                         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04<br>0.06<br>0.24                                                         | 0.09<br>0.03<br>0.12<br>0.055<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08<br>0.09<br>0.16<br>0.05<br>0.03                                                | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.05<br>0.15<br>0.15<br>0.05<br>0.02<br>0.02<br>0.02<br>0.02<br>0.14<br>0.25                                | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.02<br>-0.01<br>-0.05<br>0.04<br>0.08                                         | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08<br>0.05<br>0.01<br>0.08<br>0.05<br>0.01<br>0.08<br>0.02                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ \hline L_2(8) \\ L_2(11) \\ L_2(13) \\ \hline L_2(17) \\ A_7 \\ L_2(19) \\ \hline L_2(16) \\ L_3(3) \\ U_3(3) \\ U_2(23) \\ L_2(23) \\ L_2(27) \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ \hline A_8 \\ L_3(4) \end{array}$ | 0.06<br>0.13<br>0.02<br>0.04<br>0.05<br>0.13<br>-0.01<br>0.05<br>0.15<br>0.09<br>1.00<br>0.11<br>0.05<br>0.15<br>0.09                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07<br>1 0.05<br>0 0.12<br>2 1.00<br>5 0.02<br>8 0.22<br>0 0.14<br>6 0.24                      | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04<br>0.15<br>-0.04<br>1.00<br>0.25<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.08<br>0.17<br>0.04<br>0.24<br>0.28<br>0.02<br>0.22<br>0.15<br>0.05<br>0.06<br>0.03<br>0.04<br>0.15<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15                                                                                                                                                                | 0.11<br>0.15<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.12<br>0.11<br>0.20<br>0.14<br>0.10<br>0.13<br>0.10         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04<br>0.04<br>0.02<br>0.24<br>0.02<br>0.21<br>0.12                         | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08<br>0.09<br>0.16<br>0.05<br>0.03                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02<br>0.02<br>0.14<br>0.25<br>0.01<br>0.04<br>0.15        | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.05<br>0.04<br>0.08<br>0.01<br>0.04<br>0.01<br>0.04<br>0.03                   | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.04<br>0.05<br>0.01<br>0.08                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ \\ A_8 \\ L_3(4) \\ L_2(37) \end{array}$  | 0.06<br>0.13<br>0.02<br>0.04<br>0.06<br>0.05<br>0.13<br>-0.01<br>0.06<br>0.05<br>0.15<br>0.15<br>0.09<br>1.00<br>0.11<br>0.05<br>0.04<br>0.04 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07<br>1 0.05<br>0 0.12<br>2 1.00<br>5 0.02<br>8 0.22<br>0 0.14<br>6 0.24                      | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04<br>0.15<br>-0.04<br>1.00<br>0.25<br>-0.03<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.08<br>0.17<br>0.04<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15<br>0.05<br>0.06<br>0.03<br>0.04<br>0.15<br>0.02                                                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.08<br>0.15<br>0.08<br>0.15<br>0.08<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.24<br>0.08<br>0.15<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0 | 0.11<br>0.15<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.12<br>0.11<br>0.20<br>0.14<br>0.10<br>0.13<br>0.13<br>0.10 | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04<br>0.04<br>0.02<br>0.24<br>0.02<br>0.21<br>0.12<br>0.18<br>1.00<br>0.00 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.05<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08<br>0.09<br>0.16<br>0.05<br>0.09                                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>-0.01<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02<br>0.02<br>0.14<br>0.25<br>0.01<br>0.04<br>0.15        | 0.08<br>0.08<br>0.07<br>0.07<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.02<br>-0.01<br>-0.05<br>0.04<br>0.08<br>0.01<br>0.04<br>0.04<br>0.04         | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08<br>0.15<br>0.02<br>0.05<br>0.01<br>0.08<br>0.05<br>0.02<br>0.01<br>0.08                                                                                                                                                                                                                                 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ A_8 \end{array}$                                        | 0.06<br>0.13<br>0.02<br>0.04<br>0.05<br>0.13<br>-0.01<br>0.05<br>0.15<br>0.09<br>1.00<br>0.11<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07<br>0 0.12<br>2 1.00<br>5 0.02<br>8 0.22<br>0 0.14<br>6 0.05                                | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>0.04<br>1.00<br>0.25<br>-0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.22<br>0.22<br>0.15<br>0.05<br>0.06<br>0.03<br>0.04<br>0.15<br>0.02<br>0.25<br>1.00<br>0.06                         | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.08<br>0.15<br>0.08<br>0.15<br>0.08<br>0.15<br>0.08                                                                                                                                        | 0.11<br>0.15<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.14<br>0.20<br>0.08<br>0.09<br>0.12<br>0.11<br>0.20<br>0.14<br>0.10<br>0.13<br>0.10         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04<br>0.04<br>0.02<br>0.21<br>0.12<br>0.18<br>1.00<br>0.02                          | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.09<br>0.16<br>0.03<br>0.08<br>0.09<br>0.16<br>0.05<br>0.02<br>0.09<br>0.16<br>0.05<br>0.02<br>0.09<br>0.16<br>0.05 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02<br>0.02<br>0.14<br>0.25<br>0.01<br>0.04<br>0.15<br>0.16<br>0.16 | 0.08<br>0.08<br>0.17<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.05<br>0.04<br>0.08<br>0.01<br>0.04<br>0.01<br>0.04<br>0.03                   | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08<br>0.05<br>0.01<br>0.08<br>0.05<br>0.05<br>0.01<br>0.08<br>0.02<br>0.05<br>0.01<br>0.08<br>0.02<br>0.01<br>0.08<br>0.09<br>0.09<br>0.01<br>0.05<br>0.01<br>0.05<br>0.01<br>0.05<br>0.05<br>0.06<br>0.05<br>0.06<br>0.07<br>0.07<br>0.07<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09 |
| $\begin{array}{c} L_2(7) \\ A_6 \\ L_2(8) \\ L_2(11) \\ L_2(13) \\ \\ L_2(17) \\ A_7 \\ L_2(19) \\ L_2(16) \\ L_3(3) \\ U_3(3) \\ L_2(23) \\ L_2(23) \\ L_2(25) \\ M_{11} \\ L_2(27) \\ L_2(29) \\ L_2(31) \\ \\ A_8 \\ L_3(4) \\ L_2(37) \end{array}$  | 0.06<br>0.13<br>0.02<br>0.04<br>0.05<br>0.13<br>-0.01<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.09<br>1.00<br>0.01<br>0.04<br>0.04         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 0.19<br>3 0.04<br>0 0.33<br>4 0.03<br>7 0.12<br>6 0.00<br>7 0.11<br>2 0.17<br>4 0.07<br>5 0.08<br>1 0.06<br>3 0.07<br>1 0.05<br>0 0.12<br>2 1.00<br>5 -0.02<br>8 0.22<br>0 0.04<br>6 0.05<br>4 0.05<br>4 0.05 | -0.03<br>0.38<br>-0.06<br>0.45<br>0.05<br>0.35<br>0.06<br>0.10<br>0.01<br>0.01<br>0.09<br>0.16<br>-0.04<br>1.00<br>0.25<br>-0.03<br>0.10<br>0.05<br>-0.04<br>0.05<br>0.05<br>-0.06<br>0.05<br>-0.06<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07    | 0.08<br>0.17<br>0.04<br>0.24<br>0.24<br>0.18<br>0.02<br>0.22<br>0.15<br>0.05<br>0.06<br>0.03<br>0.04<br>0.15<br>0.02<br>0.25<br>1.00<br>0.02                 | 0.22<br>0.08<br>0.30<br>0.02<br>0.15<br>0.02<br>0.24<br>0.08<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.15<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                 | 0.11<br>0.15<br>0.15<br>0.15<br>0.14<br>0.08<br>0.12<br>0.04<br>0.09<br>0.09<br>0.12<br>0.01<br>0.10<br>0.13<br>0.10<br>0.18<br>0.07<br>0.18         | 0.21<br>0.08<br>0.27<br>0.04<br>0.15<br>-0.01<br>0.05<br>0.28<br>0.13<br>0.09<br>0.11<br>0.04<br>0.04<br>0.02<br>0.24<br>0.02<br>0.21<br>0.12<br>0.18<br>1.00<br>0.00 | 0.09<br>0.03<br>0.12<br>0.05<br>0.14<br>0.10<br>0.15<br>0.02<br>0.09<br>0.16<br>0.03<br>0.08<br>0.09<br>0.16<br>0.03<br>0.12<br>0.02<br>0.09                                 | 0.17<br>0.03<br>0.34<br>0.01<br>0.10<br>0.05<br>0.15<br>0.10<br>0.08<br>0.05<br>0.02<br>0.02<br>0.14<br>0.25<br>0.01<br>0.04<br>0.15<br>0.16<br>0.16 | 0.08<br>0.08<br>0.07<br>0.03<br>0.06<br>0.01<br>0.05<br>0.04<br>0.10<br>0.03<br>0.02<br>-0.01<br>-0.05<br>0.04<br>0.08<br>0.01<br>0.04<br>0.09<br>0.09 | 0.06<br>0.05<br>-0.01<br>0.05<br>0.06<br>0.02<br>-0.01<br>0.04<br>0.05<br>0.01<br>0.08<br>0.15<br>0.02<br>0.05<br>0.01<br>0.08<br>0.05<br>0.02<br>0.01<br>0.08                                                                                                                                                                                                                                 |

Table 6: This table gives the correlations between: (having a cover with group 1 with positive betti number, having a cover with group 2 with positive betti number). The average  $\sigma$  -diagonal correlation is 0.09.